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Abstract The recent development of dense and continuously operating Global Navigation Satellite
System (GNSS) networks worldwide has led to a significant increase in geodetic data sets that sometimes
capture transient-deformation signals. It is challenging, however, to extract such transients of geophysical
origin from the background noise inherent to GNSS time series and, even more so, to separate them from
other signals, such as seasonal redistributions of geophysical fluid mass loads. In addition, because of
the very large number of continuously recording GNSS stations now available, it has become impossible
to systematically inspect each time series and visually compare them at all neighboring sites. Here we show
that Multichannel Singular Spectrum Analysis (M-SSA), a method derived from the analysis of dynamical
systems, can be used to extract transient deformations, seasonal oscillations, and background noise present
in GNSS time series. M-SSA is a multivariate, nonparametric, statistical method that simultaneously exploits
the spatial and temporal correlations of geophysical fields. The method allows for the extraction of common
modes of variability, such as trends with nonconstant slopes and oscillations shared across time series,
without a priori hypotheses about their spatiotemporal structure or their noise characteristics. We
illustrate this method using synthetic examples and show applications to actual GPS data from Alaska to
detect seasonal signals and microdeformation at the Akutan active volcano. The geophysically coherent
spatiotemporal patterns of uplift and subsidence thus detected are compared to the results of an idealized
model of such processes in the presence of a magma chamber source.

1. Introduction and Motivation

The past decade has seen a rapid increase in the number and spatial density of continuously operating Global
Navigation Satellite System (GNSS) stations to monitor crustal deformation in tectonically active regions
or simply serve as reference stations for surveying applications. The leading technique as of today is the
Global Positioning System (GPS), with two major deformation monitoring networks currently in operation,
the Plate Boundary Observatory (PBO) in the Western U.S. with roughly 2000 stations and the GEONET
(http://www.gsi.go.jp/) network in Japan with ∼5000 stations.

These networks record linear site displacements due to plate motions and interseismic strain accumulation
on active faults, as well as transient-deformation events of various origins—volcanic, tectonic, or hydrologic
[e.g., Feng and Newman, 2009; King et al., 2007; Miller et al., 2002]—whose spatiotemporal scales span several
orders of magnitude. Our ability to objectively and reliably detect these transients is of primary importance
because they contain information on the rheological properties and stress state of near-surface faults, as well
as of the Earth’s crust and mantle. Detecting transients, however, is challenging for two reasons. First, the very
large amount of data now available in large geodetic networks make the visual inspection of time series at
each site very time consuming and well nigh impossible. Second, the amplitude of these transients can be
close to—or lie even below—the background noise inherent to geodetic time series.

Several methods have recently been proposed to detect transient deformation in GPS time series. Ohtani
et al. [2010] model GPS time series as the sum of a spatially coherent signal described as a sum of spatial
wavelets weighted by temporally varying coefficients plus errors from different sources, such as reference
frame, site-specific noise, and observation error. Ji and Herring [2013] first smooth the time series using a
Kalman filter to increase signal-to-noise ratio, while explicitly estimating annual and semiannual harmonic
terms to model the seasonal oscillations commonly observed in GPS time series. They analyze the data in
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the temporal dimension first by estimating time-correlated signals, then, in a separate step, use a principal
component analysis (PCA) to exploit the spatial correlations between the smoothed and filtered time series.

The approach of Riel et al. [2014] is to parameterize position time series using a dictionary of temporally
varying nonorthogonal functions assumed to represent all possible signal types present in the data. The dic-
tionary contains functions to model known signals, such as sinusoidal functions for seasonal oscillations or
logarithmic functions for postseismic deformation. It also contains B-spline functions with various periods
and starting times to represent transient displacements. The method accounts for spatial correlations using
common B-spline functions to describe transient mode of variability shared across several time series.

These methods all aim at improving the signal-to-noise ratio while using the spatial or temporal correlation
inherent to GPS position time series to search for transient events. All three use a priori hypotheses on the
spatial or temporal structure of the transients to build basis functions—e.g., wavelets or B-splines—onto
which the data can then be projected to detect and extract those transients. In Ji and Herring [2013] the a
priori hypothesis is the stochastic process that gives rise to the noise and the transient signal.

All these methods also parameterize the seasonal signal as a sum of harmonic functions with annual and semi-
annual periods; this assumption prevents one, however, from accounting for interannual variability. Moreover,
the stochastic properties of GPS position time series and the temporal and spatial shapes of transient events
are not really known at this time. Making educated guesses on the stochastic properties of GPS time series
or on the basis functions that best describe their temporal correlations is a valid approach, but one would
like in fact to extract this information from the GNSS data sets in a data-adaptive way, i.e., purely based on
information contained in the data, without a priori assumptions.

The purpose of this paper is to show that some of these shortcomings can be overcome using Multichannel
Singular Spectrum Analysis (M-SSA). M-SSA is an advanced time series analysis method that simultaneously
takes advantage of the spatial and temporal correlations in geophysical fields to extract empirical basis func-
tions that represent the common modes of spatiotemporal variability of the data set. The main benefit of
this method is to allow unraveling oscillations and trends with nonconstant slopes embedded in time series
without using any a priori knowledge about their period and amplitude or their spatiotemporal structures.
M-SSA was first proposed, in the version used here, in the field of climate studies by Keppenne and Ghil [1993]
and Plaut and Vautard [1994] to extract low-frequency oscillations of the atmospheric system from geopo-
tential height field data. It was also used to study surface winds [Jiang et al., 1995] and sea level data [Unal
and Ghil, 1995]. Ghil et al. [2002] provide a review of the methodology and of many applications; see also
http://web.atmos.ucla.edu/tcd/ssa/ for further details and references.

We show in the following that M-SSA is well suited to extract geophysically relevant information from GPS
position time series. In the next section, we briefly review the methodology and illustrate its application to a
set of synthetic time series whose properties resemble those of GPS records. This methodology is then applied
in section 3 to a set of recorded displacements at eight GPS sites on the Akutan volcano in the Aleutian Islands.
In section 4, we show that M-SSA can be successfully applied to larger data sets, by using 80 stations from the
PBO network covering Alaska, as well as to the extraction of noise characteristics from the Akutan signals.

2. Multichannel Singular Spectrum Analysis (M-SSA)

2.1. Formulation
Chen et al. [2013] have already proposed using single-channel SSA for the extraction of the seasonal signal
from a single GPS time series and reviewed the univariate methodology. The emphasis here is on the often
more powerful multivariate case.

Let

{Xl(t) ∶ l = 1,… , L; t = 1,… ,N} (1)

be an ensemble of GPS time series: L is the number of channels—each channel here being a time series—and
N the number of data points in each channel. The sampling timeΔt is constant; hence, (N−1)Δt is the duration
of the time series.
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The key idea of M-SSA is to exploit the covariance information contained in a series of lagged copies of all
Xl(t) over a sliding M-point window [Broomhead and King, 1986a, 1986b; Ghil et al., 2002]. In M-SSA one starts
therefore by considering the matrix X̃l that includes M time-delayed copies of the original time series Xl(t),
written as:

X̃l =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Xl(1) Xl(2) ⋅ ⋅ ⋅ Xl(M)
Xl(2) Xl(3) ⋅ ⋅ ⋅ Xl(M + 1)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Xl(N′) Xl(N′ + 1) ⋅ ⋅ ⋅ Xl(N)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2)

with N′ = N−M+1. Here M is the length of the window used to embed the original time series and it must be
chosen to optimize the quantity of information extracted while maintaining satisfactory statistical confidence
in that information.

The covariance matrix Tl,l′ between two time series Xl(t) and Xl′ (t) is given by

(Tl,l′ )j,j′ =
1
Ñ

min(N,N+j−j′)∑
n=max(1,1+j−j′)

Xl(t)Xl′

(
t + j′j

)
, (3)

where

Ñ = min(N,N + j − j′) − max(1, 1 + j − j′) + 1. (4)

These matrices are the blocks of a grand covariance matrix T̃, given by

T̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

T1,1 T1,2 ⋅ ⋅ ⋅ T1,L

T2,1 T2,2 ⋅ ⋅ ⋅ T2,L

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ Tl,l′ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

TL,1 TL,2 ⋅ ⋅ ⋅ TL,L

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

The resolution of the eigenvalue problem

T̃Ek = 𝜆kEk (6)

yields the L×M eigenvalues 𝜆k and eigenvectors Ek of T̃. Each Ek can be seen as a succession of L segments Ek
l

of length M. We can thus associate a segment Ek
l to each time series Xl(t). The eigenvectors Ek are called the

spatiotemporal empirical orthogonal functions (ST-EOFs). Each eigenvalue carries a given amount of variance
from the overall data set.

2.2. Synthetic Example
To illustrate the method, we consider first, for the sake of simplicity, the 10 year long univariate time
series plotted in Figure 1, with N = 3652. This synthetic time series is the sum of an arctangent function that
simulates a transient displacement, harmonic functions with annual and semiannual periods that simulate
seasonal oscillations, along with a white noise and a colored noise. The latter is associated with the presence of
correlations in the time series and it is chosen to be a stochastic process characterized in the spectral domain
by the power law [e.g., Agnew, 1992]

S(f ) = S0

(
f
f0

)−𝛼

. (7)

Here S(f ) is the spectral density, f is the frequency, P0 and f0 are constants and 𝛼 is the spectral index: the larger
𝛼, the faster the roll-off, i.e., the faster the decay of the spectral density with increasing frequency f . For this
first synthetic example we choose 𝛼 = 0.5. The variance associated with the colored noise account for 50% of
the total noise variance.
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Figure 1. Univariate synthetic time series (black dots) composed of, from top to bottom in gray, a transient
displacement, annual and semiannual harmonic functions, as well as colored and white noise.

We apply M-SSA with M = 400 days in order to capture the annual signal contained in the synthetic time
series. The resulting singular spectrum in Figure 2 displays the eigenvalues calculated by solving equation (6),
sorted in decreasing order and normalized so that they represent their corresponding portion of the total
variance of the time series. Note that the singular values 𝜇k are actually the square roots of the eigenvalues
𝜆k , i.e., 𝜇2

k = 𝜆k . We prefer, though, plotting the 𝜆k ’s, since they sum to unity, but will still refer to the plots as
singular spectra, which is the more customary terminology in the M-SSA context.

One observes that most of the variance in the time series is contained in the first six eigenvalues, with a drop
and a plateau after the sixth eigenvalue (Figure 2). These six leading eigenvalues represent the signal con-
tained in the time series, while the lower order ones correspond to noise. One also notices that eigenvalues
2–3 and 4–5 are forming pairs, which indicate the presence of oscillatory modes [Vautard and Ghil, 1989; Ghil
et al., 2002]. These results illustrate the capacity of M-SSA to extract periodic components, such as the seasonal
signals often present in GPS time series.

In studying a single time series one encounters only temporal EOFs (T-EOFs), while using several time series
would have given rise to ST-EOFs, cf. equations (5) and (6). The five leading T-EOFs are shown in Figure 3.
Note that T-EOFs 2–3 and 4–5, associated with the two pairs of eigenvalues mentioned above, are in phase
quadrature. Such pairs of T-EOFs can be seen as data-adaptive counterparts of the sine and cosine functions
in the usual Fourier analysis of time series. The advantage of these pairs over the Fourier sine and cosine
functions is to allow the representation of periodic signals with time-varying amplitudes with a few EOFs only
[Vautard and Ghil, 1989; Ghil et al., 2002].

Figure 2. Singular spectrum of the synthetic time series shown in Figure 1. Eigenvalues are normalized to represent
the appropriate fraction of the total variance of the time series, and they sum to 1.
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Figure 3. The five leading temporal empirical orthogonal functions (T-EOFs) extracted from the synthetic time series;
they are associated with the first five eigenvalues in Figure 2.

The projection of the rows of matrix X̃ = (X̃1, X̃2,… , X̃l) onto the eigenvectors Ek gives the coefficients Ak(t):

Ak(t) =
M∑

j=1

L∑
l=1

Xl(t + j − 1)Ek
l (j). (8)

The L × M vectors Ak(t) are called the spatiotemporal principal components (ST-PCs) in M-SSA or temporal
PCs (T-PCs) in the case of univariate data. They are time series of weighting coefficients associated with their
corresponding T-EOFs.

Figure 4 shows the five leading T-PCs recovered from the synthetic time series. As for the T-EOFs, T-PCs 2–3
and 4–5 are in phase quadrature, with annual and semiannual periods, respectively. They capture the seasonal
oscillations present in the synthetic time series, while the first T-PC captures the transient displacement.

2.3. Signal Reconstruction
The ST-PCs and the ST-EOFs allow us to partially reconstruct the time series Xl(t) [Ghil and Vautard, 1991;
Vautard et al., 1992; Plaut and Vautard, 1994]. The part of the signal Rk

l (t) associated with the kth ST-EOF and

Figure 4. The five leading temporal principal components (T-PCs) associated with the five T-EOFs of Figure 3.
These T-PCs are time coefficients that weigh the corresponding T-EOFs in reconstructing the original time series;
they represent the different modes of variability of the time series.
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Figure 5. Reconstruction of the (a) transient displacement and the (b) seasonal oscillations in our synthetic example.
Black dots = synthetic time series, gray lines = synthetic transient and oscillatory signals embedded in the synthetic
time series, red lines = reconstructed signals using M-SSA. (Figure 5a) The reconstruction using the first T-PC and
corresponding T-EOF captures the transient displacement signal. (Figure 5b) The reconstruction using the first five T-PCs
and corresponding T-EOFs additionally captures the seasonal signal.

ST-PC is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rk
l (t) =

1
M

M∑
j=1

Ak(t − j + 1)Ek
l (j), M ≤ t ≤ N − M + 1

Rk
l (t) =

1
i

i∑
j=1

Ak(t − j + 1)Ek
l (j), 1 ≤ t ≤ M − 1

Rk
l (t) =

1
N−i+1

M∑
j=1−N+M

Ak(t − j + 1)Ek
l (j), N − M + 2 ≤ t ≤ N.

(9)

These partial reconstructions are filtered versions of the original time series and capture a given portion of
their total variance. No information is lost in the process since one can reconstruct the full time series by
summing the L × M Rk

l (t).

Figure 5 shows the reconstructions of the transient displacement and the seasonal oscillations of our example.
They faithfully reproduce the transient and oscillatory signals embedded in the synthetic data.

In summary, M-SSA allows one to decompose time series into statistically uncorrelated components that can
be classified into trends, oscillatory patterns, and noise. As shown above with the synthetic example of a tran-
sient event, trends need not be linear, as emphasized already by Ghil and Vautard [1991]. Moreover, oscillations
can be amplitude and phase modulated, as will be shown below.

2.4. M-SSA Versus SSA and PCA
At this stage, we have illustrated the method using a univariate synthetic time series, which only gives rise to
temporal EOFs and PCs. This particular case of the more generic M-SSA corresponds to L = 1 in equation (1)
and is simply called SSA, cf. Broomhead and King [1986a] and Vautard and Ghil [1989]. One can also note
that the generic case reduces to the classical principal component analysis (PCA) [Preisendorfer et al., 1981],
commonly used in statistical analysis, when M = 1 in equation (2).

M-SSA extracts, however, relevant modes of variability in time series more efficiently when using jointly several
time series with correlated information. In this case, M-SSA simultaneously exploits the spatial and
the temporal correlations in the time series, which allows for a more efficient separation of noise from trends
and oscillatory modes.

We illustrate this point by simulating 15 time series in a manner similar to the one described above, all sharing a
common transient signal. We apply M-SSA to ensembles of 1 to 15 of those time series and compute the misfit
between the synthetic and reconstructed transient signal. As shown in Figure 6a, the misfit systematically
decreases as the number of time series that are jointly analyzed increases.

WALWER ET AL. DATA-ADAPTIVE GPS TIME SERIES ANALYSIS 6
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Figure 6. Evaluation of the improvement in M-SSA reconstruction as a function of (a) the number L of time series and
(b) of window width M. (Figure 6a) Misfit between the synthetic transient signal and its reconstruction versus the
number L of synthetic time series used in M-SSA. (Figure 6b) Misfit between the synthetic transient signal and its
reconstruction versus M, the maximum lag used to compute the covariance matrix. All the synthetic time series are
similar to the one in Figure 1 and share the same transient displacement. Black dots correspond to the results of an
experiment that uses a white noise (𝛼 = 0), while gray dots correspond to colored noise with a spectral index of 𝛼 = 1
and black diamonds correspond to a noise with a spectral index of 𝛼 = 2. The separating power of M-SSA improves as
the number of the series sharing a transient signal increases as well as M increases.

We also illustrate the benefit of using both spatial and temporal correlations jointly over using spatial corre-
lations only, as in the case of PCA, by varying M. Figure 6b shows that the misfit is maximum for M = 1 (PCA
case) and systematically decreases as M increases. These two simple synthetic tests show that simultaneously
exploiting spatial and temporal correlations in time series, instead of using only one of them, significantly
improves our ability to extract the transient signals embedded in the data.

We varied the spectral index 𝛼 of the noise introduced in the synthetic time series by using the values of
𝛼 = 0, 1, and 2. These values correspond to white noise, flicker noise, and random walk noise (sometimes
called brownian or red noise), respectively, all of which are commonly found in GPS time series [e.g., Williams,
2003]. We observe in Figure 6 that the transient is captured more easily when 𝛼 is lower and that separating
a transient requires more information, i.e., a larger number L of time series, when 𝛼 is higher. This type of
dependence on 𝛼 is expected because a higher spectral index means that—for the same total spectral power,
given by ∫ ∞

0 f S(f )df —the spectral density, cf. equation (7), will be higher at low frequencies f . This reflect
the occurrence of more time-correlated patterns with long correlation times, i.e., more patterns that can be
similar to the transient signal.

We also conducted a more realistic multivariate synthetic test that is reported in the supporting information.
This test was formulated by the Southern California Center community and was also performed by Riel et al.
[2014]. It consists in a set of synthetic data simulating time series recorded at cGPS sites in California. These
time series contains simulated colored noise, seasonal signals, and transient signals related to a slip event on
the Santa Monica fault.

3. Application to Transient Deformation of the Akutan Volcano, Alaska

We applied M-SSA to a set of GPS data recorded at the Akutan volcano, Alaska, in order to test the method
in the case of GPS position time series. Akutan is an active volcano of the Aleutian arc equipped with eight
continuously operating GPS receivers since the late 2006; see maps in Figure 7. The data are taken from the
Plate Boundary Observatory, http://pbo.unavco.org/.

We chose this case because Ji and Herring [2011] were able to identify a transient inflation episode in early 2008
given only a few millimeters of horizontal and vertical displacements, i.e., close to the noise level in the GPS
time series. To do so, they first smoothed each time series independently by modeling it as the sum of a con-
stant rate, annual and semiannual harmonic functions, and a first-order Gauss-Markov (FOGM) process that
accounts for temporally correlated noise and transient signal. In a second step, they used PCA to extract spa-
tially correlated information from the FOGM state estimates. They also removed some of the noise common
to all Alaska continuous GPS (cGPS) stations—hence not specific to Akutan’s deformation—by estimating a
seven-parameter reference frame transformation to the original time series in a first, preanalysis, stage.

WALWER ET AL. DATA-ADAPTIVE GPS TIME SERIES ANALYSIS 7
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Figure 7. Maps showing the location of the Akutan volcano within the Aleutian arc (inset) and of the eight continuously
recording GPS receivers (black triangles) used in this study on the island (main map).

With this composite method, Ji and Herring [2011] were able to successfully identify an inflation event with
1–10 mm of radial horizontal displacement and 0–11 mm of uplift centered on the active crater; this event
started in February 2008 and ended 4 months later. Their approach, however, makes a number of a priori
assumptions, in particular, on the shape of the seasonal oscillations with constant amplitude and on the a
priori probability density function of the noise and the transient signal. The fact that they are able to identify
a transient likely to be of magmatic origin justifies their hypotheses in this specific case.

We would like to test whether one can also identify this transient inflation event by jointly exploiting the
spatial and temporal correlations contained in the data, using the M-SSA on the raw, unfiltered time series,
with no preprocessing whatsoever. Moreover, we will show that M-SSA can detect additional inflation events
in more recent data, as well as being applicable to much larger data sets.

3.1. The GPS Data
We use position time series from cGPS stations of the PBO network, sampled on a daily basis and expressed
in the Stable North America Reference Frame [Herring et al., 2008]. Since the cGPS measure displacement in
the northward, eastward, and upward directions, and since there are eight such stations on the island (see
Figure 7), the number of channels in our M-SSA analysis is L = 8 × 3 = 24.

Figure 8. Singular spectrum of the GPS position time series at 8 cGPS sites on Akutan volcano from early 2006 to late
2014. The first 30 M-SSA eigenvalues are plotted for the window widths M = 400, 500, and 600 days. Eigenvalues
are normalized as in Figure 2, so that their sum is unity.

WALWER ET AL. DATA-ADAPTIVE GPS TIME SERIES ANALYSIS 8
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Figure 9. The 11 leading ST-PCs associated either with the trend with nonconstant slope or the seasonal oscillations. They are calculated using (left column)
M = 400, (middle column) M = 500, and (right column) M = 600 days. The persistence of the shape of the ST-PCs for the different values of M—ignoring the
occasional change of sign, which is a numerical artifact of PCA in general—is an indicator of the significance of the extracted modes. Regardless of the value of
M, ST-PCs 1, 4, 5, and 8 jointly capture the data-adaptive trend, while the ST-PC pair 2–3 represents the annual oscillations. The four ST-PCs 6–7 and 9–11 capture
the semiannual oscillations for M = 400, whereas this mode is captured by ST-PCs 6–7 and 9–10 for M = 500 and ST-PCs 8–10 and ST-PCs 6–9 for M = 600.

M-SSA requires that all time series analyzed have the same length. Hence, we filled missing data in any of the
channels over an interval of length at epoch tm by using the following model:

x(tm) = atm + b + 𝜎r, (10)

where x(tm) is an estimation of the missing data, a and b are the slope and intercept of the regression line,
respectively, r is a Gaussian random variable with zero mean and unit standard deviation, while 𝜎 is the
standard deviation of the available data over an interval of the same length.

Filling gaps in this way is justified by the fact that Gaussian noise is not correlated in time or space and is
thus going to be seen by M-SSA as part of the noise, rather than of the trends or oscillatory signals [Unal and
Ghil, 1995].

We also removed the linear trend in each time series before applying the M-SSA to the data set. The linear
trend, associated with stationary deformation, captures in general the largest proportion of variance in the
data set. Because of this, it is useful to remove it to focus on transient deformation that account often for much
less variance.

WALWER ET AL. DATA-ADAPTIVE GPS TIME SERIES ANALYSIS 9
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Figure 10. Spatiotemporal empirical orthogonal functions (ST-EOFs) associated with eigenvalues 2 (black) and 3 (gray) (see Figure 8) calculated using (a) M = 400,
(b) M = 500, and (c) M = 600 days. The subpanels show the components of these EOFs for each cGPS site and each direction of motion being measured. These
two ST-EOFs capture the annual oscillatory mode of annual period present in the data. The differences between estimates using different values of M are small.

3.2. Choice of Window Width M
Before we describe the modes of variability, based on the ST-EOFs and ST-PCs, we discuss the choice of the
window width M; it equals the number of lagged time series used to construct the grand covariance matrix T̃
and it is a key parameter of M-SSA. M determines, in particular, the length of the ST-EOFs and, therefore, it limits
the maximum period of the oscillations that can be extracted from the data, which equals approximately MΔt.

The optimal value of M is a trade-off between the statistical significance of the extracted modes and the
maximum period of the oscillations one aims to extract. The larger the N∕M ratio—i.e., the smaller the value
of M—the larger the statistical significance of the extracted modes [Ghil et al., 2002]. This is so because the
uncertainty associated with the estimation of the covariances decreases as the number of points used in the
estimation, i.e., N−M+1—increases. On the other hand, extracting the annual signal present in the GPS time
series obviously requires that M be greater than 365 days.

We applied M-SSA to the eight GPS time series recorded at Akutan volcano from late 2006 to early 2014, for
a total of 3000 data points in the three displacements—N-S, E-W, and up-down—and obtained the singular
spectrum shown in Figure 8. The singular spectrum in the figure was obtained for three different values of
M: 400, 500, and 600 days. The three spectra show a similar shape, with a first eigenvalue well above the
others and accounting for a large portion of the data variance. It is followed by a first plateau formed by two
eigenvalues for M = 400 or three eigenvalues for M = 500 and M = 600. Vautard and Ghil [1989] already
noticed that, as M increases, the same feature in the spectrum will require a larger number of modes to be
described fully.

All three spectra show a second plateau, sloping down to a third one that ends at eigenvalue 15. The ST-EOFs
and ST-PCs for these value of M are plotted in Figures 10 and 9, respectively. They also show similar shapes,
for instance, the letter M-like trend visible in the first ST-PC for all values of the window width M, cf. Figure 9.

The similarity of the spectra, together with the robustness of the shape of the ST-EOFs and ST-PCs, suggests
that they capture the same dynamic processes. This parametric robustness—in addition to standard statistical
significance tests—gives us further confidence in the extracted modes being physically meaningful [Ghil et al.,
2002, section 5.2]. In the following, we will discuss results obtained with M = 400.

3.3. Singular Spectrum, ST-EOFs, and ST-PCs
The ST-PCs associated with the first 11 eigenvalues are plotted in Figure 9. We observe that the first ST-PC
describes 6% of the total variance of the data set and corresponds to an M-shaped trend and a relatively long
periodic temporal variability. ST-EOFs 2 and 3 carry 7% of the variance and, as shown in Figure 10, they are in
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Figure 11. MC-MSSA test of statistical significance using surrogate data containing (a) flicker noise, with spectral index
𝛼 = 1; and (b) random walk noise, with 𝛼 = 2. Lower and upper ticks on the error bars correspond to the 2.5% and 97.5%
quantiles of an ensemble of 500 surrogate data that are different realizations of the null hypothesis under consideration.
These tests show that modes associated with eigenvalues 5 and 8 that lie within the corresponding confidence intervals
are possibly generated by the presence of colored noise in the GPS time series recorded at Akutan volcano.

phase quadrature. They form a pair that captures an oscillatory component of annual period and represents
7% of the total variance (Figure 9).

ST-PCs 4, 5, and 8, together with ST-PC 1, capture the trend with nonconstant slope; this triplet contains 4%
of the variance, for a total of 12% in the data-adaptive trend. ST-PCs 6-7 and ST-PCs 9–11 form two pairs that
together capture an oscillatory component of semiannual period; together, these four ST-PCs contain 6% of
the data variance (Figure 9). ST-PC 10 captures also an oscillatory component with mostly annual period and
contains 1% of the data variance.

3.4. Testing the Statistical Significance of the Extracted Modes
As first pointed out by Allen and Smith [1994], colored noise in geophysical time series can lead to the false
detection of modes that resemble those of geophysical origin when applying the M-SSA. To make sure that
the modes that we consider when reconstructing our time series are not associated with colored noise,
appropriate tests of statistical significance have to be applied.

Monte Carlo SSA (MC-SSA) was first proposed by Allen and Smith [1994] as such a test for the univariate SSA
and then extended by Allen and Robertson [1996] to the multivariate case. This test helps discriminate between
the modes associated with signals and those associated with noise. MC-SSA relies on constructing sets of
“surrogate data” [Theiler et al., 1991] and it allows one to formulate several distinct null hypotheses.

The main idea of MC-SSA is to compare the partial variances in the data set being analyzed, in the directions
spanned by its ST-EOFs, with the corresponding variances resulting from a particular null hypothesis. The null
hypothesis here takes the form of an ensemble of surrogate data XR of the same length N and dimension L as
the data set we wish to analyze.

The partial variances of the null hypothesis in the directions defined by the ST-EOFs Ek are estimated by the
diagonal elements of

𝚲R = E′T̃RE. (11)

Here E′ denotes the transpose of the matrix E whose L × M columns are the ST-EOFs Ek deduced from the
covariance matrix of the data via equation (6), and T̃R is the covariance matrix of the null hypothesis, calculated
using the ensemble of surrogate data XR and equation (3).

By calculating𝚲R for a sufficiently large ensemble of surrogate data, one can estimate confidence intervals for
the diagonal elements of 𝚲R. If the eigenvalues of the data covariance matrix lie inside or below these confi-
dence intervals, we conclude that the associated modes are not significant with respect to the null hypothesis
under consideration.

This test, however, turns out to be too lenient in the multivariate case; in particular when the covariance matrix
T̃ deduced from the data is rank deficient, i.e., when L × M ≫ N [Allen and Robertson, 1996]. This limitation,
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however, can be overcome by an improvement of the test proposed by Groth and Ghil [2015]. The MC-SSA
results reported in the following use the improved MC-SSA algorithm of Groth and Ghil [2015].

The difficulty in this kind of test is the choice of the null hypothesis against which the data are tested. Here
we choose to test only the statistical significance of the first 11 modes described above and represented in
Figure 9. It is indeed among these modes that we identified the different signals that are discussed in the next
sections of the paper.

The surrogate data are therefore constructed in two steps. First, we reconstruct the GPS time series using all
ST-EOFs and ST-PCs except the first 11 ones. In other words, we reconstruct the time series using equation (9),
with k ranging from 12 to L × M. In the second step, we add to these reconstructed time series a noise model
against which we wish to test the significance of the first 11 modes. Here two canonical types of noise models
are considered : flicker noise with 𝛼 = 1 and random walk noise with 𝛼 = 2. These two types of colored noise
are often considered to be present in GPS time series [e.g., Williams et al., 2004].

Figure 11 shows the MC-SSA test results. Error bars represent the two-sided 95% confidence intervals derived
from 500 realizations of the surrogate data set, and we concentrate on the first 11 eigenvalues. For the null
hypothesis that contains flicker noise (Figure 11a), only eigenvalues 5 and 8 lie within the error bars. They are,
however, relatively close to the upper ticks of their associated error bars, i.e., to the 97.5% quantile, and espe-
cially so in the case of the eighth eigenvalue, which lies almost on the upper tick. In this case, for eigenvalues
5 and 8, our test does not reject the null hypothesis. However, the proximity of the eigenvalues to the upper
tick may be indicative of a type II error or false negative.

For the MC-SSA test against random walk noise (Figure 11b) eigenvalues 5 and 8 clearly lie within their associ-
ated error bars. Hence, ST-EOFs 5 and 8 and the corresponding ST-PCs (Figure 9) may have been generated by
the presence of random walk noise in the data set and are consequently not used to reconstruct the signals
considered in the next sections.

3.5. Seasonal Signals
Seasonal signals with annual and semiannual periods are ubiquitous in GPS position time series and are
known to be caused in a large part by mass transport and redistribution in the atmosphere, oceans, and
continental water reservoirs, whose load triggers deformation of the Earth surface that is measurable with
space-geodetic techniques [e.g., van Dam and Wahr, 1998; Dickey, 2002; Bevis et al., 2005; Fu et al., 2012].

Seasonal signals contain important geophysical information on the rheological structure of the Earth’s crust
and mantle [Chanard et al., 2014] and on the spatiotemporal characteristics of the load [e.g., Blewitt, 2001;
Heki, 2004]. They must, therefore, be extracted as objectively as possible from the data.

However, our ability to extract transient deformations from GPS time series depends on our capacity to iden-
tify correctly the seasonal signal, since the transients we are interested in may share some of the characteristics
of seasonal signals. In particular, the spectral content of the seasonal and transient signals may overlap,
which renders classic time series analysis based on the Fourier transform unsuitable. Thus, for instance, Heki
[2004] showed that Fourier analysis of interannually modulated seasonal oscillations may yield transient-like
residuals.

Seasonal signals in GPS time series are commonly modeled using the sum of sinusoidal functions with annual
and semiannual periods fitted to the data, which provides an estimate of their phase and amplitude. This
procedure is efficient in the case of purely harmonic signals but cannot account, for instance, however, for
interannual amplitude modulations or asymmetric oscillations, two characteristics that often are present in
actual GPS time series [Heki, 2004; Bennett, 2008].

M-SSA has long been used in meteorology and climatology to extract such anharmonic and
amplitude-modulated oscillatory modes of variability for the atmosphere and oceans [e.g., Keppenne and Ghil,
1993; Plaut and Vautard, 1994; Unal and Ghil, 1995; Jiang et al., 1995]. Here we take advantage of this capacity
of M-SSA to extract and reconstruct the seasonal signal present in GPS time series without constraining a
priori their period, shape, or time-dependent amplitude.

Figure 10 shows the pair of ST-EOFs 2–3 that captures the annual oscillations in the Akutan GPS time series.
The phase quadrature between the two members of the pair emphasizes their being data-adaptive counter-
parts of the fixed sine and cosine basis functions of Fourier transforms. Their main advantage is that these
two ST-EOFs alone describe the annual oscillations in the L = 24 time series and their interannual amplitude
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Figure 12. Seasonal variability of the GPS data set for Akutan. Black dots: detrended daily GPS position time series at
eight sites on Akutan volcano, Alaska, with their 1 𝜎 error bars. Red lines: reconstructed series after M-SSA using the
combination of ST-PCs 2–3 (annual) and 6–7 plus 9–11 (semiannual). The black vertical lines in the topmost panels
represent 10 mm. The subpanels correspond to the eight cGPS sites and three directions of motion as in Figure 10. Note
the good visual fit to the data. The pluriannual modulation of the seasonal signal is clearly visible, for instance, in the
lower amplitude vertical signal for 2009, which appears across all the stations. The light red areas represent the
variability of the reconstructions of the seasonal oscillations when the raw time series are perturbated by colored noise
with spectral index of 1.

variation [Ghil et al., 2002, and references therein]. The three panels of the figure show very small differences
in results for the window widths M = 400, 500, and 600 days, a finding that supports the robustness of the
M-SSA results. ST-EOFs 6–7 and 9–11 (not shown) jointly capture the semiannual variability.

The vertical component of the annual signal in Figure 9 is weaker than its horizontal components. The
weakness of the vertical component is consistent with Akutan being an island of small size, where vertical
deformation caused by atmospheric or hydrological loading—the latter in the form of continental water or
snow—is expected to be small [van Dam and Herring, 1994]. In such a setting, nontidal ocean mass load-
ing, unaccounted for in the cGPS analysis used here, should represent the largest contribution to seasonal
deformation [Munekane and Matsuzaba, 2004].
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Figure 13. Comparison between the reconstruction of the
seasonal signal obtained with M-SSA (red solid curve) and a
commonly used fit of the sum (black solid curve) of an
annual and a semiannual harmonic function for each
component recorded at site AV10: (top) northward, (middle)
eastward, and (bottom) upward. We applied a 20 day
moving average to the raw data (black dots) to reduce the
data scatter and be able to better distinguish the difference
between the M-SSA reconstructions and the four-term
Fourier series. The two models are, to first order, very close,
but M-SSA reconstructions show a pluriannual modulation
in amplitude that is not present in the constant-amplitude
harmonic functions. Note also that these harmonic functions
significantly underestimate the observed range of values in
the vertical component. The weighted root mean square
(WRMS) are 3.29 mm, 2.99 mm, and 8.44 mm for the M-SSA
reconstructions of the seasonal signal for the North, East,
and Up components, respectively. The harmonic functions
fit have a WRMS of 3.32 mm, 3.05 mm, and 9.14 mm which
is systematically higher.

The reconstructed series using the combination of
ST-EOFs 2–3, 6–7, and 9–11 and the corresponding
ST-PCs (Figure 9) together capture well the seasonal
oscillations that are readily apparent in the data,
as shown in Figure 12. In spite of the small num-
ber of ST-EOFs used, the reconstructed time series
exhibits fairly complex waveforms; in particular, a
lower amplitude episode in the vertical component
of the seasonal signal in the rightmost column in
Figure 12 is shared in 2009 by all the stations. This
lower amplitude episode is also visible in Figure 13
for the specific site AV10.

We find, in fact, that this modulation is present in
the semiannual oscillations associated with ST-PCs
6–7 but not in those associated with ST-PCs 2–3
and 9–11, an observation that may indicate that the
ST-PC pair 6–7 captures a specific dynamic process
that is different from the one captured by ST-PCs
2–3 and 9–11. Further investigation of these sea-
sonal signals and their multiannual modulation is
beyond the scope of the present paper, but our
observations illustrate that M-SSA can extract infor-
mation relevant to the dynamics and the physics
driving these signals.

We compare in Figure 13 the seasonal signals
extracted using M-SSA from the three components
recorded at station AV10, on the one hand, with a
curve fit to the data that uses the classical four-term
Fourier series

x(t) = A1 cos(2𝜋t) + A2 sin(2𝜋t) + B1 cos(𝜋t)
+ B2 sin(𝜋t),

(12)
on the other. Here A1, A2, B1, and B2 are the
coefficients for the annual and semiannual terms
estimated from the daily positions x(t), and
the fits were done for each one of the three
components—north, east, and up—separately.

The difference between M-SSA reconstructions of
the seasonal oscillations and the four-term Fourier
expansion is most pronounced for the vertical com-
ponent, which shows interannual modulations of
larger amplitude. Furthermore, the M-SSA recon-
struction and four-term Fourier estimates for the
seasonal oscillations in the vertical are not always
exactly in phase, since the coefficients A1,2 and B1,2

are constant, and thus the phase, as well as the
amplitude, is constant, while the M-SSA results have
both phase and amplitude modulations.

In addition, the reconstruction of the seasonal modes and their interannual modulations owes to ST-PCs 2–3
and 6–7 for the vertical but ST-PCs 2–3 and 9–11 for the horizontal components. This shows that M-SSA is
able to extract annual, semiannual, and interannual oscillations with actually fewer parameters than a least
squares fit to a Fourier for which at least six sinusoidal functions would have been necessary to account for
such variability.
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Figure 14. Transient motion at Akutan volcano, Alaska. The subpanels correspond to the eight cGPS sites and three
directions of motion as in Figure 10. Note the good visual fit to the data. Black dots: detrended daily GPS position time
series at the eight cGPS sites; with their 1 𝜎 error bars. Red lines: M-SSA reconstructions, using the trend ST-PCs 1 and 4,
which together carry 11% of the total data variance. The black vertical lines in the topmost panels represent 10 mm. The
light red areas represent the variability of the reconstruction of the data-adaptive trends when the raw time series are
perturbated by colored noise with spectral index of 1.

These observations show that the M-SSA reconstructions faithfully capture the interannual variability of the
seasonal oscillations, with respect to both amplitude and phase modulation. This pluriannual modulation of
the seasonal signal identified by M-SSA may be indicative of multiannual oscillations in the regional hydro-
climatic regime; see Ghil and Robertson [2002, and references therein] including, in particular, Wallace and
Gutzler [1981].

3.6. Transient Signals
We now focus on ST-PCs 1 and 4 (Figure 9), which carry the data-adaptive trend shared by all 24 GPS time
series at Akutan volcano. These ST-PCs together capture 11% of the total variance in the data set (Figure 8)
and are associated with transient behavior, mostly described by the shape of ST-PC 1. This transient is shown
by the reconstructions in Figure 14.
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Figure 15. Maps of the horizontal and vertical displacements at Akutan volcano that are associated with the (a–d) four dominantly monotonic parts of the
reconstructed trends derived from ST-PCs 1 and 4. For each event, the two top panels plot the vector displacements at the eight cGPS sites, while the bottom
panel plots the time series of northward displacements at site AV12. In this latter panel, black dots show the raw data and the red solid curves show the
M-SSA-reconstructed trend signals, while the blue solid curves show the best fit prediction from a simple, idealized model of magma chamber expansion
[Mogi, 1958]. In the top panels, the red arrows are based on the M-SSA reconstructions and the blue ones are based on the Mogi [1958] model. Note the spatial
consistency of the displacements for each of the four successive episodes with a radial pattern centered on the volcano that is consistent with a magmatic origin.

The M-SSA-filtered time series (red curves in the figure) display a transient deformation event starting in early
2008 and lasting for about half a year. This transient event is similar in shape and duration to the one identified
by Ji and Herring [2011], and it is visible in Figure 14 at all eight sites and in all three directions of motion; the
amplitude of the motion and its direction vary, though, from site to site.

The event is already visible in some of the raw time series, such as the northward component at AV12, or the
eastward component at AV07. But its shape and duration in the raw data, where all the signals and the noise
are mixed, sometimes resemble part of a seasonal cycle—e.g., in the eastward component at AV12—or a
sharp step function that could be mistaken for an equipment problem—e.g., in the northward component
at AV10.

In Figure 15, we consider four transient episodes dominated by vertical uplift. We compare the associated
ground motions (red arrows in the figure) with those given by a calculation that uses the simple model of a
point source volume change, simulating a magma chamber, embedded in an elastic half-space (blue arrows in
the figure). Such a model—also used by Ji and Herring [2011]—was first proposed by Mogi [1958] as a simple
way of calculating surface deformation in active volcanic systems.

The spatial representation of the site displacements from 2008.0 to 2008.7 in Figure 15a shows that this event
is associated with a radial extension and uplift centered on the volcano, with amplitudes decreasing outward.
This is consistent with the observations reported by Ji and Herring [2011] and validates the extraction of this
transient by M-SSA.

Figures 15a–15d also show other features shared among the filtered time series, across the four episodes,
although these features are more subtle than the one described above. We observe that the first transient,
from 2008.0 to 2008.7 (Figure 15a), is followed at all sites by another monotonic trend with an opposite slope,
from 2010.5 to 2010.8 (Figure 15b), then by a shorter monotonic trend, from 2010.8 to 2011.5 (Figure 15c),
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Figure 16. Misfit plots between the deformation predicted by a Mogi source and the observed displacements for
each of the four transient events shown in Figure 15. The four events are well explained by inflation (uplift and radial
extension at the surface) or deflation (subsidence and radial contraction at the surface) of the same point source at
8 ± 1 km. These results strongly support the hypothesis that the small but coherent deformations extracted by M-SSA
are of magmatic origin.

with the same slope as in Figure 15a. Finally, we observe fourth monotonic trend, from 2011.5 to the end of
the data used here (Figure 15d), whose slope is again opposite to the previous one.

The amplitudes and slopes of these trends vary from site to site: they are subtle and very difficult to see in
the raw time series, in particular, in the noisier vertical component, where they are buried in the noise but
still extracted by our M-SSA analysis. The match between the horizontal component of the raw series and the
filtered reconstruction, though, is readily visible at those sites and for those components for which the ampli-
tude of these trends is relatively large, such as the eastward component at AV07, the northward component
at AV12, or the eastward component at AV13.

The site displacements associated with the three following transients are plotted in Figures 15b–15d. They
also show a well-organized pattern of radial contraction (episode 2), extension (episode 3), and compression
(episode 4), associated with subsidence, uplift, and subsidence, respectively. All three events have amplitudes
of less than 4 mm, i.e., they are much smaller than the first. Event 3 is the least pronounced one, with dis-
placements that do not exceed 2 mm. In spite of these very small displacements, their common features—to
wit, the radial pattern centered on the volcano, the good correlation between horizontal and vertical compo-
nents, and the decreasing amplitudes with distance from the volcano summit reinforce our confidence that
they represent a signal of geophysical origin rather than noise.

We are, therefore, observing—over the roughly 8 years of data analyzed—two cycles of uplift and radial
extension, followed by subsidence and radial contraction, and both cycles consistently display features that
strongly suggest a magmatic origin. We test this hypothesis by running a series of “Mogi models,” as described
above, for each of the four transient deformation episodes. For each episode we vary the depth and volume
change of the source, while its horizontal position is kept constant at the latitude and longitude used by Ji and
Herring [2011]. Figure 16 shows that the minimum misfit between model and data analysis results is obtained
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Figure 17. M-SSA analysis of the PBO network of 80 GPS stations from Alaska: (a) Geographic distribution of the
stations; and (b) the six leading ST-PCs calculated by applying M-SSA to the position time series from this network.
ST-PCs 1 and 2 are in phase quadrature and represent a seasonal oscillation with an annual period. The next four ST-PCs
represent data-adaptive trends.

for a source located at a depth of close to 8 km for all four sources. The fact that a single source location can
describe all four transient events is a strong indication that they are, indeed, of magmatic origin and, therefore,
that the very small transients extracted by M-SSA are indeed representative of a geophysical signal.

4. Discussion

4.1. Implications for Transient Detection in Large GPS Networks
We have so far been using GPS stations located within roughly 25 km of each other and thus strong spatial
and temporal correlations are expected, making M-SSA particularly efficient at extracting common modes of
variability from the data. We now address the question of whether the transient signal described above would
have been detected across a larger station footprint and with no a priori information on its location.

The latter situation is particularly relevant given the large number of GPS stations now commonly deployed
across wide areas. Visually combing through these large data sets for transient events is becoming more
and more difficult, and it is therefore necessary to develop automated approaches to identifying geophysical
signals in a systematic and objective way.

We applied, therefore, M-SSA to GPS position time series from 80 sites distributed across Alaska, including
those on the Akutan volcano; Their geographical distribution is plotted in Figure 17a. The computational
burden increases rapidly because of the dimension of the spatiotemporal lag covariance matrix T̃, which is
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Figure 18. Reconstructed time series (solid red lines) using ST-PCs 3–6 of Figure 17b, which represent data-adaptive
trends. The black vertical lines in the topmost panels represent 10 mm. The reconstructions here are for the same
eight cGPS sites on Akutan volcano as plotted in Figure 14 and are presented in the same format. Here, however, the
reconstructions are calculated from the 80 × 3 time series from the PBO network covering Alaska and shown in
Figure 17a. Note the similarity with the reconstructed series derived solely from the 8 × 3 Akutan GPS time series,
plotted in Figure 14. For 15 (∼60%) of them the correlation coefficients between the reconstructed time series from
eight stations and 80 stations are larger than 0.7. For seven of them (∼30%) the correlation coefficients are less than 0.5.
However, these seven time series are those for which the signal is very weak such as in the three components recorded
at AV15.

(L × M)2. We then resampled the data weekly. It allows us to reduce the window width M without making the
ST-EOFs length smaller than 365 days, which is necessary to extract the seasonal oscillations as explained in
section 3.2. The M-SSA analysis proceeds the same way as described in section 3 above and it produces six
leading ST-PCs, shown in Figure 17b; this set of ST-PCs describes 31% of the data variance.

We observe that over such a large spatial scale the first two ST-PCs correspond to an oscillatory component
with an annual period, while the remaining four ST-PCs represent trends. The time series reconstructed using
these trends, plotted in Figure 18, display the same transients as described above using the eight-site M-SSA
of Figure 9. The corresponding site displacements, plotted in Figure 19, stand out as a local anomaly at the
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Figure 19. Map of the horizontal displacements associated with the first transient deformation event identified above
for the Alaskan PBO network; this event corresponds to the time interval 2008.0–2008.7, cf. Figure 18. The red arrow
over the Gulf of Alaska indicates a horizontal displacement of more than 1 mm. To make them visible we indicate GPS
sites with displacements less than 1 mm with red dots. Note that displacements at Akutan stand out as anomalously
large, with a radial pattern. Figure 20 below shows a close-up on Akutan.

scale of Alaska. The displacements over Akutan, as obtained by the Alaska-wide M-SSA analysis, are plotted
in Figure 20. They show a radial pattern of extension as seen by the M-SSA with the eight sites on Figure 15a.

Having applied M-SSA to the 80 GPS stations covering a large footprint, we thus found that the method is still
able to identify common modes of variability at the specific location of the Akutan volcano. As a consequence,
applying M-SSA to the uncorrected raw data of a regional network of stations—i.e., without removing a sea-
sonal signal, modifying the frame of reference, or assuming a given set of noise characteristics—should allow
one to detect statistically significant local anomalies. Such anomalies can then be further investigated by
zooming in on them and verifying that the corresponding spatial patterns are consistent with a geophysical
process [e.g., Ji and Herring, 2011]. This result opens the way for the automated detection of transient events
in large GNSS networks.

Figure 20. Comparison of the horizontal and vertical displacements associated with the first transient-deformation
event identified above (2008.0 to 2008.7), as extracted from the eight-site M-SSA (black arrows versus the 80-site,
Alaska-wide M-SSA (white arrows). Note the agreement between the local and the regional-scale M-SSA estimates: both
show a radial pattern of extension and uplift centered on the volcano. This pattern is consistent with a magmatic origin,
as seen in Figure 15 above.
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Figure 21. Power spectral density plots of the raw time series (gray lines) and M-SSA-based seasonal signal (red); the residual component, i.e., raw minus the
M-SSA reconstruction of the transient displacements plus the seasonal signals are plotted as black lines. Note the flattening of the spectrum of the residuals at
low frequency, indicating that the trend and the oscillatory components are extracted by M-SSA while preserving the high-frequency noise content.
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4.2. Noise Extraction From GPS Time Series
Noise in GPS position time series is temporally correlated with more power at low frequencies than at high
frequencies [e.g., Zhang et al., 1997; Mao et al., 1999; Williams, 2003]. The power spectrum of GPS time series
on the Akutan volcano (gray lines in Figure 21) follows this characteristic behavior with a slope of roughly −1
of the spectral density at high frequencies indicative of temporally correlated noise.

Such temporal correlations can lead to time-dependent patterns similar to geophysical signals, in particular,
when the spectral index is greater than 1 [Agnew, 1992]; see also the discussion of the spectral index 𝛼 in
section 2.2, cf. equation (7) and Figure 6. It is clear from the figure, furthermore, that the power spectrum of
the raw time series at low frequencies is not flat and includes the contributions from trends and oscillatory
signals described above.

We take advantage of the ability of M-SSA to extract common modes of variability among time series jointly
in space and time. In particular, we do expect it to discriminate between the spectral content associated with
time-dependent noise, on the one hand, and signals such as transient deformation and seasonal motions, on
the other hand.

This expectation is tested in Figure 21, where black lines show the power spectrum of the noise, i.e., the raw
time series minus the reconstruction of the transient plus the seasonal signals. We observe that the noise
carries much less low frequency variance than the raw time series and that its spectrum is quite flat at low
frequencies. This finding confirms our expectation that the low-frequency part of the raw-data spectrum (gray
lines in Figure 21) is mostly due to the sum of the seasonal and transient signals extracted by M-SSA. The
high-frequency content of the residual time series is, however, unaffected, with a slope identical to that of the
raw data. This shows that M-SSA act here as a low-pass filter.

The power spectra of the reconstructed seasonal oscillations in Figure 12 are plotted in red in Figure 21. Two
well-defined peaks are visible at annual and semiannual periods. The transient signal also contributes to the
variance present at these periods, but M-SSA is able to unravel the spectral content associated with these
transients from the one associated with the seasonal oscillations.

This efficient extraction of trends, oscillatory modes, and noise by M-SSA is possible because the method
captures the different temporal and spatial scales of the physical processes responsible for the generation of
the time series.

4.3. M-SSA, GPS Time Series, and Nonlinear Dynamical Systems
The idea that time series analysis could be applied to extract information about underlying nonlinear dynam-
ical systems was proposed by Mañé [1981] and by Takens [1981]. Broomhead and King [1986a, 1986b] and
subsequent authors [Vautard and Ghil, 1989; Ghil and Vautard, 1991; Vautard et al., 1992] reformulated the early
“method of delays” in the setting of the classical Karhunen-Loéve representation of time series, as reviewed
by Ghil et al. [2002], which is at the basis of the M-SSA methodology.

Single-channel SSA and M-SSA have thus been linked to the framework of nonlinear dynamical system theory.
This connection helps explain the fact that M-SSA allows one to extract physically relevant modes of variability
common to several GPS time series because these modes reflect the structure of the underlying attractor.

This make the M-SSA particularly suitable to analyze GPS time series generated by geophysical nonlinear
dynamical systems and a fortiori by volcanoes. Volcanoes are intrinsically chaotic nonlinear dynamical systems
as highlighted by Sparks [2003]. The processes often invoked to explain inflations and subsidences observe
with geodetic data are crystallization, melting, and gas exsolutions along with the dynamic of the hydrother-
mal systems [e.g., Caricchi et al., 2014]. All these phenomena can be coupled with each other and account
(among others) for the nonlinearity of volcanic systems [Sparks, 2003].

The deformation of the Akutan volcano that has been extracted with the M-SSA reflect well this nonlinear
dynamic. They are cyclic—we observe successions of inflations and subsidences—but not periodic. This kind
of chaotic behavior arise typically from nonlinear dynamical systems that have at least 3 degrees of freedom
as first shown by Lorenz [1963] in his famous paper.

GPS time series can obviously provide information not only on magmatic processes—as shown here—but
also on tectonic, hydrological, and seismological processes that affect systems constituted of faults, volcanoes,
crust, and mantle. Such systems are complex and can be seen as well as nonlinear dynamical systems for which
we often have limited knowledge of the physics that precisely controls their evolution in time.
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Regardless of this limitation, M-SSA allows us to efficiently and objectively separate processes and to rank
them as a function of their importance, i.e., of the fraction of variance in the observed time series that
they generate. Some of these processes correspond to what is classically considered as the “signal,” i.e.,
as the deterministic part, while others correspond to what is classically considered as “noise,” i.e., as the
stochastic part.

5. Conclusion

We have shown that M-SSA allows us to extract signals of geophysical significance from GPS position time
series and to efficiently separate them from noise. The data-adaptive nature of the method results in a sim-
ple and parsimonious representation, using only a few spatiotemporal EOFs (ST-EOFs) to describe complex
spatiotemporal fluctuations, such as anharmonic oscillations and trends with nonconstant slopes. This repre-
sentation is achieved without any a priori assumptions on the stochastic characteristics of the noise or on the
cause of the underlying physical processes.

Like other methods, M-SSA is sensitive to the quality of the data. In particular, the presence of colored noise
can lead to the occurrence of modes that resemble those of geophysical origins. We have shown, however, that
hypothesis tests, such as the MC-SSA, help us to discriminate between modes associated with correlated noise
and modes associated with signals. The presence of discrete offsets, due, for example, to equipment changes
at the GPS sites can also lead to bad reconstructions of the time series. Visual inspection of the data may,
therefore, be necessary, although new techniques are being proposed to automatically detect and correct
such shifts in time series [Montillet et al., 2015; Tran, 2013].

Another limitation of the M-SSA is that the size of the (M × L)2 lag covariance matrix T̃ grows rapidly with the
size of the GPS network considered. This can lead to computational issues in solving the eigenvalue problem
described in equation (6).

Despite these limitations M-SSA presents an attractive alternative to existing methods to objectively extract
information embedded in geodetic time series. Its ability to filter and compress the information contained in
GPS time series through the calculation of robust and parsimonious representations opens the perspective
to use it as a tool to detect signals hidden in the large amount of geodetic data now available worldwide.
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