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Basic concepts 
•  Basic problem: We measure range and phase data that are related to 

the positions of the ground receiver, satellites and other quantities. How 
do we determine the “best” position for the receiver (and other 
quantities). 

•  What do we mean by “best” estimate? 

•  Inferring parameters from measurements is an estimation 

•  Two styles of estimation (appropriate for geodetic type measurements): 

–  Parametric estimation where the quantities to be estimated are the 
unknown variables in equations that express the observables 

–  Condition estimation where conditions can be formulated among the 
observations (e.g., leveling where the sum of the height differences around 
closed loops must be zero) 



Basic concepts 
All parametric estimation methods can be broken into a few main 
steps: 

•  Observation equations: equations that relate the parameters to 
be estimated to the observed quantities (observables). 

 Example: relationship between pseudorange, receiver position, 
satellite position (implicit in ρ), clocks, atmospheric and ionospheric 
delays. 

•  Stochastic model: Statistical description that describes the 
random fluctuations in the measurements (and maybe the 
parameters). 

 Example: covariance matrix that describes the data errors (variance 
and correlations) 

•  Inversion that solves for the parameters values from the 
mathematical model consistent with the statistical model. 



Observation model 
•  Observation model are equations relating observables to 

parameters of model: 
–  Observable = function (parameters) 

–  Observables should not appear on right-hand-side of equation 

•  Function is often non-linear, for instance: 

•  Then most common method is linearization of function using 
Taylor series expansion. 

•  Sometimes log linearization for f=a.b.c (products of 
parameters) 
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Taylor’s series expansion 
•  Any function y of variables (x1,x2,…, xn) that is indefinitely differentiable an be 

approximated using a Taylor series expansion as follows: 

•  The estimation is made using the difference between the observations and the 
expected values based on a priori values for the parameters. 

•  The estimation returns adjustments to a priori parameter values 

•  Since the linearization is only an approximation, the estimation should be 
iterated until the adjustments to the parameter values are zero. 

•  For GPS estimation: convergence rate is 100-1000:1 typically (i.e., a 1 meter 
error in a priori coordinates could result in 1-10 mm of non-linearity error). 
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Taylor’s series expansion 

•  We wrote: 

•  For a function of 3 variables x,y,z, neglecting higher order terms: 

•  This can also be written as: 

•  Let’s assume we have three observations, then one can write: € 
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+ ... X = (x,y,z)
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yo − f (xo,yo,zo) = axΔx + ayΔy + azΔz −Δy
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Matrix notation 

•  We wrote: 

•  This can be expressed in matrix notation as: 

•  With: 
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Normal equations 
•  The estimated residuals can be written as: 

•  We want the solution that minimizes the sum of the squares of the residuals
 (minimize “L2 norm”) => minimize the following functional: 

•  Let us write the derivative of J(x) and set it to zero: 
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AT Aˆ x = AT L = system of “normal equations” 



Least squares solution 

•  From the normal equations: 

•  The solution for x is: 

–  L = vector of observations 
–  A = linear matrix relating parameters to observables (also called design 

matrix, model matrix, kernel matrix) 
–  x = vector of parameters to be estimated 
–  v = vector of residuals 

•  This assumes that the inverse of ATA exists. 
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AT Aˆ x = AT L
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Weighted least-squares 
•  If the data had no errors, then estimate of x would be perfect. In reality, data

 have errors and they will map directly into errors on the estimates of x. 
•  If we know the error in the data, we can form the covariance matrix associated

 with L: 

•  Let us define a weight matrix P is : 

•  The least-squares solution now consists of minimizing vTPv = residuals with 
larger elements in P are given more weight. 

•  One can show that the least squares solution is then: 
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•  Diagonal terms = variance = square of standard 
deviation 

•  Off-diagonal terms = correlations between 
observation (zero means no correlation) 
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X = (ATPA)−1ATPL

•  σo
2 = a priori variance 

•  ΣL = covariance matrix of the observations. 



Weighted least-squares 
•  The law of covariance propagation gives the covariance matrix of the 

unknowns ΣX: 

•  Σx has the form: 

–  Square matrix: size of X times size of X 
–  Diagonal terms = variance = square of standard deviation 
–  Off-diagonal terms = covariance = degree of correlation between estimated 

parameters. E.g., if σ11 is negative, then a positive error in parameter 1 will be 
accompanied by a negative error in parameter 2 (and vice versa).  
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Application to GPS observables 

•  Pseudorange measurements jRi(t) are modeled as: 

•  Neglecting propagation, multipath, and receiver errors, eq.(1) becomes: 

•  The geometric distance between satellite j and receiver i is given by: 

 with [jX, jY, jZ] = satellite position, [Xi, Yi, Zi] = receiver position in an ECEF coordinate
 system. 

•  We need to solve for [Xi, Yi, Zi, δi], assuming that we know [jX, jY, jZ, jδ]. Note that the
 unknowns [Xi, Yi, Zi] are not linearly related to the observables. 
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jρi(t) = j X(t) − Xi( )
2

+ jY (t) −Yi( )
2

+ j Z(t) − Zi( )
2

or jρi(t) = f Xi,Yi,Zi( )

t = time of epoch 
jRi = pseudorange measurement 
jρi = satellite-receiver geometric distance 
c = speed of light 
jδ = satellite clock bias 

δi = receiver clock bias 
ΔI = ionospheric propagation error 
ΔT = tropospheric propagation error 
MP = multipath 
ε = receiver noise 
(ranges in meters, time in seconds) 



•  We need to linearize: 

•  Let us expand f(Xi,Yi ,Zi) using a Taylor’s series with respect to a known position [Xo,Yo,Zo]: 

•  We intentionally truncate the Taylor’s expansion after the linear terms. 
•  Partial derivatives = model gradients at [Xo,Yo,Zo] 
•  [Xo,Yo,Zo] = known position, in reality approximate position of the site. 
•  ΔXi, ΔYi, ΔZi = adjustments, i.e. unknowns. 
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Linearization of pseudorange model 
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Recall from earlier that: 
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Recall the chain rule: 

Therefore: 

Computing the partial derivatives 
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•  The partial derivatives are: 

•  We can now substitute these partial derivatives into the (truncated) Taylor’s series
 expansion: 

•  We now have an equation that is linear with respect to the unknowns ΔXi, ΔYi, ΔZi. 
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∂f (Xo,Yo,Zo)
∂Xo

= −
j X(t) − Xo

jρo(t)
∂f (Xo,Yo,Zo)

∂Yo
= −

jY (t) −Yo
jρo(t)

∂f (Xo,Yo,Zo)
∂Zo

= −
j Z(t) − Zo

jρo(t)

€ 

f (Xi,Yi,Zi) = f (Xo,Yo,Zo) −
j X(t) − Xo

jρo(t)
ΔXi −

jY (t) −Yo
jρo(t)

ΔYi −
jZ(t) − Zo

jρo(t)
ΔZi

Computing the partial derivatives 



•  Let us go back to our pseudorange measurements jRi(t) and rewrite our model equation: 

•  We can rearrange the above equation by separating the known and unknown terms of each side (recall
 that the satellite clock correction  jδ(t) is provided in the navigation message): 

•  We can simplify the notation by assigning: 

•  With 4 satellites visible simultaneously, one can then write the following 4 equations: 
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Final linear model 
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jRi(t)−
jρo(t) −c

jδ(t) = −
j X(t) − Xo
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jY (t) −Yo
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•  We had, for 4 satellites visible at the same time: 

•  Let us introduce: 

•  L = vector of n observations. Must have at least 4 elements (i.e. 4 satellites), but in reality will have from 4 
to 12 elements depending on the satellite constellation geometry. 

•  X = vector of u unknowns. Four elements in our case. 
•  A = matrix of linear functions of the unknowns (= design matrix), n rows by u columns. 

•  We can write our problem in a matrix-vector form: 
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1l=1aXiΔXi+
1aYiΔYi+

1aZiΔZi − cδi
2l=2aXiΔXi+
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Problem in matrix notation 



•  The data is associated with a variance-covariance matrix ΣL

•  Our problem in a matrix-vector form is written as: 

•  The least squares solution therefore is given by: 

•  P is the weight matrix, defined by: 

σo
2 = a priori variance 

ΣL = covariance matrix of the observations. 

•  The law of covariance propagation gives the covariance matrix of the unknowns ΣX: 
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Least squares solution 



•  The least square solution provides an estimate of: 

•  Once ΔXi, ΔYi, ΔZi are found, the antenna coordinates [Xi, Yi, Zi] are obtained using: 

•  The covariance matrix of the unknowns Σx is: 
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Least squares solution 



•  We can then transform Σx from an ECEF frame to a local topocentric frame using the law of variance 
propagation (disregarding the time-correlated components of Σx): 

•  where R is the rotation matrix: 

 with ϕ = geodetic latitude of the site, λ = geodetic longitude of the site. 

•  The DOP factors (Dilution Of Precision) are given by: 
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From ECEF to topocentric 



Dilution of Precision 
–  Quantifies the impact of the satellite constellation geometry on position and time: 

•  TDOP = time dilution of precision 
•  PDOD = position dilution of precision 
•  GDOP = geometric dilution of precision (time + position) 

–  Derived from the diagonal terms of the cofactor matrix ⇒ ~ standard deviations 
•  High GDOP ⇒ bad configuration 
•  Low GDOP ⇒ good configuration 



•  Observable: 
•  Remove clock errors ⇒ double difference 
•  Dual-frequency receiver ⇒ LC observable 

•  Remaining unknowns: 
⇒  Antenna position Xi, Yi, Zi 
⇒  Phase ambiguities: 1 per satellite orbital arc 
⇒  Tropospheric delay: 1 zenith total delay parameter every 2 hours, for instance. 

•  Data: 
  Static positioning: the GPS antenna is fixed 

•  1 hour @ 30 sec w/ 8 satellites ⇒ 960 LC observations 
•  Unknowns = 12 
•  Solve for a system of 960 equations and 12 unknowns (Least squares, Kalman) 
•  We can even afford more unknowns, especially if long observation sessions (24 h or

 more): horizontal tropospheric gradients, orbital parameters, EOP 
  Kinematic positioning: the GPS antenna is mobile 

•  Data (assuming 8 satellites) = 8 per epoch 
•  Unknowns: 

  First epoch = 12 
  As soon as ambiguities are solved = 4 (3) 
  Solving the ambiguities as fast and early as possible is critical 
  Then we can carry them on as we solve for positions. 

Positions from phase measurements 



Error estimation 

•  Covariance matrix associated with least squares solution: 

•  Formal errors of the least squares inversion given by: 
–  Diagonal terms = variances = (standard deviation)2 

–  Off-diagonal terms = correlations (-1 to 1) 

•  Interpretation of the formal errors? 
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Random variables 

•  Observed and estimated values include random errors = 
random variables 

•  Random variables are described by a probability distribution, 
or probability density = p(x). 

•  The probability P that a random variable X falls between x and 
x+dx is found by integrating p(x): 

•  Of course: 
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P(a ≤ X ≤ b) = p(x)dx
a

b
∫
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P(−∞ ≤ X ≤ +∞) = p(x)dx
−∞

+∞

∫ =1



Normal distribution 

•  Most important density 
function = normal (= 
Gaussian) distribution: 

•  Parameters: 
–  Mean value µ
–  Standard deviation σ (= 

measure of scatter 
around mean) 
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p(x) =
1

σ 2π
e− x−µ[ ] 2 / 2σ 2



Normal distribution 
•  Probability that a random sample 

is below x = cumulative density 
function F(x): 

–  At µ-σ: F(x) = 0.16 
–  At µ+σ: F(x) = 0.84 
–  Chance of falling between µ-σ 

and µ+σ = 0.84-0.14 = 0.68 = 68% 

•  Similarly: 
–  95% corresponds to the chance 

of falling between µ-2σ and µ+2σ
–  99% corresponds to the chance 

of falling between µ-3σ and µ+3σ
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P(X ≤ x) = p(x)dx
−∞

x
∫ = F(x)

A! valid in 1 dimension…! 



Chi-square distribution 
•  The sum of n independent and normally 

distributed random variables x1
2+ x2

2 +…
+ xn

2  with zero mean is a random 
variable (often called χ2) that follows a 
chi-square distribution: 

•  n = degrees of freedom 

•  p(x) is no symmetric – approaches 
normal distribution for n>30

•  This distribution can be used to calculate 
the probability Kn that a random variable 
that follows a chi-square distribution falls 
within a given interval. 
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pn (x) =
x(n / 2)−1e−x / 2

Γ(n /2)2n / 2
= χn

2



Chi-square distribution 
•  Assuming independent and normally distributed measurement errors about 

a zero mean, a least-squares solution (i.e., the fit of N data points yi (i=1,
…,N) to a model with M adjustable parameters aj (j=1,…,M)) is equivalent to 
minimizing: 

 (recall that least squares minimizes vTPv) 

•  Sum of random variables independent and normally distributed about zero 
⇒ adjustments follows a χ2 distribution (with (N-M) degrees of freedom) 

•  Therefore our position estimates follow a χ2 distribution – what does that 
mean for us in practice? 
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∑
yi = observations 
y(xi;a1,…,am) = model values 
⇒ yi - y(xi;a1,…,am) = residuals 



Chi-square distribution 
n 

e 

c Κ2(c2) 
1σ 0.3935 

2σ 0.8647 

3σ 0.9889 

K2(c2) c 
0.90 2.146 

0.95 2.448 

0.99 3.035 

in 2 dimensions, 1-sigma = 39% confidence…! 

•  Example in two-dimensions: 
solving for horizontal coordinates 
(n,e) 

•  Blue dots show a series of 
estimates for the same position 
(from observations at different 
times, for instance) 

•  In two dimensions, the χ2 
distribution can be used to 
compute the probability that a 
given estimate falls within a given 
interval. 



Confidence ellipse 
•  In 2-dimensions, what is the shape of that 

interval?  

•  Geodetic least square problem: estimates 
(n,e) of a particular network point, with the 
associated covariance matrix: 

•  Symmetric matrix => there is a coordinate 
system with minimum and maximum 
sigma. 

•  In that rotated (x’,y’) coordinate system, 
contours of equal probability to fall in a 
given interval have the shape of an ellipse: 
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Confidence ellipse 

•  Probability that the estimated point 
lies within this ellipse? The chi-square 
cumulative probability K can be used 
to estimate the probability for the 
following inequality: 

•  Geometrical interpretation of the chi-
square: the confidence ellipse (or 
error ellipse) 

•  Note that there is only 39% chance of 
being within one-sigma in 2-
dimensions 

•  In geophysics: use 95% confidence = 
2.45 sigma 

n 

e 

Estimates from LS fit 
(= GPS positions) 

Each estimate inside 
this contour has a 

probability K% to occur 
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1σ 0.3935 

2σ 0.8647 

3σ 0.9889 

K2(c2) c 
0.90 2.146 

0.95 2.448 

0.99 3.035 

in 2 dimensions, 1-sigma = 39% confidence…! 



Confidence ellipse 
•  Covariance matrix: 

•  Eigenvalues: 

•  Angle: 
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λ1 = 0.87
λ2 = 3.66
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ϕ = 63

From T. Herring 



Precision 
  Above considerations on errors (=“formal” errors) are valid only if the 

measurement errors are: 
–  Independent 
–  Normally distributed 

  In the case of real (GPS) data: 
–  Measurement errors do not necessarily follow a normal distribution… 
–  Outliers: data points that are “way off” 

•  Least-squares adjustment is still going to try to fit them with a model… 
•  Need for careful data editing before inversion (e.g., delete data if error > 3σ) 

–  Systematic errors: 
•  Do not average out if enough data is taken! (≠ statistical, or random error) 
•  Usually very difficult to deal with. 
•  E.g.: tribrach calibration, monument deformation. 

–  Errors are correlated in time: cf. daily estimates and atmosphere 

  Conclusion on formal errors: 
–  They are not a realistic representation of the true errors 
–  They usually underestimate the true error 


