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GPS Geodesy - LAB 7 

GPS pseudorange position solution 
 
The pseudorange measurements jRi(t) can be modeled as: 

€ 

jRi(t)=
jρi(t) + c( jδ(t) −δi(t)) + ΔI(t) + ΔT(t) + MP(t) + ε   (1) 

t = time of epoch 
jRi = pseudorange measurement 
jρi = satellite-receiver geometric distance 
c = speed of light 
jδ = satellite clock bias 
δi = receiver clock bias 
ΔI = ionospheric propagation error 
ΔT = tropospheric propagation error 
MP = multipath 
ε = receiver noise 
(ranges in meters, time in seconds) 

 
Neglecting the propagation, multipath, and receiver errors, eq.(1) becomes: 
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The geometric distance between satellite j and receiver i is given by: 

€ 

jρi(t) = j X(t) − Xi( )
2

+ jY (t) −Yi( )
2

+ j Z(t) − Zi( )
2

or
jρi(t) = f Xi,Yi,Zi( )

 (3) 

with [jX, jY, jZ] = satellite position, [Xi, Yi, Zi] = receiver position in an ECEF coordinate 
system. 
 
Our mission, if we accept it, is to solve for [Xi, Yi, Zi, δi], assuming that we know [jX, jY, 
jZ, jδ]. A major problem here is that the unknowns [Xi, Yi, Zi] are not linearly related 
to the observables… 
 
Assuming that we now the approximate coordinates of the receiver [Xo, Yo, Zo], one can 
write that the actual coordinates equal the approximate coordinates plus a slight 
adjustment: 

€ 

Xi = Xo + ΔXi

Yi =Yo + ΔYi
Zi = Zo + ΔZi

 (4) 

ΔXi, ΔYi, ΔZi are our new unknowns. We can now write: 
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€ 

f Xi,Yi,Zi( ) = f Xo + ΔXi,Yo + ΔYi,Zo + ΔZi( )  (5) 

Since we know the approximate point [Xo, Yo, Zo], we can now expand f(Xo+ΔXi, Yo+ΔYi 
, Zo+ΔZi) using a Taylor’s series with respect to that point: 

€ 

f (Xi,Yi,Zi) = f (Xo,Yo,Zo)

+
∂f (Xo,Yo,Zo)

∂Xo

ΔXi +
∂f (Xo,Yo,Zo)

∂Yo
ΔYi +

∂f (Xo,Yo,Zo)
∂Zo

ΔZi

+
1
2!
∂2 f
∂x 2

+ ...

 (6) 

We intentionally truncate the Taylor’s expansion after the linear terms. Recall from eq.(3) 
that: 

€ 

f (Xo,Yo,Zo) = j X(t) − Xo( )
2

+ jY (t) −Yo( )
2

+ jZ(t) − Zo( )
2
= jρo(t) (7) 

 
The partial derivatives in eq.(6) are therefore given by: 

€ 

∂f (Xo,Yo,Zo)
∂Xo

= −
j X(t) − Xo

jρo(t)
∂f (Xo,Yo,Zo)

∂Yo
= −

jY (t) −Yo
jρo(t)

∂f (Xo,Yo,Zo)
∂Zo

= −
j Z(t) − Zo

jρo(t)

 (8) 

 
We can now substitute eq.(8) into eq.(6): 

€ 

f (Xi,Yi,Zi) = f (Xo,Yo,Zo) −
j X(t) − Xo

jρo(t)
ΔXi −

jY (t) −Yo
jρo(t)

ΔYi −
jZ(t) − Zo

jρo(t)
ΔZi   (9) 

 
We now have an equation that is linear with respect to the unknowns ΔXi, ΔYi, ΔZi. 
 
Now let us go back to our pseudorange measurements jRi(t) and rewrite eq.(2): 

€ 

jRi(t)=
jρo(t) −

j X(t) − Xo
jρo(t)

ΔXi −
jY (t) −Yo
jρo(t)

ΔYi −
j Z(t) − Zo

jρo(t)
ΔZi +c jδ(t) − cδi(t)    (10) 

We can rearrange eq.(10) by separating the known and unknown terms of each side 
(recall that the satellite clock correction  jδ(t) is provided in the navigation message): 

€ 

jRi(t)−
jρo(t) −c

jδ(t) = −
j X(t) − Xo

jρo(t)
ΔXi −

jY (t) −Yo
jρo(t)

ΔYi −
j Z(t) − Zo

jρo(t)
ΔZi − cδi(t)      (11) 

 
We can simplify the notation by assigning: 
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€ 

j aXi = −
j X(t) − Xo

jρo(t)

j aYi = −
jY (t) −Yo
jρo(t)

j aZi = −
j Z(t) − Zo

jρo(t)
j l= jRi(t)−

jρo(t) −c
jδ(t)

 (12) 

 
Let us assume that we have 4 satellites visible simultaneously. We use eq.(11) and write 
it for the 4 satellites:: 

€ 

1l=1aXiΔXi+
1aYiΔYi+

1aZiΔZi − cδi
2l=2aXiΔXi+

2aYiΔYi+
2aZiΔZi − cδi

3l=3aXiΔXi+
3aYiΔYi+

3aZiΔZi − cδi
4 l=4aXiΔXi+

4aYiΔYi+
4aZiΔZi − cδi

 (13) 

 
Tired of carrying along all these terms, subscripts, and superscripts? Me too. Let us 
introduce: 

  

€ 

A =

1aXi
1aYi

1aZi −c
2aXi

2aYi
2aZi −c

3aXi
3aYi

3aZi −c
4aXi

4aYi
4aZi −c

 

 

 
 
 
 

 

 

 
 
 
 

 
X =

ΔXi

ΔYi

ΔZi

δi

 

 

 
 
 
 

 

 

 
 
 
 

 
L =

1l
2l
3l
4 l

 

 

 
 
 
 

 

 

 
 
 
 

 (14) 

L = vector of n observations. Must have at least 4 elements (i.e. 4 satellites), but in 
reality will have from 4 to 12 elements depending on the satellite constellation geometry. 
X = vector of u unknowns. Four elements in our case. 
A = matrix of linear functions of the unknowns (= design matrix), n rows by u 
columns. 
 
Now we can write our problem (eq.13) in a matrix-vector form: 
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€ 

 
L = A

 
X   (15) 

In general, n > u, leading to an overdetermined system. Because actual data contain 
observational errors and noise, this system is in non-consistent. In order to make it 
consistent, one must account for a noise vector r. Eq.(15) becomes: 

  

€ 

 
L −  r = A

 
X  (16) 

The “noise vector” r represents residuals, i.e. observations (L) minus model (AX). The 
least squares solution to eq.(16) is: 

  

€ 

 
X = (AT PA)−1AT P

 
L   (17) 

P is the weight matrix, defined by: 

€ 

P =
1
σ o
2 ΣL

−1 (18) 

σo
2 = a priori variance 

ΣL = covariance matrix of the observations. 
 
The law of covariance propagation gives the covariance matrix of the unknowns ΣX: 

€ 

ΣX = (ATΣL
−1A)−1 (19) 

In the case of pseudoranges, the observations are independant and have equal variance 
σo

2. Therefore ΣL is the diagonal matrix: 

€ 

ΣL =σ o
2I  (20) 

Assuming that the weight matrix is I, eq.(17) can be simplified to: 

  

€ 

 
X = (AT A)−1AT

 
L   (21) 

Now that ΔXi, ΔYi, ΔZi are found, the antenna coordinates [Xi, Yi, Zi] are obtained using 
eq.(4). 
 
The associated covariance matrix of the unknowns Σx is: 

€ 

ΣX = (AT A)−1 =

σ x
2 σ xy σ xz σ xt

σ yx σ y
2 σ yz σ yt

σ zx σ zy σ z
2 σ zt

σ tx σ ty σ tz σ t
2

 

 

 
 
 
 

 

 

 
 
 
 

 (22) 

 
We can transform Σx from an ECEF frame to a local topocentric frame using the law of 
variance propagation (disregarding the time-correlated components of Σx: 

€ 

ΣT = RΣXR
T =

σ n
2 σ ne σ nu

σ en σ e
2 σ eu

σ un σ ue σ u
2

 

 

 
 
 

 

 

 
 
 
 (23) 

 
where R is the rotation matrix (cf. lab 1): 
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€ 

R =

−sinϕ cosλ −sinϕ sinλ cosϕ
−sinλ cosλ 0

cosϕ cosλ cosϕ sinλ sinϕ

 

 

 
 
 

 

 

 
 
 

 (24) 

 
with ϕ = geodetic latitude of the site, λ = geodetic longitude of the site. 
 
The DOP factors (Dilution Of Precision) are given by: 

€ 

VDOP =σ u

HDOP = σ n
2 +σ e

2

PDOP = σ n
2 +σ e

2 +σ u
2 = σ x

2 +σ y
2 +σ z

2

TDOP =σ t

GDOP = σ n
2 +σ e

2 +σ u
2 +σ t

2

  (25) 

 
 
Assignment: 
Write a MATLAB program to compute the position and clock bias of a GPS receiver and 
the GDOP using: 

• Pseudorange data at epoch 00:15:00.0 from rinex observation file sjdv0100.02o 
• Satellite position and clock bias from orbit file igs1484.sp3 (satellite positions in 

kilometers in ECEF frame, clock biases in microseconds). Note that the satellite 
clock bias should be added to the pseudorange. 

Compare solutions using C1, P1, and P2 
 
The a priori position of the receiver in ECEF frame (in meters) is: 

Xo=4433470.0 
Yo=362670.0 
Zo=4556210.0 

 
Possible program structure: 

1. Define constants (c) and a priori GPS receiver position and clock bias; 
2. Read satellite positions and clock biases, convert to meters and seconds; 
3. Read pseudorange data; 
4. Correct pseudorange for satellite clock bias. Trick: satellite clock biases must be 

added to the measured pseudoranges; 
5. Compute modeled observables jρi (eq.(7)); 
6. Compute observation vector L (eq.(12)). Trick: discard satellite 1 because of its 

large clock bias (it must be a flag); 
7. Compute partial derivatives of Taylor’s series (eq.(8)); 
8. Form design matrix (eq.(14)). Trick: multiply the c by 1e-9 in the design matrix in 

order to avoid numerical instabilities in the inversion. The receiver clock bias will 
be output in nanoseconds. 

9. Invert the design matrix (using inv) and find the vector of unknowns (eq.(21)), or 
solve the least squares problem directly using pinv or lscov); 
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10. Compute adjusted parameters (eq.(4)); 
11. Compute covariance in ECEF frame (eq.(22)); 
12. Compute site ellipsiodal coordinates. Trick: use the xyz2wgs.m routine that you 

wrote for lab 1 or get it from the class web site; 
13. Form the ECEF to topocentric rotation matrix (eq.(24)); 
14. Compute covariance in topocentric frame (eq.(23)); 
15. Compute DOPs (eq.(25)). 
16. Go to bed. 

 
 
I find: 
 C1 P1 P2 
ΔX -37.448 -36.926 -36.136  
ΔY 52.132 52.521 53.487 
ΔZ -60.883 -60.628 -59.357 
ΔT (nsec) 187.16 186.30 172.53 
Xa 4433432.552 4433433.074 4433433.864 
Ya 362722.131 362722.521 362723.487 
Za 4556149.117 4556149.372 4556150.643 
GDOP 5.2 5.2 5.2 

 
 


