
A Practical Introduction to Matlab

(Updated for Matlab 5)

Mark S. Gockenbach�

Contents

1 Introduction 2

2 Simple calculations and graphs 2

2.1 Entering vectors and matrices; built-in variables and functions;
help . 2

2.2 Graphs . 6
2.3 Arithmetic operations on matrices 7

2.3.1 Standard operations . 7
2.3.2 Solving matrix equations using matrix division 9
2.3.3 Vectorized functions and operators; more on graphs . . . 10

2.4 Some miscellaneous commands 11

3 Programming in Matlab 13

3.1 Conditionals and loops . 14
3.2 Scripts and functions . 15
3.3 A nontrivial example . 17

4 Advanced matrix computations 20

4.1 Eigenvalues and other numerical linear algebra computations . . 20
4.2 Sparse matrix computations . 22

4.2.1 Creating a sparse matrix 22

5 Advanced Graphics 24

5.1 Putting several graphs in one window 24
5.2 3D plots . 25
5.3 Parametric plots . 27

6 Solving nonlinear problems in Matlab 28

7 E�ciency in Matlab 29

�Department of Mathematical Sciences, Michigan Technological University

1

8 Advanced data types in Matlab 30

8.1 Structures . 30
8.2 Cell arrays . 32
8.3 Objects . 33

1 Introduction

Matlab (Matrix laboratory) is an interactive software system for numerical
computations and graphics. As the name suggests, Matlab is especially de-
signed for matrix computations: solving systems of linear equations, computing
eigenvalues and eigenvectors, factoring matrices, and so forth. In addition, it
has a variety of graphical capabilities, and can be extended through programs
written in its own programming language. Many such programs come with the
system; a number of these extend Matlab's capabilities to nonlinear problems,
such as the solution of initial value problems for ordinary di�erential equations.

Matlab is designed to solve problems numerically, that is, in �nite-precision
arithmetic. Therefore it produces approximate rather than exact solutions,
and should not be confused with a symbolic computation system (SCS) such
as Mathematica or Maple. It should be understood that this does not make
Matlab better or worse than an SCS; it is a tool designed for di�erent tasks and
is therefore not directly comparable.

In the following sections, I give an introduction to some of the most use-
ful features of Matlab. I include plenty of examples; the best way to learn
to use Matlab is to read this while running Matlab, trying the examples and
experimenting.

2 Simple calculations and graphs

In this section, I will give a quick introduction to de�ning numbers, vectors and
matrices in Matlab, performing basic computations with them, and creating
simple graphs. All of these topics will be revisited in greater depth in later
sections.

2.1 Entering vectors and matrices; built-in variables and

functions; help

The basic data type in Matlab is an n-dimensional array of double precision
numbers. Matlab 5 di�ers from earlier versions of Matlab in that other data
types are supported (also in the fact that general, multi-dimensional arrays
are supported; in earlier versions, every variable was a two-dimensional array
(matrix), with one-dimensional arrays (vectors) and zero-dimensional arrays
(scalars) as special cases). The new data types include structures (much like
structures in the C programming language|data values are stored in named
�elds), classes, and \cell arrays", which are arrays of possibly di�erent data

2

types (for example, a one-dimensional array whose �rst entry is a scalar, second
entry a string, third entry a vector). I mostly discuss the basic features using
n-dimensional arrays, but I briey discuss the other data types later in the
paper.

The following commands show how to enter numbers, vectors and matrices,
and assign them to variables (>> is the Matlab prompt on my computer; it may
be di�erent with di�erent computers or di�erent versions of Matlab. I am using
version 5.2.0.3084. On my Unix workstation, I start Matlab by typing matlab
at the Unix prompt.):

>> a = 2

a =

2

>> x = [1;2;3]

x =

1

2

3

>> A = [1 2 3;4 5 6;7 8 0]

A =

1 2 3

4 5 6

7 8 0

Notice that the rows of a matrix are separated by semicolons, while the entries
on a row are separated by spaces (or commas).

A useful command is \whos", which displays the names of all de�ned vari-
ables and their types:

>> whos

Name Size Bytes Class

A 3x3 72 double array

a 1x1 8 double array

x 3x1 24 double array

Grand total is 13 elements using 104 bytes

Note that each of these three variables is an array; the \shape" of the array
determines its exact type. The scalar a is a 1� 1 array, the vector x is a 3� 1
array, and A is a 3� 3 array (see the \size" entry for each variable).

One way to enter a n-dimensional array (n > 2) is to concatenate two or
more (n � 1)-dimensional arrays using the cat command. For example, the
following command concatenates two 3� 2 arrays to create a 3� 2� 2 array:

>> C = cat(3,[1,2;3,4;5,6],[7,8;9,10;11,12])

C(:,:,1) =

1 2

3

3 4

5 6

C(:,:,2) =

7 8

9 10

11 12

>> whos

Name Size Bytes Class

A 3x3 72 double array

C 3x2x2 96 double array

a 1x1 8 double array

x 3x1 24 double array

Grand total is 25 elements using 200 bytes

Note that the argument \3" in the cat command indicates that the concatena-
tion is to occur along the third dimension. If D and E were k �m� n arrays,
the command

>> cat(4,D,E)

would create a k �m� n� 2 array (try it!).
Matlab allows arrays to have complex entries. The complex unit i =

p�1
is represented by either of the built-in variables i or j:

>> sqrt(-1)

ans =

0 + 1.0000i

This example shows how complex numbers are displayed in Matlab; it also shows
that the square root function is a built-in feature.

The result of the last calculation not assigned to a variable is automatically
assigned to the variable ans, which can then be used as any other variable in
subsequent computations. Here is an example:

>> 100^2-4*2*3

ans =

9976

>> sqrt(ans)

ans =

99.8799

>> (-100+ans)/4

ans =

-0.0300

The arithmetic operators work as expected for scalars. A built-in variable that
is often useful is �:

4

>> pi

ans =

3.1416

Above I pointed out that the square root function is built-in; other common
scienti�c functions, such as sine, cosine, tangent, exponential, and logarithm are
also pre-de�ned. For example:

>> cos(.5)^2+sin(.5)^2

ans =

1

>> exp(1)

ans =

2.7183

>> log(ans)

ans =

1

Other elementary functions, such as hyperbolic and inverse trigonometric func-
tions, are also de�ned.

At this point, rather than providing a comprehensive list of functions avail-
able in Matlab, I want to explain how to get this information from Matlab itself.
An extensive online help system can be accessed by commands of the form help

<command-name>. For example:

>> help ans

ANS The most recent answer.

ANS is the variable created automatically when expressions

are not assigned to anything else. ANSwer.

>> help pi

PI 3.1415926535897....

PI = 4*atan(1) = imag(log(-1)) = 3.1415926535897....

A good place to start is with the command help help, which explains how
the help systems works, as well as some related commands. Typing help by
itself produces a list of topics for which help is available; looking at this list
we �nd the entry \elfun|elementary math functions." Typing help elfun

produces a list of the math functions available. We see, for example, that the
inverse tangent function (or arctangent) is called atan:

>> pi-4*atan(1)

ans =

0

It is often useful, when entering a matrix, to suppress the display; this is done
by ending the line with a semicolon (see the �rst example in the next section).

5

The command more can be used to cause Matlab to display only one page of
output at a time. Typing more on causes Matlab to pause between pages of
output from subsequent commands; as with the Unix \more" command, a space
character then advances the output by a page, a carriage return advances the
output one line, and the character \q" ends the output. Once the command
more on is issued, this feature is enabled until the command more off is given.

2.2 Graphs

The simplest graphs to create are plots of points in the cartesian plane. For
example:

>> x = [1;2;3;4;5];

>> y = [0;.25;3;1.5;2];

>> plot(x,y)

The resulting graph is displayed in Figure 1. Notice that, by default, Matlab

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Figure 1: A simple Matlab graph

connects the points with straight line segments. An alternative is the following
(see Figure 2):

>> plot(x,y,'o')

6

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Figure 2: Another simple Matlab graph

2.3 Arithmetic operations on matrices

Matlab can perform the standard arithmetic operations on matrices, vectors,
and scalars (that is, on 2-, 1-, and 0-dimensional arrays): addition, subtraction,
and multiplication. In addition, Matlab de�nes a notion of matrix division as
well as \vectorized" operations. All vectorized operations (these include addi-
tion, subtraction, and scalar multiplication, as explained below) can be applied
to n-dimensional arrays for any value of n, but multiplication and division are
restricted to matrices and vectors (n � 2).

2.3.1 Standard operations

If A and B are arrays, then Matlab can compute A+B and A-B when these opera-

tions are de�ned. For example, consider the following commands:

>> A = [1 2 3;4 5 6;7 8 9];

>> B = [1 1 1;2 2 2;3 3 3];

>> C = [1 2;3 4;5 6];

>> whos

Name Size Bytes Class

A 3x3 72 double array

7

B 3x3 72 double array

C 3x2 48 double array

Grand total is 24 elements using 192 bytes

>> A+B

ans =

2 3 4

6 7 8

10 11 12

>> A+C

??? Error using ==> +

Matrix dimensions must agree.

Matrix multiplication is also de�ned:

>> A*C

ans =

22 28

49 64

76 100

>> C*A

??? Error using ==> *

Inner matrix dimensions must agree.

If A is a square matrix and m is a positive integer, then A^m is the product of m
factors of A.

However, no notion of multiplication is de�ned for multi-dimensional arrays
with more than 2 dimensions:

>> C = cat(3,[1 2;3 4],[5 6;7 8])

C(:,:,1) =

1 2

3 4

C(:,:,2) =

5 6

7 8

>> D = [1;2]

D =

1

2

>> whos

Name Size Bytes Class

C 2x2x2 64 double array

D 2x1 16 double array

8

Grand total is 10 elements using 80 bytes

>> C*D

??? Error using ==> *

No functional support for matrix inputs.

By the same token, the exponentiation operator ^ is only de�ned for square
2-dimensional arrays (matrices).

2.3.2 Solving matrix equations using matrix division

If A is a square, nonsingular matrix, then the solution of the equation Ax = b
is x = A�1b. Matlab implements this operation with the backslash operator:

>> A = rand(3,3)

A =

0.2190 0.6793 0.5194

0.0470 0.9347 0.8310

0.6789 0.3835 0.0346

>> b = rand(3,1)

b =

0.0535

0.5297

0.6711

>> x = A\b

x =

-159.3380

314.8625

-344.5078

>> A*x-b

ans =

1.0e-13 *

-0.2602

-0.1732

-0.0322

(Notice the use of the built-in function rand, which creates a matrix with en-
tries from a uniform distribution on the interval (0; 1). See help rand for more
details.) Thus A\b is (mathematically) equivalent to multiplying b on the left by
A�1 (however, Matlab does not compute the inverse matrix; instead it solves the
linear system directly). When used with a nonsquare matrix, the backslash op-
erator solves the appropriate system in the least-squares sense; see help slash

for details. Of course, as with the other arithmetic operators, the matrices must
be compatible in size. The division operator is not de�ned for n-dimensional
arrays with n > 2.

9

2.3.3 Vectorized functions and operators; more on graphs

Matlab has many commands to create special matrices; the following command
creates a row vector whose components increase arithmetically:

>> t = 1:5

t =

1 2 3 4 5

The components can change by non-unit steps:

>> x = 0:.1:1

x =

Columns 1 through 7

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

Columns 8 through 11

0.7000 0.8000 0.9000 1.0000

A negative step is also allowed. The command linspace has similar results;
it creates a vector with linearly spaced entries. Speci�cally, linspace(a,b,n)
creates a vector of length n with entries a; a+(b� a)=(n� 1); a+2(b� a)=(n�
1); : : : ; b:

>> linspace(0,1,11)

ans =

Columns 1 through 7

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

Columns 8 through 11

0.7000 0.8000 0.9000 1.0000

There is a similar command logspace for creating vectors with logarithmically
spaced entries:

>> logspace(0,1,11)

ans =

Columns 1 through 7

1.0000 1.2589 1.5849 1.9953 2.5119 3.1623 3.9811

Columns 8 through 11

5.0119 6.3096 7.9433 10.0000

See help logspace for details.
A vector with linearly spaced entries can be regarded as de�ning a one-

dimensional grid, which is useful for graphing functions. To create a graph of
y = f(x) (or, to be precise, to graph points of the form (x; f(x)) and connect
them with line segments), one can create a grid in the vector x and then create
a vector y with the corresponding function values.

It is easy to create the needed vectors to graph a built-in function, since
Matlab functions are vectorized. This means that if a built-in function such as
sine is applied to a array, the e�ect is to create a new array of the same size
whose entries are the function values of the entries of the original array. For
example (see Figure 3):

10

>> x = (0:.1:2*pi);

>> y = sin(x);

>> plot(x,y)

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Graph of y = sin(x)

Matlab also provides vectorized arithmetic operators, which are the same as
the ordinary operators, preceded by \.". For example, to graph y = x=(1+x2):

>> x = (-5:.1:5);

>> y = x./(1+x.^2);

>> plot(x,y)

(the graph is not shown). Thus x.^2 squares each component of x, and x./z

divides each component of x by the corresponding component of z. Addition and
subtraction are performed component-wise by de�nition, so there are no \.+"
or \.-" operators. Note the di�erence between A^2 and A.^2. The �rst is only
de�ned if A is a square matrix, while the second is de�ned for any n-dimensional
array A.

2.4 Some miscellaneous commands

An important operator in Matlab is the single quote, which represents the (con-
jugate) transpose:

11

>> A = [1 2;3 4]

A =

1 2

3 4

>> A'

ans =

1 3

2 4

>> B = A + i*.5*A

B =

1.0000 + 0.5000i 2.0000 + 1.0000i

3.0000 + 1.5000i 4.0000 + 2.0000i

>> B'

ans =

1.0000 - 0.5000i 3.0000 - 1.5000i

2.0000 - 1.0000i 4.0000 - 2.0000i

In the rare event that the transpose, rather than the conjugate transpose, is
needed, the \.'" operator is used:

>> B.'

ans =

1.0000 + 0.5000i 3.0000 + 1.5000i

2.0000 + 1.0000i 4.0000 + 2.0000i

(note that ' and .' are equivalent for matrices with real entries).
The following commands are frequently useful; more information can be

obtained from the on-line help system.

Creating matrices

� zeros(m,n) creates an m� n matrix of zeros;

� ones(m,n) creates an m� n matrix of ones;

� eye(n) creates the n� n identity matrix;

� diag(v) (assuming v is an n-vector) creates an n�n diagonal matrix with
v on the diagonal.

The commands zeros and ones can be given any number of integer arguments;
with k arguments, they each create a k-dimensional array of the indicated size.

formatting display and graphics

� format

{ format short 3.1416

{ format short e 3.1416e+00

12

{ format long 3.14159265358979

{ format long e 3.141592653589793e+00

{ format compact suppresses extra line feeds (all of the output in this
paper is in compact format).

� xlabel('string'), ylabel('string') label the horizontal and vertical
axes, respectively, in the current plot;

� title('string') add a title to the current plot;

� axis([a b c d]) change the window on the current graph to a � x �
b; c � y � d;

� grid adds a rectangular grid to the current plot;

� hold on freezes the current plot so that subsequent graphs will be dis-
played with the current;

� hold off releases the current plot; the next plot will erase the current
before displaying;

� subplot puts multiple plots in one graphics window.

Miscellaneous

� max(x) returns the largest entry of x, if x is a vector; see help max for
the result when x is a k-dimensional array;

� min(x) analogous to max;

� abs(x) returns an array of the same size as x whose entries are the mag-
nitudes of the entries of x;

� size(A) returns a 1� k vector with the number of rows, columns, etc. of
the k-dimensional array A;

� length(x) returns the \length" of the array, i.e. max(size(A)).

� save fname saves the current variables to the �le named fname.mat;

� load fname load the variables from the �le named fname.mat;

� quit exits Matlab

3 Programming in Matlab

The capabilities of Matlab can be extended through programs written in its own
programming language. It provides the standard constructs, such as loops and
conditionals; these constructs can be used interactively to reduce the tedium of
repetitive tasks, or collected in programs stored in \m-�les" (nothing more than
a text �le with extension \.m"). I will �rst discuss the programming mechanisms
and then explain how to write programs.

13

3.1 Conditionals and loops

Matlab has a standard if-elseif-else conditional; for example:

>> t = rand(1);

>> if t > 0.75

s = 0;

elseif t < 0.25

s = 1;

else

s = 1-2*(t-0.25);

end

>> s

s =

0

>> t

t =

0.7622

The logical operators in Matlab are <, >, <=, >=, == (logical equals), and
~= (not equal). These are binary operators which return the values 0 and 1 (for
scalar arguments):

>> 5>3

ans =

1

>> 5<3

ans =

0

>> 5==3

ans =

0

Thus the general form of the if statement is

if expr1

statements

elseif expr2

statements

.

.

.

else

statements

end

The �rst block of statements following a nonzero expr executes.
Matlab provides two types of loops, a for-loop (comparable to a Fortran

do-loop or a C for-loop) and a while-loop. A for-loop repeats the statements in
the loop as the loop index takes on the values in a given row vector:

14

>> for i=[1,2,3,4]

disp(i^2)

end

1

4

9

16

(Note the use of the built-in function disp, which simply displays its argument.)
The loop, like an if-block, must be terminated by end. This loop would more
commonly be written as

>> for i=1:4

disp(i^2)

end

1

4

9

16

(recall that 1:4 is the same as [1,2,3,4]).
The while-loop repeats as long as the given expr is true (nonzero):

>> x=1;

>> while 1+x > 1

x = x/2;

end

>> x

x =

1.1102e-16

3.2 Scripts and functions

A script is simply a collection of Matlab commands in an m-�le (a text �le
whose name ends in the extension \.m"). Upon typing the name of the �le
(without the extension), those commands are executed as if they had been
entered at the keyboard. The m-�le must be located in one of the directories
in which Matlab automatically looks for m-�les; a list of these directories can
be obtained by the command path. (See help path to learn how to add a
directory to this list.) One of the directories in which Matlab always looks is
the current working directory; the command cd identi�es the current working
directory, and cd newdir changes the working directory to newdir.

For example, suppose that plotsin.m contains the lines

x = 0:2*pi/N:2*pi;

y = sin(w*x);

plot(x,y)

15

Then the sequence of commands

>> N=100;w=5;

>> plotsin

produces Figure 4.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: E�ect of an m-�le

As this example shows, the commands in the script can refer to the variables
already de�ned in Matlab, which are said to be in the global workspace (notice
the reference to N and w in plotsin.m). As I mentioned above, the commands in
the script are executed exactly as if they had been typed at the keyboard.

Much more powerful than scripts are functions, which allow the user to
create new Matlab commands. A function is de�ned in an m-�le that begins
with a line of the following form:

function [output1,output2,...] = cmd name(input1,input2,...)

The rest of the m-�le consists of ordinary Matlab commands computing the
values of the outputs and performing other desired actions. It is important to
note that when a function is invoked, Matlab creates a local workspace. The
commands in the function cannot refer to variables from the global (interactive)
workspace unless they are passed as inputs. By the same token, variables created

16

as the function executes are erased when the execution of the function ends,
unless they are passed back as outputs.

Here is a simple example of a function; it computes the function f(x) =
sin(x2). The following commands should be stored in the �le fcn.m (the name
of the function within Matlab is the name of the m-�le, without the extension):

function y = fcn(x)

y = sin(x.^2);

(Note that I used the vectorized operator .^ so that the function fcn is also
vectorized.) With this function de�ned, I can now use fcn just as the built-in
function sin:

>> x = (-pi:2*pi/100:pi)';

>> y = sin(x);

>> z = fcn(x);

>> plot(x,y,x,z)

>> grid

The graph is shown in Figure 5. Notice how plot can be used to graph two (or
more) functions together. The computer will display the curves with di�erent
line types|di�erent colors on a color monitor, or di�erent styles (e.g. solid
versus dashed) on a black-and-white monitor. See help plot for more informa-
tion. Note also the use of the grid command to superimpose a cartesian grid
on the graph.

3.3 A nontrivial example

Notice from Figure 5 that f(x) = sin(x2) has a root between 1 and 2 (of course,
this root is x =

p
�, but we feign ignorance for a moment). A general algorithm

for nonlinear root-�nding is the method of bisection, which takes a function and
an interval on which function changes sign, and repeatedly bisects the interval
until the root is trapped in a very small interval.

A function implementing the method of bisection illustrates many of the
important techniques of programming in Matlab. The �rst important technique,
without which a useful bisection routine cannot be written, is the ability to pass
the name of one function to another function. In this case, bisect needs to know
the name of the function whose root it is to �nd. This name can be passed
as a string (the alternative is to \hard-code" the name in bisect.m, which
means that each time one wants to use bisect with a di�erent function, the �le
bisect.m must be modi�ed. This style of programming is to be avoided.).

The built-in function feval is needed to evaluate a function whose name is
known (as a string). Thus, interactively

>> fcn(2)

ans =

-0.7568

17

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5: Two curves graphed together

and

>> feval('fcn',2)

ans =

-0.7568

are equivalent (notice that single quotes are used to delimit a string). A variable
can also be assigned the value of a string:

>> str = 'fcn'

str =

f

>> feval(str,2)

ans =

-0.7568

See help strings for information on how Matlab handles strings.
The following Matlab program uses the string facility to pass the name of a

function to bisect. A % sign indicates that the rest of the line is a comment.

function c = bisect(fn,a,b,tol)

18

% c = bisect('fn',a,b,tol)

%

% This function locates a root of the function fn on the interval

% [a,b] to within a tolerance of tol. It is assumed that the function

% has opposite signs at a and b.

% Evaluate the function at the endpoints and check to see if it

% changes sign.

fa = feval(fn,a);

fb = feval(fn,b);

if fa*fb >= 0

error('The function must have opposite signs at a and b')

end

% The flag done is used to flag the unlikely event that we find

% the root exactly before the interval has been sufficiently reduced.

done = 0;

% Bisect the interval

c = (a+b)/2;

% Main loop

while abs(a-b) > 2*tol & ~done

% Evaluate the function at the midpoint

fc = feval(fn,c);

if fa*fc < 0 % The root is to the left of c

b = c;

fb = fc;

c = (a+b)/2;

elseif fc*fb < 0 % The root is to the right of c

a = c;

fa = fc;

c = (a+b)/2;

else % We landed on the root

done = 1;

end

end

19

Assuming that this �le is named bisect.m, it can be run as follows:

>> x = bisect('fcn',1,2,1e-6)

x =

1.7725

>> sqrt(pi)-x

ans =

-4.1087e-07

Not only can new Matlab commands be created with m-�les, but the help
system can be automatically extended. The help command will print the �rst
comment block from an m-�le:

>> help bisect

c = bisect('fn',a,b,tol)

This function locates a root of the function fn on the interval

[a,b] to within a tolerance of tol. It is assumed that the function

has opposite signs at a and b.

(Something that may be confusing is the use of both fn and 'fn' in bisect.m.
I put quotes around fn in the comment block to remind the user that a string
must be passed. However, the variable fn is a string variable and does not need
quotes in any command line.)

Notice the use of the error function near the beginning of the program.
This function displays the string passed to it and exits the m-�le.

At the risk of repeating myself, I want to re-emphasize a potentially trouble-
some point. In order to execute an m-�le, Matlab must be able to �nd it, which
means that it must be found in a directory in Matlab's path. The current work-
ing directory is always on the path; to display or change the path, use the path
command. To display or change the working directory, use the cd command.
As usual, help will provide more information.

4 Advanced matrix computations

4.1 Eigenvalues and other numerical linear algebra com-

putations

In addition to solving linear systems (with the backslash operator), Matlab
performs many other matrix computations. Among the most useful is the com-
putation of eigenvalues and eigenvectors with the eig command. If A is a square
matrix, then ev = eig(A) returns the eigenvalues of A in a vector, while [V,D]
= eig(A) returns the spectral decomposition of A: V is a matrix whose columns
are eigenvectors of A, while D is a diagonal matrix whose diagonal entries are

20

eigenvalues. The equation AV = VD holds. If A is diagonalizable, then V is in-
vertible, while if A is symmetric, then V is orthogonal (V TV = I).

Here is an example:

>> A = [1 3 2;4 5 6;7 8 9]

A =

1 3 2

4 5 6

7 8 9

>> eig(A)

ans =

15.9743

-0.4871 + 0.5711i

-0.4871 - 0.5711i

>> [V,D] = eig(A)

V =

-0.2155 0.0683 + 0.7215i 0.0683 - 0.7215i

-0.5277 -0.3613 - 0.0027i -0.3613 + 0.0027i

-0.8216 0.2851 - 0.5129i 0.2851 + 0.5129i

D =

15.9743 0 0

0 -0.4871 + 0.5711i 0

0 0 -0.4871 - 0.5711i

>> A*V-V*D

ans =

1.0e-14 *

-0.0888 0.0777 - 0.1998i 0.0777 + 0.1998i

0 -0.0583 + 0.0666i -0.0583 - 0.0666i

0 -0.0555 + 0.2387i -0.0555 - 0.2387i

There are many other matrix functions in Matlab, many of them related to
matrix factorizations. Some of the most useful are:

� lu computes the LU factorization of a matrix;

� chol computes the Cholesky factorization of a symmetric positive de�nite
matrix;

� qr computes the QR factorization of a matrix;

� svd computes the singular values or singular value decomposition of a
matrix;

� cond, condest, rcond computes or estimates various condition num-
bers;

� norm computes various matrix or vector norms;

21

4.2 Sparse matrix computations

Matlab has the ability to store and manipulate sparse matrices, which greatly
increases its usefulness for realistic problems. Creating a sparse matrix can be
rather di�cult, but manipulating them is easy, since the same operators apply
to both sparse and dense matrices. In particular, the backslash operator works
with sparse matrices, so sparse systems can be solved in the same fashion as
dense systems. Some of the built-in functions apply to sparse matrices, but
others do not (for example, eig can be used on sparse symmetric matrix, but
not on a sparse nonsymmetric matrix).

4.2.1 Creating a sparse matrix

If a matrix A is stored in ordinary (dense) format, then the command S =

sparse(A) creates a copy of the matrix stored in sparse format. For example:

>> A = [0 0 1;1 0 2;0 -3 0]

A =

0 0 1

1 0 2

0 -3 0

>> S = sparse(A)

S =

(2,1) 1

(3,2) -3

(1,3) 1

(2,3) 2

>> whos

Name Size Bytes Class

A 3x3 72 double array

S 3x3 64 sparse array

Grand total is 13 elements using 136 bytes

Unfortunately, this form of the sparse command is not particularly useful,
since if A is large, it can be very time-consuming to �rst create it in dense format.
The command S = sparse(m,n) creates an m�n zero matrix in sparse format.
Entries can then be added one-by-one:

>> A = sparse(3,2)

A =

All zero sparse: 3-by-2

>> A(1,2)=1;

>> A(3,1)=4;

>> A(3,2)=-1;

>> A

22

A =

(3,1) 4

(1,2) 1

(3,2) -1

(Of course, for this to be truly useful, the nonzeros would be added in a loop.)
Another version of the sparse command is S = sparse(I,J,S,m,n,maxnz).

This creates an m� n sparse matrix with entry (I(k); J(k)) equal to S(k); k =
1; : : : ; length(S). The optional argument maxnz causes Matlab to pre-allocate
storage for maxnz nonzero entries, which can increase e�ciency in the case when
more nonzeros will be added later to S.

There are still more versions of the sparse command. See help sparse for
details.

The most common type of sparse matrix is a banded matrix, that is, a matrix
with a few nonzero diagonals. Such a matrix can be created with the spdiags
command. Consider the following matrix:

>> A

A =

64 -16 0 -16 0 0 0 0 0

-16 64 -16 0 -16 0 0 0 0

0 -16 64 0 0 -16 0 0 0

-16 0 0 64 -16 0 -16 0 0

0 -16 0 -16 64 -16 0 -16 0

0 0 -16 0 -16 64 0 0 -16

0 0 0 -16 0 0 64 -16 0

0 0 0 0 -16 0 -16 64 -16

0 0 0 0 0 -16 0 -16 64

This is a 9� 9 matrix with 5 nonzero diagonals. In Matlab's indexing scheme,
the nonzero diagonals of A are numbers -3, -1, 0, 1, and 3 (the main diagonal is
number 0, the �rst subdiagonal is number -1, the �rst superdiagonal is number
1, and so forth). To create the same matrix in sparse format, it is �rst necessary
to create a 9� 5 matrix containing the nonzero diagonals of A. Of course, the
diagonals, regarded as column vectors, have di�erent lengths; only the main
diagonal has length 9. In order to gather the various diagonals in a single
matrix, the shorter diagonals must be padded with zeros. The rule is that the
extra zeros go at the bottom for subdiagonals and at the top for superdiagonals.
Thus we create the following matrix:

23

>> B = [

-16 -16 64 0 0

-16 -16 64 -16 0

-16 0 64 -16 0

-16 -16 64 0 -16

-16 -16 64 -16 -16

-16 0 64 -16 -16

0 -16 64 0 -16

0 -16 64 -16 -16

0 0 64 -16 -16

];

(notice the technique for entering the rows of a large matrix on several lines).
The spdiags command also needs the indices of the diagonals:

>> d = [-3,-1,0,1,3];

The matrix is then created as follows:

S = spdiags(B,d,9,9);

The last two arguments give the size of S.
Perhaps the most common sparse matrix is the identity. Recall that an

identity matrix can be created, in dense format, using the command eye. To
create the n� n identity matrix in sparse format, use I = speye(n).

Another useful command is spy, which creates a graphic displaying the spar-
sity pattern of a matrix. For example, the above penta-diagonal matrix A can
be displayed by the following command; see Figure 6:

>> spy(A)

5 Advanced Graphics

Matlab can produce several di�erent types of graphs: 2D curves, 3D surfaces,
contour plots of 3D surfaces, parametric curves in 2D and 3D. I will leave the
reader to �nd most of the details from the online help system. Here I want to
show, by example, some of the possibilities. I will also explain the basics of
producing 3D plots.

5.1 Putting several graphs in one window

The subplot command creates several plots in a single window. To be precise,
subplot(m,n,i) creates mn plots, arranged in an array with m rows and n
columns. It also sets the next plot command to go to the i th coordinate system
(counting across the rows). Here is an example (see Figure 7):

24

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

nz = 33

Figure 6: The sparsity pattern of a matrix

>> t = (0:.1:2*pi)';

>> subplot(2,2,1)

>> plot(t,sin(t))

>> subplot(2,2,2)

>> plot(t,cos(t))

>> subplot(2,2,3)

>> plot(t,exp(t))

>> subplot(2,2,4)

>> plot(t,1./(1+t.^2))

5.2 3D plots

In order to create a graph of a surface in 3-space (or a contour plot of a surface),
it is necessary to evaluate the function on a regular rectangular grid. This can
be done using the meshgrid command. First, create 1D vectors describing the
grids in the x- and y-directions:

>> x = (0:2*pi/20:2*pi)';

>> y = (0:4*pi/40:4*pi)';

Next, \spread" these grids into two dimensions using meshgrid:

25

0 2 4 6 8
−1

−0.5

0

0.5

1

0 2 4 6 8
−1

−0.5

0

0.5

1

0 2 4 6 8
0

100

200

300

400

500

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Figure 7: Using the subplot command

>> [X,Y] = meshgrid(x,y);

>> whos

Name Size Bytes Class

X 41x21 6888 double array

Y 41x21 6888 double array

x 21x1 168 double array

y 41x1 328 double array

Grand total is 1784 elements using 14272 bytes

The e�ect of meshgrid is to create a vector X with the x-grid along each row, and
a vector Y with the y-grid along each column. Then, using vectorized functions
and/or operators, it is easy to evaluate a function z = f(x; y) of two variables
on the rectangular grid:

>> z = cos(X).*cos(2*Y);

Having created the matrix containing the samples of the function, the surface
can be graphed using either the mesh or the surf commands (see Figures 8 and
9, respectively):

26

>> mesh(x,y,z)

>> surf(x,y,z)

0
2

4
6

8

0

5

10

15
−1

−0.5

0

0.5

1

Figure 8: Using the mesh command

(The di�erence is that surf shades the surface, while mesh does not.) In addi-
tion, a contour plot can be created (see Figure 10):

>> contour(x,y,z)

Use the help command to learn the additional options. These commands can
be very time-consuming if the grid is �ne.

5.3 Parametric plots

It is easy to graph a curve (f(t); g(t)) in 2-space. For example (see Figure 11):

>> t = (0:2*pi/100:2*pi)';

>> plot(cos(t),sin(t))

>> axis('square')

(note the use of the axis('square') command to make the circle appear round
instead of elliptic). See also the commands comet, comet3.

27

0
2

4
6

8

0

5

10

15
−1

−0.5

0

0.5

1

Figure 9: Using the surf command

6 Solving nonlinear problems in Matlab

In addition to functions for numerical linear algebra, Matlab provides functions
for the solution of a number of common problems, such as numerical integration,
initial value problems in ordinary di�erential equations, root-�nding, and opti-
mization. In addition, optional \Toolboxes" provide a variety of such functions
aimed at a particular type of computation, for example, optimization, spline
approximation, signal processing, and so forth. I will not discuss the optional
toolboxes.

More details about the following commands may be obtained from the help
command:

� quad, quad8 numerical integration (quadrature);

� ode23, ode45 adaptive methods for initial value problems in ordinary
di�erential equations;

� fzero root-�nding (single variable);

� fmin nonlinear minimization (single variable);

� fmins nonlinear minimization (several variables);

28

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Figure 10: Using the contour command

� spline creates a cubic spline interpolant of give data.

7 E�ciency in Matlab

User-de�ned Matlab functions are interpreted, not compiled. This means roughly
that when an m-�le is executed, each statement is read and then executed, rather
than the entire program being parsed and compiled into machine language. For
this reason, Matlab programs can be much slower than programs written in a
language such as Fortran or C.

In order to get the most out of Matlab, it is necessary to use built-in functions
and operators whenever possible (so that compiled rather than interpreted code
is executed). For example, the following two command sequences have the same
e�ect:

>> t = (0:.001:1)';

>> y=sin(t);

and

>> t = (0:.001:1)';

>> for i=1:length(t)

29

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 11: A parametric plot in 2D

y(i) = sin(t(i));

end

However, on my computer, the explicit for-loop takes 46 times as long as the
vectorized sine function.

8 Advanced data types in Matlab

In addition to multi-dimensional arrays, Matlab 5 supports several advanced
data types that were not present in earlier versions of Matlab. Following is a
very brief introduction to these types; a detailed description is beyond the scope
of this paper.

8.1 Structures

A structure is a data type which contains several values, possibly of di�erent
types, referenced by name. The simplest way to create a structure is by simple
assignment. For example, consider the function

f(x) = (x1 � 1)2 + x1x2:

30

The following m-�le f.m computes the value, gradient, and Hessian of f at a
point x, and returns them in a structure:

function fx = f(x)

fx.Value = (x(1)-1)^2+x(1)*x(2);

fx.Gradient = [2*(x(1)-1)+x(2);x(1)];

fx.Hessian = [2 1;1 0];

We can now use the function as follows:

>> x = [2;1]

x =

2

1

>> fx = f(x)

fx =

Value: 3

Gradient: [2x1 double]

Hessian: [2x2 double]

>> whos

Name Size Bytes Class

fx 1x1 428 struct array

x 2x1 16 double array

Grand total is 12 elements using 444 bytes

The potential of structures for organizing information in a program should be
obvious.

Note that, in the previous example, Matlab reports fx as being a 1 � 1
\struct array". We can have multi-dimensional arrays of structs, but in this
case, each struct must have the same �eld names:

>> gx.Value = 12;

>> gx.Gradient = [2;1];

>> A(1,1) = fx;

>> A(2,1) = gx;

??? Subscripted assignment between dissimilar structures.

>> fieldnames(fx)

ans =

'Value'

'Gradient'

'Hessian'

>> fieldnames(gx)

ans =

31

'Value'

'Gradient'

(Note the use of the command fieldnames, which lists the �eld names of a
structure.)

Beyond simple assignment, there is a command struct for creating struc-
tures. For information on this and other commands for manipulating structures,
see help struct.

8.2 Cell arrays

A cell array is an array whose entries can be data of any type. The index
operator {} is used in place of () to indicate that an array is a cell array
instead of an ordinary array:

>> x = [2;1];

>> fx = f(x);

>> whos

Name Size Bytes Class

fx 1x1 428 struct array

x 2x1 16 double array

Grand total is 12 elements using 444 bytes

>> A{1}=x

A =

[2x1 double]

>> A{2}=fx

A =

[2x1 double] [1x1 struct]

>> whos

Name Size Bytes Class

A 1x2 628 cell array

fx 1x1 428 struct array

x 2x1 16 double array

Grand total is 26 elements using 1072 bytes

Another way to create the same cell array is to place the entries inside of curly
braces:

>> B = {x,fx}

B =

[2x1 double] [1x1 struct]

For more information about cell arrays, see help cell.

32

8.3 Objects

Matlab 5 now supports the use of classes, which can be thought of structures
that contain both data and functions (class methods). (In contrast, a struct
contains only data.) One class can be derived from another class (the base
class), meaning that it inherits the properties|data and methods|of the base
class. Also, Matlab now supports overloading of functions. Through these
mechanisms, Matlab enables object-oriented design of programs.

For more information, see help class.

33

