Reference Frames

E. Calais Purdue University - EAS Department Civil 3273 – ecalais@purdue.edu

Need for a Reference Frame

- 1. Positions and velocities from geodetic measurements:
 - Are not direct observations, but estimated quantities
 - Are not absolute quantities
 - Need for a "Terrestrial Reference" in which (or relative to which) positions and velocities can be expressed.
- 2. Geodetic data are not sufficient by themselves to calculate coordinates...!
 - Ex. of triangulation data (angle measurements): origin, orientation, and scale need to be fixed
 - Ex. of distance measurements: origin and orientation need to be fixed, scale is given by the data
 - Need to fix some quantities => define a frame

4 equivalent figures derived from angle measurements

Mathematically: the Datum Defect problem

- Assume terrestrial measurements at 3 sites (in 3D):
 - 6 independent data:
 - 2 independent distance measurements
 - 2 independent angle measurements
 - 2 independent height difference measurements
 - 9 unknowns: [X, Y,Z] (or lat, lon, elev) at each site
- For 4 sites: 12 unknowns, 9 independent data
- ⇒ Datum defect = rank deficiency of the matrix that relates the observations to the unknowns
- \Rightarrow Solution: define a frame!
 - Fix or constrain a number of coordinates
 - Minimum 3 coordinates at 2 sites to determine scale, orientation, origin
 - A! a priori variance of site positions will impact the final uncertainties (e.g., over-constraining typically results in artificially small uncertainties)

System vs. Frame

- Terrestrial Reference **System** (TRS):
 - Mathematical definition of the reference in which positions and velocities will be expressed.
 - Therefore invariable but "inaccessible" to users in practice.
- Terrestrial Reference Frame (TRF):
 - Physical materialization of the reference system by way of geodetic sites.
 - Therefore accessible but perfectible.

The ideal TRS

- Tri-dimensional right-handed orthogonal (X,Y,Z) Euclidian affine frame.
- Base vectors have same length
 = define the scale
- Geocentric: origin close to the Earth's center of mass (including oceans and atmosphere)
- Equatorial orientation: Z-axis is direction of the Earth's rotation axis
- Rotating with the Earth.

3D similarity

 Under these conditions, the transformation of Cartesian coordinates of any point between 2 TRSs (1) and (2) is given by a 3D similarity:

$$X^{(2)} = T_{1,2} + \lambda_{1,2} R_{1,2} X^{(1)}$$

 $X^{(1)}$ and $X^{(2)}$ = position vectors in TRS(1) and TRS(2) $T_{1,2}$ = translation vector $\lambda_{1,2}$ = scale factor $R_{1,2}$ = rotation matrix

- Also called a Helmert, or 7-parameter, transformation:
 - If translation (3 parameters), scale (1 parameter) and rotation (3 parameters) are known, then one can convert between TRSs
 - If there are common points between 2 TRSs, one can solve for *T*, λ , *R*: minimum of 3 points.

3-D Similarity

3D similarity between TRS1, X₁ and TRS2, X₂ can be linearized as:

$$X_{2} = X_{1} + T + DX_{1} + RX_{1} \qquad D = \text{scale factor} \quad R = \begin{pmatrix} 0 & -R_{3} & R_{2} \\ R_{3} & 0 & -R_{1} \\ -R_{2} & R_{1} & 0 \end{pmatrix} \quad T = \begin{pmatrix} T_{1} \\ T_{2} \\ T_{3} \end{pmatrix}$$

 $(\cap \mathbf{p} \mathbf{p}) \quad (\mathbf{T})$

• X₁, X₂, T, D, R are generally functions of time (plate motions, Earth's deformation) => differentiation w.r.t. time gives:

$$\dot{X}_2 = \dot{X}_1 + \dot{T} + \dot{D}X_1 + D\dot{X}_1 + \dot{R}X_1 + R\dot{X}_1$$

 D and R ~ 10⁻⁵ and Xdot ~ 10 cm/yr ⇒ DXdot and RXdot negligible, ~ 0.1 mm/100 years, therefore:

$$\dot{X}_2 = \dot{X}_1 + \dot{T} + \dot{D}X_1 + \dot{R}X_1$$

Estimation

The above equations can be written as: ٠

$$X_{2} = X_{1} + T + DX_{1} + RX_{1} \Leftrightarrow X_{2} = X_{1} + A\theta$$

$$\dot{X}_{2} = \dot{X}_{1} + \dot{T} + \dot{D}X_{1} + \dot{R}X_{1} \Leftrightarrow \dot{X}_{2} = \dot{X}_{1} + A\dot{\theta}$$

with:

$$\theta = \begin{bmatrix} T_{1}, T_{2}, T_{3}, D, R_{1}, R_{2}, R_{3} \end{bmatrix}$$

$$A = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & x & 0 & z & -y \\ 0 & 1 & 0 & y & -z & 0 & x \\ 0 & 0 & 1 & z & y & -x & 0 \end{bmatrix}$$

٠

$$\hat{\theta} = \begin{bmatrix} T_1, T_2, T_3, D, R_1, R_2, R_3 \end{bmatrix}$$

$$\hat{\theta} = \begin{bmatrix} \dot{T}_1, \dot{T}_2, \dot{T}_3, \dot{D}, \dot{R}_1, \dot{R}_2, \dot{R}_3 \end{bmatrix}$$

$$A = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & 0 & 0 & x & 0 & z & -y \\ 0 & 1 & 0 & y & -z & 0 & x \\ 0 & 0 & 1 & z & y & -x & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}$$

Assuming X_1 and X_2 are known, the least-squares solutions are: •

$$\theta = (A^T P_x A)^{-1} A^T P_x (X_2 - X_1)$$
$$\dot{\theta} = (A^T P_y A)^{-1} A^T P_y (\dot{X}_2 - \dot{X}_1)$$

where P_x and P_v are the weight matrix for station positions and velocities, respectively

Problem when defining a frame...

- Unknowns = positions in frame 2 + 7 Helmert parameters => more unknowns than data = datum defect
- Not enough data from space geodetic observations to estimate all frame parameters
- Solution: additional information
 - Tight constraints: estimated station positions/velocities are constrained to a priori values within 10⁻⁵ m and a few mm/yr.
 - Loose constraints: same, with 1 m for position and 10 cm/yr for velocities.
 - Minimal constraints.

Mathematically...

• The estimation of the coordinates of a network of GPS sites is often done by solving for the linear system:

 $AX = Obs \qquad \left(\Sigma_{Obs}^{-1}\right)$

A = linearized model design matrix (partial derivatives) between the GPS observations *Obs* and the parameters to estimate *X*. Σ^{-1}_{Obs} is the weight matrix associated to *Obs* (inverse of its covariance matrix).

• Solution is:

 $X = (A^T \Sigma_{Obs}^{-1} A)^{-1} A^T Obs$

• But normal matrix $N = A^T \Sigma_{Obs} A$ usually rank-defficient and not invertible.

Constraint equation

- To make *N* invertible, one usually add constraints by using a condition equation.
- E.g., forcing the coordinates of a subset of sites to tightly follow values of a given reference frame:

$$X_{cons} = X_o \qquad \left(\Sigma_{a priori}^{-1}\right)$$

($\Sigma_{a \text{ priori}}$ defines the constraint level, e.g. 1 cm in NE and 5 cm in U)

• The resulting equation system becomes:

$$\begin{pmatrix} A \\ I \end{pmatrix} X_{cons} = \begin{pmatrix} Obs \\ X_o \end{pmatrix} \qquad \qquad \begin{pmatrix} \Sigma_{obs}^{-1} & 0 \\ 0 & \Sigma_{apriori}^{-1} \end{pmatrix}$$

• And the solution:

$$X_{cons} = \left(A^T \Sigma_{Obs}^{-1} A + \Sigma_{apriori}^{-1}\right)^{-1} \left(A^T \Sigma_{Obs}^{-1} Obs + \Sigma_{apriori}^{-1}\right) X_o$$

Constrained solution

• The covariance matrix of the constrained solution is given by:

$$\Sigma_{cons}^{-1} = A^T \Sigma_{Obs}^{-1} A + \Sigma_{apriori}^{-1} = \Sigma_{unc}^{-1} + \Sigma_{apriori}^{-1}$$

- This can cause artificial deformations of the network if the constraint level is too tight, given the actual accuracy of $X_0 =$ errors propagate to the whole network.
- Also, the equation above modifies the variance of the result (and its structure). E.g., if constraint level very tight, the variance of estimated parameters becomes artificially small.
- To avoid these problems, constraints have to be removed from individual solutions before they can be combined: suboptimal
- Better solution = minimal constraints.

Minimal constraints

- Same basic idea, use a condition equation to the system: impose the estimated coordinates to be expressed in the same frame as a subset of reference sites.
- But instead of tightly constraining a subset of sites to a priori positions, impose that their positions are expressed in a known frame through a similarity transformation (see previous slides):

$$X = X_o + T + DX_o + RX_o \Leftrightarrow X = X_o + E\theta$$

• Least squares solution is:

$$\boldsymbol{\theta} = (\boldsymbol{E}^T \boldsymbol{\Sigma}_X^{-1} \boldsymbol{E})^{-1} \boldsymbol{E}^T \boldsymbol{\Sigma}_X^{-1} (\boldsymbol{X} - \boldsymbol{X}_o)$$

"Estimated positions expressed in the same frame as the reference frame chosen" ⇔ transformation parameters between the 2 frames is zero, i.e. θ = 0. Therefore:

$$B(X - X_o) = 0 \qquad (\Sigma_{\theta}^{-1}) \qquad B = (E^T \Sigma_X^{-1} E)^{-1} E^T \Sigma_X^{-1}$$

Minimal constraints

• Resulting equation system (with the condition equation) becomes:

$$\begin{pmatrix} A \\ B \end{pmatrix} X_{mc} = \begin{pmatrix} Obs \\ BX_o \end{pmatrix} \qquad \begin{pmatrix} \Sigma_{obs}^{-1} & 0 \\ 0 & \Sigma_{\theta}^{-1} \end{pmatrix}$$

• Solution is:

$$X_{mc} = \left(A^T \Sigma_{Obs}^{-1} A + B^T \Sigma_{\theta}^{-1} B\right)^{-1} \left(A^T \Sigma_{Obs}^{-1} Obs + B^T \Sigma_{\theta}^{-1} B\right) X_o$$

- With covariance: $\Sigma_{mc}^{-1} = A^T \Sigma_{Obs}^{-1} A + B^T \Sigma_{\theta}^{-1} B = \Sigma_{unc}^{-1} + B^T \Sigma_{\theta}^{-1} B$
- Covariance: reflects data noise + reference frame effect (via *B*)
- Minimal constraints = algebraic expression on the covariance matrix that the reference frame implementation is performed through a similarity transformation.

The combination model

• For each site *i* in solution s (s = regional or global for instance), simultaneously estimate position X_{comb}^i at epoch t_0 (epoch of the combination), velocity X_{comb}^i , and a 14-parameter transformation between the individual and the combined solution using:

$$\begin{aligned} X_{s}^{i} &= X_{comb}^{i} + \left(t_{comb} - t_{s}\right) \widehat{X}_{comb}^{i} \\ &+ T_{k} + D_{k} X_{comb}^{i} + R_{k} X_{comb}^{i} \\ &+ \left(t_{comb} - t_{s}\right) \left[\widehat{T}_{k} + \widehat{D}_{k} X_{comb}^{i} + \widehat{R}_{k} X_{comb}^{i}\right] \end{aligned}$$

 X_{s}^{i} = position of site *i* in solution *s* at epoch t_{s} X_{comb}^{i} = estimated position of site *i* at epoch t_{comb} X_{comb}^{i} = estimated velocity in the combination T_{k}, D_{k}, R_{k} and $\{T_{k}, D_{k}, R_{k}\}$ hat = transformation parameters between individual solutions *s* and the combined solution and their time derivatives.

• Combination = solve for one T_k , D_k , R_k , $\{T_k, D_k, R_k\}$ hat per solution and one X_{comb}^i per site.

In practice

- Constrained solution can be done in globk (or glred) by tightly constraining some sites (+ orbits) to a priori positions: ok for small networks (= local solution)
- Minimally constrained solution computed in a 2-step manner:
 - Combine regional + global solutions in globk:
 - Globk reads each solution sequentially and combines it to the previous one
 - Loose constraints applied to all estimated parameters
 - Chi2 change should be small is data consistent with model from previous slide
 - Output = loosely constrained solution
 - Compute minimally constrained solution in glorg:
 - Matrix A comes from globk
 - Minimal constraints matrix B formed using sites that define frame
- Choice of reference sites:
 - Global distribution
 - Position and velocity precise and accurate
 - Error on their position/velocity and correlations well known

The international Terrestrial Reference System: ITRS

- Definition adopted by the IUGG and IAG: see http://tai.bipm.org/ iers/conv2003/conv2003.html
- Tri-dimensional orthogonal (X,Y,Z), equatorial (Z-axis coincides with Earth's rotation axis)
- Non-rotating (actually, rotates with the Earth)
- Geocentric: origin = Earth's center of mass, including oceans and atmosphere.
- Units = meter and second S.I.
- Orientation given by BIH at 1984.0.
- Time evolution of the orientation ensured by imposing a **no-netrotation** condition for horizontal motions.

The no-net-rotation (NNR) condition

- Objective:
 - Representing velocities without referring to a particular plate.
 - Solve a datum defect problem: ex. of 2 plates
 ⇒ 1 relative velocity to solve for 2 "absolute" velocities... (what about 3 plates?)
- The no-net-rotation condition states that the total angular momentum of all tectonic plates should be zero.
- See figure for the simple (and theoretical) case of 2 plates on a circle.
- The NNR condition has no impact on relative plate velocities.
- It is an additional condition used to define a reference for plate motions that is not attached to any particular plate.

The Tisserand reference system

- "Mean" coordinate system in which deformations of the Earth do not contribute to the global angular momentum (important in Earth rotation theory)
- Let us assume two systems R (inertial) and Ro (translates and rotates w.r.t. R). Body E is attached to Ro. At point M, one can write:

$$\begin{cases} \vec{R} = \vec{R}_o + \vec{r} \\ \vec{V} = \vec{V}_o + \vec{v} + \vec{\omega} \times \vec{n} \end{cases}$$

• One can show that the Tisserand condition is equivalent to:

$$\int_{E} \vec{v} dm = \vec{0}$$
 No translation condition
$$\int_{E} \vec{v} \times \vec{r} dm = \vec{0}$$
 No rotation condition

The Tisserand reference system

 $\begin{cases} \int_{E} \vec{v} \, dm = \vec{0} & \text{No translation condition} \\ \int_{E} \vec{v} \times \vec{r} \, dm = \vec{0} & \text{No rotation condition} \end{cases}$

- The system of axis defined by the above conditions is called "Tisserand system".
- Integration domain:
 - Should be entire Earth volume
 - But velocities at surface only => integration over surface only
- With hypothesis of spherical Earth + uniform density, volume integral becomes a surface integral

- The Tisserand no-rotation condition is also called "no-net-rotation" condition (NNR).
- For a spherical Earth of unit radius and uniform density, the NNR conditions writes:

$$\int_{S} \vec{r} \times \vec{v} \, dA = \vec{0}$$

• The integral can be broken into a sum to account for discrete plates:

$$\int_{S} \vec{r} \times \vec{v} \, dA = \sum_{P} \int_{P} \vec{r} \times \vec{v} \, dA$$

• With, for a given plate: $L_P = \int_P \vec{r} \times \vec{v} \, dA$

 Assuming rigid plates, velocity at point *M* (position vector *r* in NNR) on plate *P* is given by:

$$\vec{v}(\vec{r}) = \vec{\omega}_P \times \vec{r} \qquad \Rightarrow L_P = \int_P \vec{r} \times (\vec{\omega}_P \times \vec{r}) \ dA$$

• Developing the vector product with the triple product expansion gives:

$$L_{P} = \int_{P} ((\vec{r} \cdot \vec{r}) \vec{\omega}_{P} - (\vec{r} \cdot \vec{\omega}_{P}) \vec{r}) \, dA = \int_{P} (\vec{r} \cdot \vec{r}) \vec{\omega}_{P} \, dA - \int_{P} (\vec{r} \cdot \vec{\omega}_{P}) \vec{r} \, dA$$

• Assuming a spherical Earth of unit radius (r = 1), the first term introduces the plate area A_P :

$$\int_{P} (\vec{r} \cdot \vec{r}) \vec{\omega}_{P} \, dA = r^{2} \vec{\omega}_{P} \int_{P} dA = \vec{\omega}_{P} A_{P}$$

• Dealing with the second term is a bit more involved, see next.

$$(\vec{r} \ \vec{\omega}_{p})\vec{r} = (x_{1}\omega_{1} + x_{2}\omega_{2} + x_{3}\omega_{3})\vec{r}$$

$$= \begin{bmatrix} x_{1}^{2}\omega_{1} + x_{1}x_{2}\omega_{2} + x_{1}x_{3}\omega_{3} \\ x_{1}x_{2}\omega_{1} + x_{2}^{2}\omega_{2} + x_{2}x_{3}\omega_{3} \\ x_{1}x_{3}\omega_{1} + x_{2}x_{3}\omega_{2} + x_{3}^{2}\omega_{3} \end{bmatrix}$$
Therefore:
$$\int_{p} (\vec{r} \ \vec{\omega}_{p})\vec{r} \ dA =$$

$$\begin{bmatrix} \int x_{1}^{2} & \int x_{1}x_{2} & \int x_{1}x_{3} \\ \int x_{1}x_{2} & \int x_{2}^{2} & \int x_{2}x_{3} \\ \int x_{1}x_{2} & x_{2}^{2} & x_{2}x_{3} \\ x_{1}x_{3} & x_{2}x_{3} & x_{3}^{2} \end{bmatrix} \begin{bmatrix} \omega_{1} \\ \omega_{2} \\ \omega_{3} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1}^{2} & x_{1}x_{2} & x_{1}x_{3} \\ x_{1}x_{3} & x_{2}x_{3} & x_{3}^{2} \end{bmatrix} \begin{bmatrix} \omega_{1} \\ \omega_{2} \\ \omega_{3} \end{bmatrix}$$

We introduce a 3x3 symmetric matrix S_p with elements defined by: $S_{Pij} = \int_P (x_i x_j) dA$

Therefore the integral becomes:

$$\int_{P} (\vec{r} \, \vec{\omega}_{P}) \vec{r} \, dA = S_{P} \, \vec{\omega}_{P}$$

• Finally:
$$L_P = \int_P (\vec{r} \cdot \vec{r}) \vec{\omega}_P \, dA - \int_P (\vec{r} \cdot \vec{\omega}_P) \vec{r} \, dA$$

• Reduces to: $L_p = \vec{\omega}_p A_p - S_p \vec{\omega}_p$ = $(A_p I - S_p) \vec{\omega}_p$

$$= Q_P \vec{\omega}_P$$

• With:
$$Q_P = A_P I - S_P$$

 Q_p is a 3x3 matrix that only depends on the plate geometry, with its components defined by:

$$Q_{Pij} = \int_{P} \left(\delta_{ij} - x_i x_j \right) dA \qquad \text{Kronecker delta: } \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

- The non-rotation condition: $\int_{S} \vec{r} \times \vec{v} \, dA = \sum_{P} \int_{P} \vec{r} \times \vec{v} \, dA = \vec{0}$
- Becomes: $\sum_{P} Q_{P} \vec{\omega}_{P} = \vec{0}$
- Now, observations are relative plate motions, for instance plate *P* w.r.t. Pacific plate. Angular velocities are additive, one can then write:

$$\vec{\omega}_{P/NNR} = \vec{\omega}_{P/Pacific} + \vec{\omega}_{Pacific/NNR}$$

• Therefore: $\sum_{P} Q_{P} \left(\vec{\omega}_{P/Pacific} + \vec{\omega}_{Pacific/NNR} \right) = \vec{0}$ $\Rightarrow \sum_{P} Q_{P} \vec{\omega}_{P/Pacific} + \sum_{P} Q_{P} \vec{\omega}_{Pacific/NNR} = \vec{0}$ $\Rightarrow \sum_{P} Q_{P} \vec{\omega}_{P/Pacific} + \frac{8\pi}{3} I \vec{\omega}_{Pacific/NNR} = \vec{0}$

(because on a unit radius sphere: $\sum_{P} Q_{P} = \frac{8\pi}{3}I$)

 Finally, the angular velocity of the Pacific plate w.r.t. NNR can be calculated using:

$$\vec{\omega}_{Pacific / NNR} = -\frac{3}{8\pi} \sum_{P} Q_{P} \vec{\omega}_{P / Pacific}$$
 with $Q_{P} = \int_{P} (\delta_{ij} - x_{i} x_{j}) dA$

($\omega_{p/Pacific}$ are known from a relative plate model, Q_p are 3x3 matrices computed for each plate from its geometry: δ is Kronecker delta, *x* is a position vector, *A* is the plate area)

 Once the angular velocity of the Pacific plate in NNR is found, the angular velocity of any plate P can be computed using:

$$\vec{\omega}_{P/NNR} = \vec{\omega}_{P/Pacific} + \vec{\omega}_{Pacific/NNR}$$

• This method is the one used to compute the NNR-NUVEL1A model (Argus and Gordon, 1991).

The no-net-rotation (NNR) condition

- "Mean" coordinate system in which deformations of the Earth do not contribute to the global angular momentum => used as a constraint to solve datum defect problem, but has a "dynamic" origin.
- First proposed by Lliboutry (1977) as an approximation of a reference frame where moment of forces acting on lower mantle is zero, which implies:
 - Rigid lower mantle
 - Uniform thickness lithosphere
 - No lateral viscosity variations in upper mantle
 - \Rightarrow NNR is a frame in which the internal dynamics of the mantle is null.
- These conditions are not realistic geophysically, in particular because of slabs in upper and lower mantle, that contribute greatly to driving plate motions (Lithgow-Bertelloni and Richards, 1995)
- But that's ok, as long as NNR is simply used as a <u>conventional</u> reference.

The international Terrestrial Reference Frame: ITRF

- Positions (at a given epoch) and velocities of a set of geodetic sites (+ associated covariance information) = <u>dynamic</u> datum
- Positions and velocities estimated by combining independent geodetic solutions and techniques.
- Combination:
 - "Randomizes" systematic errors associated with each individual solutions
 - Provides a way of detecting blunders in individual solutions
 - Accuracy is equally important as precision

- 1984: VLBI, SLR, LLR, Transit
- 1988: TRF activity becomes part of the IERS => first ITRF = ITRF88
- Since then: ITRF89, ITRF90, ITRF92, ITRF93, ITRF94, ITRF96, ITRF97, ITRF2000
- Current = ITRF2005:
 - Up to 25 years of data
 - GPS sites defining the ITRF are all IGS sites
 - Wrms on velocities in the combination: 1 mm/yr VLBI, 1-3 mm/yr SLR and GPS
 - Solutions used: 3 VLBI, 1 LLR, 7 SLR, 6 GPS, 2 DORIS
- ITRF improves as:
 - Number of sites with long time series increases
 - New techniques appear
 - Estimation procedures are improved

The international Terrestrial Reference Frame: ITRF

- Apply minimum constraints equally to all loosely constrained solutions: this is the case of SLR and DORIS solutions
- Apply No-Net-Translation and No-Net-Rotation condition to IVS solutions provided under the form of Normal Equation
- Use as they are minimally constrained solutions: this is the case of IGS weekly solutions
- Form per-technique combinations (TRF + EOP), by rigorously staking the time series, solving for station positions, velocities, EOPs and 7 transformation parameters for each weekly (daily in case of VLBI) solution w.r.t the per-technique cumulative solution.
- Identify and reject/de-weight outliers and properly handle discontinuities using piecewise approach.
- Combine if necessary cumulative solutions of a given technique into a unique solution: this is the case of the two DORIS solutions.
- Combine the per-technique combinations adding local ties in co-location sites.

The international Terrestrial Reference Frame: ITRF

- Origin: The ITRF2005 origin is defined in such a way that there are null translation parameters at epoch 2000.0 and null translation rates between the ITRF2005 and the ILRS SLR time series.
- <u>Scale</u>: The ITRF2005 scale is defined in such a way that there are null scale factor at epoch 2000.0 and null scale rate between the ITRF2005 and IVS VLBI time series.
- <u>Orientation</u>: The ITRF2005 orientation is defined in such a way that there are null rotation parameters at epoch 2000.0 and null rotation rates between the ITRF2005 and ITRF2000. These two conditions are applied over a core network.

ITRF in practice

- Multi-technique combination.
- Origin = SLR, scale = VLBI, orientation = all.
- Position/velocity solution.
- Velocities expressed in no-net-rotation frame:
 - ITRF2000: minimize global rotation w.r.t. NNR-NUVEL1A using 50 high-quality sites far from plate boundaries
 - Subtlety: ITRF does not exactly fulfill a NNR condition because Nuvel1A is biased...
- Provided as tables (position, velocities, uncertainties)
- Full description provided as SINEX file (Solution Indepent Exchange format): ancillary information + vector of unknowns + full variance-covariance matrix (i.e. with correlations).

ITRF in practice

ITRF2005 STATION POSITIONS AT EPOCH 2000.0 AND VELOCITIES GPS STATIONS

DOMES NB.	SITE NAME	TECH. ID.	X/Vx	¥/Vy	Z/Vz m/m/y		Sigmas		SOLN	DATA_START	DATA_END
100015006	PARIS	GPS OPMT	4202777.434	171367.913	4778660.147	0.005	0.002	0.006	5		
100015006			0118	0.0170	0.0111	.0011	.0004	.0012	2		
10002M006	GRASSE	GPS GRAS	4581690.969	556114.738	4389360.731	0.001	0.000	0.001	1 1	00:000:00000	03:113:00000
10002M006			0139	0.0186	0.0116	.0001	.0001	.0001	1		
10002M006	GRASSE	GPS GRAS	4581690.975	556114.741	4389360.734	0.001	0.000	0.001	1 2	03:113:00000	04:295:43200
10002M006			0139	0.0186	0.0116	.0001	.0001	.0001	1		
10002M006	GRASSE	GPS GRAS	4581690.974	556114.744	4389360.739	0.001	0.001	0.001	1 3	04:295:43200	00:000:00000
10002M006			0139	0.0186	0.0116	.0001	.0001	.0001	L		
10003M004	TOULOUSE	GPS TOUL	4627846.086	119629.236	4372999.754	0.001	0.000	0.001	1		
10003M004			0111	0.0191	0.0117	.0003	.0001	.0003	3		
10003M009	TOULOUSE	GPS TLSE	4627851.889	119639.921	4372993.492	0.001	0.001	0.001	1		
10003M009			0111	0.0191	0.0117	.0003	.0001	.0003	3		
10004M004	BREST	GPS BRST	4231162.638	-332746.764	4745130.859	0.004	0.001	0.004	1		
10004M004			0111	0.0162	0.0134	.0009	.0003	.0009	9		
10023M001	La Rochelle	GPS LROC	4424632.623	-94175.321	4577544.022	0.003	0.001	0.003	3		
10023M001			0106	0.0183	0.0123	.0006	.0002	.0006	5		
10090M001	SAINT JEAN DES	GPS SJDV	4433469.919	362672.729	4556211.652	0.002	0.001	0.002	2 1	00:000:00000	99:071:57600
10090M001			0118	0.0186	0.0121	.0008	.0002	.0008	3		
10090M001	SAINT JEAN DES	GPS SJDV	4433469.921	362672.729	4556211.656	0.001	0.000	0.001	1 2	99:071:57600	00:000:00000
10090M001			0118	0.0186	0.0121	.0008	.0002	.0008	3		
10202M001	REYKJAVIK	GPS REYK	2587384.422	-1043033.508	5716563.995	0.001	0.000	0.001	1 1	00:000:00000	00:169:56460
10202M001			0216	0028	0.0059	.0001	.0001	.0002	2		
10202M001	REYKJAVIK	GPS REYK	2587384.410	-1043033.501	5716563.980	0.006	0.003	0.012	2 2	00:169:56460	00:173:03120
10202M001			0216	0028	0.0059	.0001	.0001	.0002	2		
10202M001	REYKJAVIK	GPS REYK	2587384.415	-1043033.509	5716564.003	0.001	0.000	0.001	1 3	00:173:03120	00:000:00000
10202M001			0216	0028	0.0059	.0001	.0001	.0002	2		
10202M003	REYKJAVIK	GPS REYZ	2587383.736	-1043032.722	5716564.472	0.001	0.001	0.001	1		
10202M003			0216	0028	0.0059	.0001	.0001	.0002	2		

ITRF in practice

Summary

- Geodetic observations face datum defect problem => need for a reference frame.
- ITRF (currently 2005) = multitechnique combination, provides positions + velocities at reference sites:
 - Include some of these sites in processing to tie a regional solution to ITRF.
 - Combine regional solution with global solutions better.
- Reference frame can be implemented by:
 - Constraining positions/velocities of a subset of sites to a priori values
 - Using minimal constraints better.
- When using ITRF, velocities are expressed in a no-net-rotation frame (derived from Tisserand system) => frame independent from any plate.