Reference Frames

E. Calais
Purdue University - EAS Department
Civil 3273 — ecalais@purdue.edu




Need for a Reference Frame

1. Positions and velocities from geodetic
measurements:
— Are not direct observations, but | ( scale |
estimated quantities
— Are not absolute quantities

— Need for a “Terrestrial Reference” in
which (or relative to which) positions
and velocities can be expressed.

2. Geodetic data are not sufficient by I -
themselves to calculate —_—
coordinates...!

— Ex. of triangulation data (angle
measurements): origin, orientation,
and scale need to be fixed

— Ex. of distance measurements: origin

and orientation need to be fixed, scale rotation ’ l@nslation 1
is given by the data -
— Need to fix some quantities => define 4 equivalent figures derived

a frame from angle measurements



Mathematically: the Datum
Defect problem

« Assume terrestrial measurements at 3 sites (in 3D):

— 6 independent data:
« 2 independent distance measurements
« 2 independent angle measurements
» 2 independent height difference measurements

— 9 unknowns: [X,Y,Z] (or lat, lon, elev) at each site
* For 4 sites: 12 unknowns, 9 independent data

= Datum defect = rank deficiency of the matrix that relates
the observations to the unknowns

= Solution: define a frame!
— Fix or constrain a number of coordinates
— Minimum 3 coordinates at 2 sites to determine scale, orientation,
origin
— Al a priori variance of site positions will impact the final

uncertainties (e.g., over-constraining typically results in artificially
small uncertainties)



System vs. Frame

» Terrestrial Reference System (TRS):

— Mathematical definition of the reference in which
positions and velocities will be expressed.

— Therefore invariable but “inaccessible” to users in
practice.

» Terrestrial Reference Frame (TRF):

— Physical materialization of the reference system
by way of geodetic sites.

— Therefore accessible but perfectible.



The ideal TRS

Tri-dimensional right-handed
orthogonal (X,Y,Z) Euclidian
affine frame.

Base vectors have same length
= define the scale

Geocentric: origin close to the
Earth’s center of mass
(including oceans and
atmosphere)

Equatorial orientation: Z-axis is
direction of the Earth’s rotation
axis

Rotating with the Earth.




3D similarity

* Under these conditions, the
transformation of Cartesian coordinates
of any point between 2 TRSs (1) and (2)
is given by a 3D similarity:

(2) _ 1)
X = 71,2 + )‘1,2R1,2X

X() and X = position vectors in TRS(1) and TRS(2)
T, , = translation vector

A4, = scale factor

R; , = rotation matrix

» Also called a Helmert, or 7-parameter,
transformation:

— If translation (3 parameters), scale (1
parameter) and rotation (3 parameters)
are known, then one can convert
between TRSs

— If there are common points between 2
TRSs, one can solve for T, A, R:

minimum of 3 points.




3-D Similarity

3D similarity between TRS1,X, and TRS2, X, can be linearized

as.
0 _R3 Rz 7;
R, 0 -R| T=|T,
-R, R O T,

X,, X, T, D, R are generally functions of time (plate motions,
Earth’s deformation) => differentiation w.r.t. time gives:

X, =X, +T+ DX, + DX, + RX, + RX,

X2 = Xl + T+ l)}(1 + RXI D = scale factor R =

D and R ~ 10-° and Xdot ~ 10 cm/yr = DXdot and RXdot
negligible, ~ 0.1 mm/100 years, therefore:

X, =X, +T+DX, +RX,



Estimation

The above equations can be written as:
X,=X,+T+DX, +RX, < X, =X, +A0

X2=X1+T+DX1+RX1©X2=X1+A9

with:
6 = [T; 7T’2’T’3 9D7R1 ,R29R3] : : : : :
100 x 0 z -y
A=|0 1 0 y —z 0 «x
9=|:Tlvaj-'27j-'3,DaR1,R27R3i| 00 1 z y =X 0

Assuming X, and X, are known, the least-squares solutions are:
0=(A"PA)'A'P.(X,-X,)
6=(A"PA)'A'P(X,-X)

where P, and P, are the weight matrix for station positions and
velocities, respectively



Problem when defining a frame...

* Unknowns = positions in frame 2 + 7 Helmert
parameters => more unknowns than data = datum
defect

* Not enough data from space geodetic observations to
estimate all frame parameters

o Solution: additional information

— Tight constraints: estimated station positions/velocities are
constrained to a priori values within 10~ m and a few mm/yr.

— Loose constraints: same, with 1 m for position and 10 cm/yr
for velocities.

— Minimal constraints.



Mathematically...

The estimation of the coordinates of a network of GPS sites is
often done by solving for the linear system:

AX = Obs (Zoh)

A = linearized model design matrix (partial derivatives) between the GPS
observations Obs and the parameters to estimate X. 27, is the weight matrix
associated to Obs (inverse of its covariance matrix).
Solution is:

X =(A"Z,, A" A"Obs

But normal matrix N = AX,, A usually rank-defficient and not
invertible.



Constraint equation

To make N invertible, one usually add constraints by using a condition
equation.

E.g., forcing the coordinates of a subset of sites to tightly follow values
of a given reference frame:

X =X (Zopions)

cons o apriori

(=, oriori d€fines the constraint level, e.g. 1 cm in NE and 5 cmin U)
The resulting equation system becomes:

A Obs >0
XCOHS = -1
I Xo O 2apriori
And the solution:

X, =(ATS0 A+ ) (TS, 005+ 5, )X,



Constrained solution

The covariance matrix of the constrained solution is given by:

=>! 43!

apriori unc apriori

Yo = A2 A+,
This can cause artificial deformations of the network if the

constraint level is too tight, given the actual accuracy of X, =>
errors propagate to the whole network.

Also, the equation above modifies the variance of the result (and
its structure). E.g., if constraint level very tight, the variance of
estimated parameters becomes artificially small.

To avoid these problems, constraints have to be removed from
individual solutions before they can be combined: suboptimal

Better solution = minimal constraints.



Minimal constraints

Same basic idea, use a condition equation to the system: impose the
estimated coordinates to be expressed in the same frame as a subset of
reference sites.

But instead of tightly constraining a subset of sites to a priori positions,
impose that their positions are expressed in a known frame through a
similarity transformation (see previous slides):

X=X,+T+DX,+RX, < X=X_+E0
Least squares solution is:
0=(E"Z/E)Y'E"Z)(X-X)

“Estimated positions expressed in the same frame as the reference frame
chosen” < transformation parameters between the 2 frames is zero, i.e. 6 =
0. Therefore:

B(X-X,)=0 (=) B=(E"SE)'E"s]



Minimal constraints

Resulting equation system (with the condition equation) becomes:
A Obs > 0

X = oos
B) ™ \BX, 0o !

X, =(A"S,, A+ B'S;'B) (A"S,, Obs+ B'S;'B)X,

Solution is:

With covariance: =,.=A"3%, A+B'X'B=3, +B'3'B

unc

Covariance: reflects data noise + reference frame effect (via B)

Minimal constraints = algebraic expression on the covariance matrix
that the reference frame implementation is performed through a
similarity transformation.



The combination model

For each site i in solution s (s = regional or global for instance), simultaneously
estimate position X', at epoch t, (epoch of the combination), velocity X'.,,.,, and a
14-parameter transformation between the individual and the combined solution using:

X X lomb + ( comb ~ )X éomb
+T,+D X' +RX!

comb

)T, + DX,

comb

+RX’

comb ]

+(tcomb
X', = position of site i in solution s at epoch
X .omp = €Stimated position of site i at epoch t,,,.,,
X omp = €stimated velocity in the combination

T, D, R.and {T,, D,, R hat = transformation parameters between individual
solutions s and the combined solution and their time derivatives.

Combination = solve for one T,, D,, R, {T,, D,, R hat per solution and one X', per
site.



In practice

« Constrained solution can be done in globk (or glred) by tightly constraining
some sites (+ orbits) to a priori positions: ok for small networks (= local
solution)

« Minimally constrained solution computed in a 2-step manner:

— Combine regional + global solutions in globk:
. Globk reads each solution sequentially and combines it to the previous one
. Loose constraints applied to all estimated parameters
«  Chi2 change should be small is data consistent with model from previous slide
. Output = loosely constrained solution
— Compute minimally constrained solution in glorg:
. Matrix A comes from globk
. Minimal constraints matrix B formed using sites that define frame

« Choice of reference sites:
— Global distribution
— Position and velocity precise and accurate
— Error on their position/velocity and correlations well known



The international Terrestrial
Reference System: ITRS

Definition adopted by the IUGG and IAG: see http://tai.bipm.org/
iers/conv2003/conv2003.html

Tri-dimensional orthogonal (X,Y,Z), equatorial (Z-axis coincides
with Earth’s rotation axis)

Non-rotating (actually, rotates with the Earth)

Geocentric: origin = Earth’s center of mass, including oceans
and atmosphere.

Units = meter and second S.I.
Orientation given by BIH at 1984.0.

Time evolution of the orientation ensured by imposing a no-net-
rotation condition for horizontal motions.



The no-net-rotation (NNR) condition

Objective:
— Representing velocities without referring to a
particular plate.

— Solve a datum defect problem: ex. of 2 plates
=> 1 relative velocity to solve for 2 “absolute”
velocities... (what about 3 plates?)

The no-net-rotation condition states that the
total angular momentum of all tectonic plates
should be zero.

See figure for the simple (and theoretical)
case of 2 plates on a circle.

The NNR condition has no impact on relative
plate velocities.

It is an additional condition used to define a
reference for plate motions that is not
attached to any particular plate.
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The Tisserand reference system

“Mean” coordinate system in which @

deformations of the Earth do not contribute to Ro
the global angular momentum (important in A2
Earth rotation theory)

E Rotation
R (inertial)

T Translation

Let us assume two systems R (inertial) and Ro .
(translates and rotates w.r.t. R). Body E is M
attached to Ro. At point M, one can write:

- - _ /{2\ Y/
{ R=R +7

V=V +V+dxr > Y

One can show that the Tisserand condition is
equivalent to:

f\7 dm =6 No translation condition
E

fﬁ x7 dm=0  No rotation condition
E




The Tisserand reference system

w

f\7 dm =0 No translation condition Ro
£ Z
— — g A 74l
vxr dm=0  No rotation condition o
R (inertial) E
T Translation
. M
The system of axis defined by the above s
g . =" ” Q\
conditions is called “Tisserand system”. % %
Integration domain: © >Y

— Should be entire Earth volume

— But velocities at surface only => integration
over surface only

With hypothesis of spherical Earth + uniform
density, volume integral becomes a surface
integral



The NNR reference system

The Tisserand no-rotation condition is also called “no-net-rotation”
condition (NNR).

For a spherical Earth of unit radius and uniform density, the NNR

conditions writes: R
[7xVdA=0

S
The integral can be broken into a sum to account for discrete plates:

f?xﬁdA=Ef?><\7dA
P P

S

With, for a given plate: L, = f? XV dA
P



The NNR reference system

Assuming rigid plates, velocity at point M (position vector rin NNR) on plate P is
given by:
V(F)=d, xF = L, = [Fx(@, xF) dA
P

Developing the vector product with the triple product expansion gives:
L, = [(FPd, - GFd,)F) dA= [ FFd, dA- [ (Fd,)FdA
P P P

Assuming a spherical Earth of unit radius (r = 1), the first term introduces the
plate area Ap:

[FFd, dA =76, [ dA=0,A,
P P

Dealing with the second term is a bit more involved, see next.



The NNR reference system

(F 0,)r =(x,0, + X,00, + X;0;)F
X[, + X, X,0, + X, X,0, Therefore: f(; D,)F dA =
= | x,2,0, + X200, + X, %0, P _
2
Jxi Jxx, [xx,
Jxx, [x [xx|0,dA

_fx1x3 Sy, [x; |

2

- o
X[ XX, XXx5l||o

2
=|XX, X,  XyX3| 0,

2
XX XXy Xy |0

We introduce a 3x3 symmetric matrix S, with elements defined by: S, = f(xixj) dA
P

Therefore the integral becomes: f(? W )rdA=S, @,
P



The NNR reference system

Finally: L, = [ (FF)d, dA- [ (Féd,)7FdA
P P

RedUCGS to: Lp = E)pAp - Sp(j)p
=(A4,1-5,)o,
= 0,0,

Q, is a 3x3 matrix that only depends on the plate geometry, with
its components defined by:

1 ifi=j
Op; = f(éij - xixj)dA Kronecker delta: 0, =
P 0 ifi=j



The NNR reference system

 The non-rotation condition: f? XV dA = Ef? xV dA =0
P P

S

- Becomes: Y Q,d, =0
P

* Now, observations are relative plate motions, for instance plate P w.r.t.
Pacific plate. Angular velocities are additive, one can then write:

—_

Wpinvr = Pppacific T Opacific I NNR

 Therefore: . . ~
E Op ((UP Pacific T @ pacific INNR ) =0
P

= E OQp Op pacpic + EQP O pacigic rnvg =0
P P

- 8, _.
= EQP Dp ) pacific + 3 I Opeicsnng =
P

ol

8

(because on a unit radius sphere: EQP = ?I )
P



The NNR reference system

Finally, the angular velocity of the Pacific plate w.r.t. NNR can be
calculated using:

- 3 -
a)Pacific/NNR =~ EQP a)P/Paciﬁc W|th QP = f((sij - xixj)dA
87T 4
P
(0,paciic @re known from a relative plate model, Q, are 3x3 matrices computed for each plate

from its geometry: 6 is Kronecker delta, x is a position vector, A is the plate area)

Once the angular velocity of the Pacific plate in NNR is found, the
angular velocity of any plate P can be computed using:

— —

WDp v = POppacific T P pacific I NNR

This method is the one used to compute the NNR-NUVEL1A
model (Argus and Gordon, 1991).



The no-net-rotation (NNR) condition

« “Mean” coordinate system in which deformations of the Earth do not
contribute to the global angular momentum => used as a constraint to
solve datum defect problem, but has a “dynamic” origin.

« First proposed by Lliboutry (1977) as an approximation of a reference
frame where moment of forces acting on lower mantle is zero, which
implies:

— Rigid lower mantle

— Uniform thickness lithosphere

— No lateral viscosity variations in upper mantle

= NNR is a frame in which the internal dynamics of the mantle is null.

« These conditions are not realistic geophysically, in particular because
of slabs in upper and lower mantle, that contribute greatly to driving
plate motions (Lithgow-Bertelloni and Richards, 1995)

« But that's ok, as long as NNR is simply used as a conventional
reference.




The international Terrestrial
Reference Frame: ITRF

. ITRF2005 Sites

Positions (at a given epoch) .

iy e ° ; ® LY . * o
and velocities of a set of A S e SO 1 O .
geodetic sites (+ associated L e ™ f*){"" PN e
covariance information) = Qv.; « e *. ¥ o cwete®
dynamic datum “ AR o - ° \ : . =
. .o O . . ., ‘e u : o.
Positions and velocities c e * 5 * 1 . e .
estimated by combining : ¢ s e . * .
independent geodetic . ; ¢ ¢ -
solutions and techniques. . . R
Combination: . 1 Technique g2 Techniques + 3 Techniques 4 Techniques
— “Randomizes” systematic
errors associated with each
individual solutions + 1984: VLBI, SLR, LLR, Transit
. . + 1988: TRF activity becomes part of the IERS => first ITRF = ITRF88
— Provides a way of detecting - Since then: ITRF89, ITRF90, ITRF92, ITRFI3, ITRF94, ITRF96, ITRF97, ITRF2000
blunders in individual - Current = ITRF2005:
H — Up to 25 years of data
SOIUtlonS — GPS sites defining the ITRF are all IGS sites
— Accuracy is equally important — Wrms on velocities in the combination: 1 mm/yr VLBI, 1-3 mm/yr SLR and GPS

— Solutions used: 3 VLBI, 1 LLR, 7 SLR, 6 GPS, 2 DORIS
ITRF improves as:

— Number of sites with long time series increases

— New techniques appear

— Estimation procedures are improved

as precision



The international Terrestrial
Reference Frame: ITRF

Apply minimum constraints equally to all
loosely constrained solutions: this is the
case of SLR and DORIS solutions

Apply No-Net-Translation and No-Net-
Rotation condition to IVS solutions provided
under the form of Normal Equation

Use as they are minimally constrained
solutions: this is the case of IGS weekly
solutions

Form per-technique combinations (TRF +
EOP), by rigorously staking the time series,
solving for station positions, velocities,
EOPs and 7 transformation parameters for
each weekly (daily in case of VLBI) solution
w.r.t the per-technique cumulative solution.

Identify and reject/de-weight outliers and
properly handle discontinuities using piece-
wise approach.

Combine if necessary cumulative solutions
of a given technique into a unique solution:
this is the case of the two DORIS solutions.

Combine the per-technique combinations
adding local ties in co-location sites.

VLBI

ITRE2005 Derivation

Wn

|

SLR

|

» [RF (X, V)* EOP (SINEX)

» I RF (X, V)+ EOP (SINEX) [

GPS

I

Stacking

DORIS
|

—

—_—

» [RF (X, V)*+ EOP (SINEX)

» IRF (X, V)* EOP (SINEX)

Local Ties

L

TRF (X,

‘ombination %

ITRE2005

V)+ EOP (SINEX)



The international Terrestrial
Reference Frame: ITRF

« Origin: The ITRF2005 origin is defined in such a way that there
are null translation parameters at epoch 2000.0 and null

translation rates between the ITRF2005 and the ILRS SLR time
series.

« Scale: The ITRF2005 scale is defined in such a way that there
are null scale factor at epoch 2000.0 and null scale rate between
the ITRF2005 and IVS VLBI time series.

« Orientation: The ITRF2005 orientation is defined in such a way
that there are null rotation parameters at epoch 2000.0 and null
rotation rates between the ITRF2005 and ITRF2000. These two
conditions are applied over a core network.




ITRF in practice

Multi-technigue combination.
Origin = SLR, scale = VLBI, orientation = all.
Position/velocity solution.

Velocities expressed in no-net-rotation frame:

— ITRF2000: minimize global rotation w.r.t. NNR-NUVEL1A using
50 high-quality sites far from plate boundaries

— Subtlety: ITRF does not exactly fulfill a NNR condition because
Nuvel1A is biased...

Provided as tables (position, velocities, uncertainties)

Full description provided as SINEX file (Solution Indepent
Exchange format): ancillary information + vector of
unknowns + full variance-covariance matrix (i.e. with
correlations).



DOMES NB.

ITRF In practice

ITRF2005 STATION POSITIONS AT EPOCE 2000

SITE NAME

GPS

STATIONS

.0 AND VELOCITIES

SOLN DATA_START

DATA_END

10001s006
10001s006
10002M006
10002M006
10002M006
10002M006
10002M006
10002M006
10003M004
10003M004
10003M009
10003M009
10004M004
10004M004
10023M001
10023M001
10090M001
10090M001
10090M001
10090M001
10202M001
10202M001
10202M001
10202M001
10202M001
10202M001
10202M003
10202M003

GRASSE

GRASSE

TOULOUSE

TOULOUSE

BREST

La Rochelle

SAINT JEAN DES

SAINT JEAN DES

REYKJAVIK

REYKJAVIK

REYKJAVIK

REYKJAVIK

GPS

GPS

GPS

GPS

GPS

GPS

GPS

CPS

CPS

GPS

GPS

GPS

GRAS

GRAS

TOUL

TLSE

BRST

LROC

SJDV

SJDV

REYK

REYK

REYK

REYZ

4202777.434
-.0118
4581690.969
-.0139
4581690.975
-.0139
4581690.974
-.0139
4627846.086
-.0111
4627851.889
-.0111
4231162.638
-.0111
4424632.623
-.0106
4433469.919
-.0118
4£4433469.921
-.0118
2587384.422
-.0216
2587384.410
-.0216
2587384.415
-.0216
2587383.736
-.0216

171367.913
0.0170
556114.738
0.0186
556114.741
0.0186
556114.744
0.0186
119629.236
0.0191
119639.921
0.0191
~332746.764
0.0162
-94175.321
0.0183
362672.729
0.0186
362672.729
0.0186
-1043033.508
-.0028
-1043033.501
-.0028
-1043033.509
-.0028
-1043032.722
-.0028

4778660.147
0.0111
4389360.731
0.0116
4389360.734
0.0116
4389360.739
0.0116
4372999.754
0.0117
4372993.492
0.0117
4745130.859
0.0134
4577544.022
0.0123
4556211.652
0.0121
4556211.656
0.0121
5716563.995
0.0059
5716563.980
0.0059
5716564.003
0.0059
5716564.472
0.0059

1 00:000:00000

2 03:113:00000

3 04:295:43200

1 00:

:000:

:t071:

000:

:169:

2173

00000

57600

00000

56460

03120

03:113:00000

04:295:43200

00:000:00000

99:071:57600

00:000:00000

00:169:56460

00:173:03120

00:000:00000



ITRF in practice

R —— TRF2005 Velocity Field. =

y, 2o

Major plate boundaries are
sh&wnpin green '.‘1_C.m/‘V } Zuheir Altamimi



Summary

Geodetic observations face datum defect problem => need for a
reference frame.

ITRF (currently 2005) = multitechnique combination, provides
positions + velocities at reference sites:

— Include some of these sites in processing to tie a regional solution to
ITRF.

— Combine regional solution with global solutions — better.
Reference frame can be implemented by:
— Constraining positions/velocities of a subset of sites to a priori values
— Using minimal constraints — better.
When using ITRF, velocities are expressed in a no-net-rotation
frame (derived from Tisserand system) => frame independent
from any plate.



