Reference Frames

E. Calais

Purdue University - EAS Department
Civil 3273 - ecalais@purdue.edu

Need for a Reference Frame

1. Positions and velocities from geodetic measurements:

- Are not direct observations, but estimated quantities
- Are not absolute quantities
- Need for a "Terrestrial Reference" in which (or relative to which) positions and velocities can be expressed.

2. Geodetic data are not sufficient by themselves to calculate coordinates...!

- Ex. of triangulation data (angle measurements): origin, orientation, and scale need to be fixed
- Ex. of distance measurements: origin and orientation need to be fixed, scale is given by the data
- Need to fix some quantities => define a frame

4 equivalent figures derived from angle measurements

Mathematically: the Datum Defect problem

- Assume terrestrial measurements at 3 sites (in 3D):
- 6 independent data:
- 2 independent distance measurements
- 2 independent angle measurements
- 2 independent height difference measurements
- 9 unknowns: $[X, Y, Z]$ (or lat, lon, elev) at each site
- For 4 sites: 12 unknowns, 9 independent data
\Rightarrow Datum defect = rank deficiency of the matrix that relates the observations to the unknowns
\Rightarrow Solution: define a frame!
- Fix or constrain a number of coordinates
- Minimum 3 coordinates at 2 sites to determine scale, orientation, origin
- A! a priori variance of site positions will impact the final uncertainties (e.g., over-constraining typically results in artificially small uncertainties)

System vs. Frame

- Terrestrial Reference System (TRS):
- Mathematical definition of the reference in which positions and velocities will be expressed.
- Therefore invariable but "inaccessible" to users in practice.
- Terrestrial Reference Frame (TRF):
- Physical materialization of the reference system by way of geodetic sites.
- Therefore accessible but perfectible.

The ideal TRS

- Tri-dimensional right-handed orthogonal ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) Euclidian affine frame.
- Base vectors have same length = define the scale
- Geocentric: origin close to the Earth's center of mass (including oceans and atmosphere)
- Equatorial orientation: Z-axis is direction of the Earth's rotation axis
- Rotating with the Earth.

3D similarity

- Under these conditions, the transformation of Cartesian coordinates of any point between 2 TRSs (1) and (2) is given by a 3 D similarity:

$$
X^{(2)}=T_{1,2}+\lambda_{1,2} R_{1,2} X^{(1)}
$$

$X^{(1)}$ and $X^{(2)}=$ position vectors in TRS(1) and TRS(2)
$T_{1,2}=$ translation vector
$\lambda_{1,2}=$ scale factor
$R_{1,2}=$ rotation matrix

- Also called a Helmert, or 7-parameter, transformation:
- If translation (3 parameters), scale (1 parameter) and rotation (3 parameters) are known, then one can convert between TRSs
- If there are common points between 2 TRSs, one can solve for T, λ, R : minimum of 3 points.

3-D Similarity

- 3D similarity between TRS1, X_{1} and TRS2, X_{2} can be linearized as:

$$
X_{2}=X_{1}+T+D X_{1}+R X_{1} \quad D=\text { scale factor } \quad R=\left(\begin{array}{ccc}
0 & -R_{3} & R_{2} \\
R_{3} & 0 & -R_{1} \\
-R_{2} & R_{1} & 0
\end{array}\right) \quad T=\left(\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right)
$$

- X_{1}, X_{2}, T, D, R are generally functions of time (plate motions, Earth's deformation) $=>$ differentiation w.r.t. time gives:

$$
\dot{X}_{2}=\dot{X}_{1}+\dot{T}+\dot{D} X_{1}+D \dot{X}_{1}+\dot{R} X_{1}+R \dot{X}_{1}
$$

- D and $R \sim 10^{-5}$ and $X \operatorname{dot} \sim 10 \mathrm{~cm} / \mathrm{yr} \Rightarrow$ DXdot and RXdot negligible, $\sim 0.1 \mathrm{~mm} / 100$ years, therefore:

$$
\dot{X}_{2}=\dot{X}_{1}+\dot{T}+\dot{D} X_{1}+\dot{R} X_{1}
$$

Estimation

- The above equations can be written as:

$$
\begin{aligned}
& X_{2}=X_{1}+T+D X_{1}+R X_{1} \Leftrightarrow X_{2}=X_{1}+A \theta \\
& \dot{X}_{2}=\dot{X}_{1}+\dot{T}+\dot{D} X_{1}+\dot{R} X_{1} \Leftrightarrow \dot{X}_{2}=\dot{X}_{1}+A \dot{\theta}
\end{aligned}
$$

- with:

$$
\begin{aligned}
& \theta=\left[T_{1}, T_{2}, T_{3}, D, R_{1}, R_{2}, R_{3}\right] \\
& \dot{\theta}=\left[\dot{T}_{1}, \dot{T}_{2}, \dot{T}_{3}, \dot{D}, \dot{R}_{1}, \dot{R}_{2}, \dot{R}_{3}\right] \quad A=\left(\begin{array}{ccccccc}
. & . & . & . & . & . & . \\
1 & 0 & 0 & x & 0 & z & -y \\
0 & 1 & 0 & y & -z & 0 & x \\
0 & 0 & 1 & z & y & -x & 0 \\
. & . & . & . & . & . & .
\end{array}\right)
\end{aligned}
$$

- Assuming X_{1} and X_{2} are known, the least-squares solutions are:

$$
\begin{aligned}
& \theta=\left(A^{T} P_{x} A\right)^{-1} A^{T} P_{x}\left(X_{2}-X_{1}\right) \\
& \dot{\theta}=\left(A^{T} P_{v} A\right)^{-1} A^{T} P_{v}\left(\dot{X}_{2}-\dot{X}_{1}\right)
\end{aligned}
$$

where P_{x} and P_{v} are the weight matrix for station positions and velocities, respectively

Problem when defining a frame...

- Unknowns = positions in frame $2+7$ Helmert parameters => more unknowns than data = datum defect
- Not enough data from space geodetic observations to estimate all frame parameters
- Solution: additional information
- Tight constraints: estimated station positions/velocities are constrained to a priori values within $10^{-5} \mathrm{~m}$ and a few $\mathrm{mm} / \mathrm{yr}$.
- Loose constraints: same, with 1 m for position and $10 \mathrm{~cm} / \mathrm{yr}$ for velocities.
- Minimal constraints.

Mathematically...

- The estimation of the coordinates of a network of GPS sites is often done by solving for the linear system:

$$
A X=O b s \quad\left(\Sigma_{O b s}^{-1}\right)
$$

$A=$ linearized model design matrix (partial derivatives) between the GPS observations Obs and the parameters to estimate $X . \Sigma^{-1}$ obs is the weight matrix associated to Obs (inverse of its covariance matrix).

- Solution is:

$$
X=\left(A^{T} \Sigma_{\text {Obs }}^{-1} A\right)^{-1} A^{T} O b s
$$

- But normal matrix $N=A^{T} \Sigma_{O b s} A$ usually rank-defficient and not invertible.

Constraint equation

- To make N invertible, one usually add constraints by using a condition equation.
- E.g., forcing the coordinates of a subset of sites to tightly follow values of a given reference frame:

$$
X_{\text {cons }}=X_{o} \quad\left(\Sigma_{\text {apriori }}^{-1}\right)
$$

($\Sigma_{\text {a priori }}$ defines the constraint level, e.g. 1 cm in NE and 5 cm in U)

- The resulting equation system becomes:

$$
\binom{A}{I} X_{\text {cons }}=\binom{O b s}{X_{o}} \quad\left(\begin{array}{cc}
\Sigma_{\text {obs }}^{-1} & 0 \\
0 & \Sigma_{\text {approirt }}^{-1}
\end{array}\right)
$$

- And the solution:

$$
X_{\text {cons }}=\left(A^{T} \Sigma_{\text {Obs }}^{-1} A+\Sigma_{\text {apriori }}^{-1}\right)^{-1}\left(A^{T} \Sigma_{\text {obs }}^{-1} O b s+\Sigma_{\text {apriori }}^{-1}\right) X_{o}
$$

Constrained solution

- The covariance matrix of the constrained solution is given by:

$$
\Sigma_{\text {cons }}^{-1}=A^{T} \Sigma_{\text {obs }}^{-1} A+\Sigma_{\text {apriori }}^{-1}=\Sigma_{\text {unc }}^{-1}+\Sigma_{\text {appiori }}^{-1}
$$

- This can cause artificial deformations of the network if the constraint level is too tight, given the actual accuracy of $X_{0}=>$ errors propagate to the whole network.
- Also, the equation above modifies the variance of the result (and its structure). E.g., if constraint level very tight, the variance of estimated parameters becomes artificially small.
- To avoid these problems, constraints have to be removed from individual solutions before they can be combined: suboptimal
- Better solution = minimal constraints.

Minimal constraints

- Same basic idea, use a condition equation to the system: impose the estimated coordinates to be expressed in the same frame as a subset of reference sites.
- But instead of tightly constraining a subset of sites to a priori positions, impose that their positions are expressed in a known frame through a similarity transformation (see previous slides):

$$
X=X_{o}+T+D X_{o}+R X_{o} \Leftrightarrow X=X_{o}+E \theta
$$

- Least squares solution is:

$$
\theta=\left(E^{T} \Sigma_{X}^{-1} E\right)^{-1} E^{T} \Sigma_{X}^{-1}\left(X-X_{o}\right)
$$

- "Estimated positions expressed in the same frame as the reference frame chosen" \Leftrightarrow transformation parameters between the 2 frames is zero, i.e. $\theta=$ 0 . Therefore:

$$
B\left(X-X_{o}\right)=0 \quad\left(\Sigma_{\theta}^{-1}\right) \quad B=\left(E^{T} \Sigma_{X}^{-1} E\right)^{-1} E^{T} \Sigma_{X}^{-1}
$$

Minimal constraints

- Resulting equation system (with the condition equation) becomes:

$$
\binom{A}{B} X_{m c}=\binom{O b s}{B X_{o}} \quad\left(\begin{array}{cc}
\Sigma_{o b s}^{-1} & 0 \\
0 & \Sigma_{\theta}^{-1}
\end{array}\right)
$$

- Solution is:
- With covariance: $\Sigma_{m c}^{-1}=A^{T} \Sigma_{o b s}^{-1} A+B^{T} \Sigma_{\theta}^{-1} B=\Sigma_{\text {unc }}^{-1}+B^{T} \Sigma_{\theta}^{-1} B$
- Covariance: reflects data noise + reference frame effect (via B)
- Minimal constraints = algebraic expression on the covariance matrix that the reference frame implementation is performed through a similarity transformation.

The combination model

- For each site i in solution s ($s=$ regional or global for instance), simultaneously estimate position $X_{\text {comb }}^{i}$ at epoch t_{0} (epoch of the combination), velocity $X_{c o m b}{ }^{\text {b }}$, and a 14-parameter transformation between the individual and the combined solution using:

$$
\begin{aligned}
& X_{s}^{i}=X_{c o m b}^{i}+\left(t_{c o m b}-t_{s}\right) \hat{X}_{c o m b}^{i} \\
& +T_{k}+D_{k} X_{c o m b}^{i}+R_{k} X_{c o m b}^{i} \\
& +\left(t_{c o m b}-t_{s}\right)\left[\widehat{T}_{k}+\widehat{D}_{k} X_{c o m b}^{i}+\widehat{R}_{k} X_{c o m b}^{i}\right]
\end{aligned}
$$

$X_{s}{ }_{s}=$ position of site i in solution s at epoch t_{s}
$X_{\text {comb }}^{i}=$ estimated position of site i at epoch $t_{\text {comb }}$ $X_{\text {comb }}^{i}=$ estimated velocity in the combination
T_{k}, D_{k}, R_{k} and $\left\{T_{k}, D_{k}, R_{k}\right\}$ hat = transformation parameters between individual solutions s and the combined solution and their time derivatives.

- Combination = solve for one $T_{k}, D_{k}, R_{k},\left\{T_{k}, D_{k}, R_{k}\right\}$ hat per solution and one $X_{\text {comb }}^{i}$ per site.

In practice

- Constrained solution can be done in globk (or glred) by tightly constraining some sites (+ orbits) to a priori positions: ok for small networks (= local solution)
- Minimally constrained solution computed in a 2-step manner:
- Combine regional + global solutions in globk:
- Globk reads each solution sequentially and combines it to the previous one
- Loose constraints applied to all estimated parameters
- Chi2 change should be small is data consistent with model from previous slide
- Output = loosely constrained solution
- Compute minimally constrained solution in glorg:
- Matrix A comes from globk
- Minimal constraints matrix B formed using sites that define frame
- Choice of reference sites:
- Global distribution
- Position and velocity precise and accurate
- Error on their position/velocity and correlations well known

The international Terrestrial Reference System: ITRS

- Definition adopted by the IUGG and IAG: see http://tai.bipm.org/ iers/conv2003/conv2003.html
- Tri-dimensional orthogonal (X,Y,Z), equatorial (Z-axis coincides with Earth's rotation axis)
- Non-rotating (actually, rotates with the Earth)
- Geocentric: origin = Earth's center of mass, including oceans and atmosphere.
- Units = meter and second S.I.
- Orientation given by BIH at 1984.0.
- Time evolution of the orientation ensured by imposing a no-netrotation condition for horizontal motions.

The no-net-rotation (NNR) condition

- Objective:
- Representing velocities without referring to a particular plate.
- Solve a datum defect problem: ex. of 2 plates $\Rightarrow 1$ relative velocity to solve for 2 "absolute" velocities... (what about 3 plates?)
- The no-net-rotation condition states that the total angular momentum of all tectonic plates should be zero.
- See figure for the simple (and theoretical) case of 2 plates on a circle.

- The NNR condition has no impact on relative plate velocities.
- It is an additional condition used to define a reference for plate motions that is not attached to any particular plate.

$$
\begin{aligned}
L_{A} & =\int_{A} \vec{R} \times \vec{V}_{A / N N R} d m \\
L_{B} & =\int_{B} \vec{R} \times \vec{V}_{B / N N R} d m
\end{aligned}
$$

$$
\sum L=0 \Rightarrow \vec{V}_{A / N N R}=\vec{V}_{B / N N R}=\frac{\vec{V}_{B / A}}{2}
$$

The Tisserand reference system

- "Mean" coordinate system in which deformations of the Earth do not contribute to the global angular momentum (important in Earth rotation theory)

- One can show that the Tisserand condition is equivalent to:

$$
\left\{\begin{array}{ccl}
\int_{E} \vec{v} & d m=\overrightarrow{0} & \text { No translation condition } \\
\int_{E} \vec{v} \times \vec{r} & d m=\overrightarrow{0} & \text { No rotation condition }
\end{array}\right.
$$

The Tisserand reference system

$$
\left\{\begin{array}{ccl}
\int_{E} \vec{v} & d m=\overrightarrow{0} & \text { No translation condition } \\
\int_{E}^{\vec{v}} \times \vec{r} & d m=\overrightarrow{0} & \text { No rotation condition }
\end{array}\right.
$$

- The system of axis defined by the above conditions is called "Tisserand system".
- Integration domain:
- Should be entire Earth volume
- But velocities at surface only => integration over surface only
- With hypothesis of spherical Earth + uniform density, volume integral becomes a surface integral

The NNR reference system

- The Tisserand no-rotation condition is also called "no-net-rotation" condition (NNR).
- For a spherical Earth of unit radius and uniform density, the NNR conditions writes:

$$
\int_{S} \vec{r} \times \vec{v} d A=\overrightarrow{0}
$$

- The integral can be broken into a sum to account for discrete plates:

$$
\int_{S} \vec{r} \times \vec{v} d A=\sum_{P} \int_{P} \vec{r} \times \vec{v} d A
$$

- With, for a given plate: $L_{P}=\int_{P} \vec{r} \times \vec{v} d A$

The NNR reference system

- Assuming rigid plates, velocity at point M (position vector r in NNR) on plate P is given by:

$$
\vec{v}(\vec{r})=\vec{\omega}_{P} \times \vec{r} \quad \Rightarrow L_{P}=\int_{P} \vec{r} \times\left(\vec{\omega}_{P} \times \vec{r}\right) d A
$$

- Developing the vector product with the triple product expansion gives:

$$
L_{P}=\int_{P}\left((\vec{r} \cdot \vec{r}) \vec{\omega}_{P}-\left(\vec{r} \vec{\omega}_{P}\right) \vec{r}\right) d A=\int_{P}(\vec{r} \cdot \vec{r}) \vec{\omega}_{P} d A-\int_{P}\left(\vec{r} \cdot \vec{\omega}_{P}\right) \vec{r} d A
$$

- Assuming a spherical Earth of unit radius ($r=1$), the first term introduces the plate area A_{p} :

$$
\int_{P}(\vec{r} \cdot \vec{r}) \vec{\omega}_{P} d A=r^{2} \vec{\omega}_{P} \int_{P} d A=\vec{\omega}_{P} A_{P}
$$

- Dealing with the second term is a bit more involved, see next.

The NNR reference system

$$
\begin{array}{ll}
\left(\vec{r} \vec{\omega}_{P}\right) \vec{r}=\left(x_{1} \omega_{1}+x_{2} \omega_{2}+x_{3} \omega_{3}\right) \vec{r} \\
=\left[\begin{array}{ll}
x_{1}^{2} \omega_{1}+x_{1} x_{2} \omega_{2}+x_{1} x_{3} \omega_{3} \\
x_{1} x_{2} \omega_{1}+x_{2}^{2} \omega_{2}+x_{2} x_{3} \omega_{3} \\
x_{1} x_{3} \omega_{1}+x_{2} x_{3} \omega_{2}+x_{3}^{2} \omega_{3}
\end{array}\right] & \text { Therefore: } \\
=\left[\begin{array}{ccc}
x_{1}^{2} & x_{1} x_{2} & x_{1} x_{3} \\
x_{1} x_{2} & x_{2}^{2} & x_{2} x_{3} \\
x_{1} x_{3} & x_{2} x_{3} & x_{3}^{2}
\end{array}\right]\left[\begin{array}{c}
\omega_{1} \\
\left.\omega_{P}\right) \vec{r} d A= \\
\omega_{2} \\
\omega_{3}
\end{array}\right] & {\left[\begin{array}{ccc}
\int x_{1}^{2} & \int x_{1} x_{2} & \int x_{1} x_{3} \\
\int x_{1} x_{2} & \int x_{2}^{2} & \int x_{2} x_{3} \\
\int x_{1} x_{3} & \int x_{2} x_{3} & \int x_{3}^{2}
\end{array}\right] \vec{\omega}_{P} \cdot d A}
\end{array}
$$

We introduce a 3×3 symmetric matrix S_{p} with elements defined by: $\quad S_{P i j}=\int_{P}\left(x_{i} x_{j}\right) d A$
Therefore the integral becomes: $\int_{P}\left(\vec{r} \cdot \vec{\omega}_{P}\right) \vec{r} d A=S_{P} \vec{\omega}_{P}$

The NNR reference system

- Finally: $L_{P}=\int_{P}(\vec{r} \cdot \vec{r}) \vec{\omega}_{P} d A-\int_{P}\left(\vec{r} \cdot \vec{\omega}_{P}\right) \vec{r} d A$
- Reduces to:

$$
\begin{aligned}
& L_{P}=\vec{\omega}_{P} A_{P}-S_{P} \vec{\omega}_{P} \\
& =\left(A_{p} I-S_{p}\right) \vec{\omega}_{P} \\
& =Q_{P} \vec{\omega}_{P}
\end{aligned}
$$

- With: $Q_{P}=A_{P} I-S_{P}$
- Q_{p} is a 3×3 matrix that only depends on the plate geometry, with its components defined by:

$$
Q_{P i j}=\int_{P}\left(\delta_{i j}-x_{i} x_{j}\right) d A \quad \text { Kronecker delta: } \delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

The NNR reference system

- The non-rotation condition: $\int_{S} \vec{r} \times \vec{v} d A=\sum_{P} \int_{P} \vec{r} \times \vec{v} d A=\overrightarrow{0}$
- Becomes: $\sum_{P} Q_{P} \vec{\omega}_{P}=\overrightarrow{0}$
- Now, observations are relative plate motions, for instance plate P w.r.t. Pacific plate. Angular velocities are additive, one can then write:

$$
\vec{\omega}_{P / N N R}=\vec{\omega}_{P / \text { Pacific }}+\vec{\omega}_{\text {Pacific } / N N R}
$$

- Therefore:

$$
\begin{aligned}
& \sum_{P} Q_{P}\left(\vec{\omega}_{P / \text { Pacific }}+\vec{\omega}_{\text {Pacific/ NNR }}\right)=\overrightarrow{0} \\
& \Rightarrow \sum_{P} Q_{P} \vec{\omega}_{P / \text { Pacific }}+\sum_{P} Q_{P} \vec{\omega}_{\text {Pacific } / N N R}=\overrightarrow{0} \\
& \Rightarrow \sum_{P} Q_{P} \vec{\omega}_{P / \text { Pacific }}+\frac{8 \pi}{3} I \vec{\omega}_{\text {Pacific } / N N R}=\overrightarrow{0}
\end{aligned}
$$

(because on a unit radius sphere: $\sum_{P} Q_{P}=\frac{8 \pi}{3} I$)

The NNR reference system

- Finally, the angular velocity of the Pacific plate w.r.t. NNR can be calculated using:

$$
\vec{\omega}_{P a c i f c / N N R}=-\frac{3}{8 \pi} \sum_{P} Q_{P} \vec{\omega}_{P / \text { Pacific }} \quad \text { with } \quad Q_{P}=\int_{P}\left(\delta_{i j}-x_{i} x_{j}\right) d A
$$

$\left(\omega_{p / \text { Pacific }}\right.$ are known from a relative plate model, Q_{p} are 3×3 matrices computed for each plate from its geometry: δ is Kronecker delta, x is a position vector, A is the plate area)

- Once the angular velocity of the Pacific plate in NNR is found, the angular velocity of any plate P can be computed using:

$$
\vec{\omega}_{P / N N R}=\vec{\omega}_{P / \text { Pacific }}+\vec{\omega}_{\text {Pacific } / N N R}
$$

- This method is the one used to compute the NNR-NUVEL1A model (Argus and Gordon, 1991).

The no-net-rotation (NNR) condition

- "Mean" coordinate system in which deformations of the Earth do not contribute to the global angular momentum => used as a constraint to solve datum defect problem, but has a "dynamic" origin.
- First proposed by Lliboutry (1977) as an approximation of a reference frame where moment of forces acting on lower mantle is zero, which implies:
- Rigid lower mantle
- Uniform thickness lithosphere
- No lateral viscosity variations in upper mantle
\Rightarrow NNR is a frame in which the internal dynamics of the mantle is null.
- These conditions are not realistic geophysically, in particular because of slabs in upper and lower mantle, that contribute greatly to driving plate motions (Lithgow-Bertelloni and Richards, 1995)
- But that's ok, as long as NNR is simply used as a conventional reference.

The international Terrestrial Reference Frame: ITRF

- Positions (at a given epoch) and velocities of a set of geodetic sites (+ associated covariance information) $=$ dynamic datum
- Positions and velocities estimated by combining independent geodetic solutions and techniques.
- Combination:
- "Randomizes" systematic errors associated with each individual solutions
- Provides a way of detecting blunders in individual solutions
- Accuracy is equally important as precision

- 1984: VLBI, SLR, LLR, Transit
- 1988: TRF activity becomes part of the IERS => first ITRF = ITRF88
- Since then: ITRF89, ITRF90, ITRF92, ITRF93, ITRF94, ITRF96, ITRF97, ITRF2000
- Current = ITRF2005:
- Up to 25 years of data
- GPS sites defining the ITRF are all IGS sites
- Wrms on velocities in the combination: $1 \mathrm{~mm} / \mathrm{yr}$ VLBI, $1-3 \mathrm{~mm} / \mathrm{yr}$ SLR and GPS
- Solutions used: 3 VLBI, 1 LLR, 7 SLR, 6 GPS, 2 DORIS
- ITRF improves as:
- Number of sites with long time series increases
- New techniques appear
- Estimation procedures are improved

The international Terrestrial Reference Frame: ITRF

- Apply minimum constraints equally to all loosely constrained solutions: this is the case of SLR and DORIS solutions
- Apply No-Net-Translation and No-NetRotation condition to IVS solutions provided under the form of Normal Equation
- Use as they are minimally constrained solutions: this is the case of IGS weekly solutions
- Form per-technique combinations (TRF + EOP), by rigorously staking the time series, solving for station positions, velocities, EOPs and 7 transformation parameters for each weekly (daily in case of VLBI) solution w.r.t the per-technique cumulative solution.
- Identify and reject/de-weight outliers and properly handle discontinuities using piecewise approach.
- Combine if necessary cumulative solutions of a given technique into a unique solution: this is the case of the two DORIS solutions.
- Combine the per-technique combinations adding local ties in co-location sites.

ITRF2005 Derivation

The international Terrestrial Reference Frame: ITRF

- Origin: The ITRF2005 origin is defined in such a way that there are null translation parameters at epoch 2000.0 and null translation rates between the ITRF2005 and the ILRS SLR time series.
- Scale: The ITRF2005 scale is defined in such a way that there are null scale factor at epoch 2000.0 and null scale rate between the ITRF2005 and IVS VLBI time series.
- Orientation: The ITRF2005 orientation is defined in such a way that there are null rotation parameters at epoch 2000.0 and null rotation rates between the ITRF2005 and ITRF2000. These two conditions are applied over a core network.

ITRF in practice

- Multi-technique combination.
- Origin $=$ SLR, scale $=$ VLBI, orientation $=$ all.
- Position/velocity solution.
- Velocities expressed in no-net-rotation frame:
- ITRF2000: minimize global rotation w.r.t. NNR-NUVEL1A using 50 high-quality sites far from plate boundaries
- Subtlety: ITRF does not exactly fulfill a NNR condition because Nuvel1A is biased...
- Provided as tables (position, velocities, uncertainties)
- Full description provided as SINEX file (Solution Indepent Exchange format): ancillary information + vector of unknowns + full variance-covariance matrix (i.e. with correlations).

ITRF in practice

ITRF2005 STATION POSITIONS AT EPOCH 2000.0 AND VELOCITIES

 GPS STATIONS

ITRF in practice

Summary

- Geodetic observations face datum defect problem => need for a reference frame.
- ITRF (currently 2005) = multitechnique combination, provides positions + velocities at reference sites:
- Include some of these sites in processing to tie a regional solution to ITRF.
- Combine regional solution with global solutions - better.
- Reference frame can be implemented by:
- Constraining positions/velocities of a subset of sites to a priori values
- Using minimal constraints - better.
- When using ITRF, velocities are expressed in a no-net-rotation frame (derived from Tisserand system) => frame independent from any plate.

