Modelos de fuente sismica finita

Modelo de falla circular

Modele de Haskell

Nacimiento de la dinamica de la fuente

A principios de los años 1970 :

- Aki (1967) Scaling law of earthquake spectra
- Kostrov (1964, 1966) Circular crack, 2D crack, Energy
- Brune (1970) Circular crack body wave spectrum
- Madariaga (1976) put together all this.

2 Parametros: Mo R

No definen la velocidad de ruptura

Ley de escalamiento de Aki

Ley de escala de los terremotos

$$\log_{10} M_0(Nm) = 1.5M_w + 9.3$$

Magnitude (M _w)	Moment (Nm)	Longueur (km)	Durée (s)	Glissement (m)
10	10 ²⁴	1000?	300?	100?
9	3.10 ²²	300	100	30
8	10 ²¹	100	30	10
7	3.1019	30	10	3
6	10 ¹⁸	10	3	1

Slip of a circular crack

$$D(r) = \frac{24}{7\pi} \frac{\Delta\sigma}{\mu} \sqrt{R^2 - r^2}$$

Average slip

$$\overline{D} = \frac{16}{7\pi} \frac{\Delta\sigma}{\mu} R$$

Modelo de ruptura sismica circular (3D)

Modelo de fisura circular estática

Deslizamiento
$$D(r) = \frac{24}{7\pi} \frac{\Delta\sigma}{\mu} \sqrt{R^2 - r^2}$$

Deslizamiento medio

$$\overline{D} = \frac{16}{7\pi} \frac{\Delta \sigma}{\mu} R$$

Momento sísmico

$$M_0 = \frac{16}{7} \Delta \sigma R^3$$

Energia de deformacion

$$\Delta W = \frac{8}{7} \frac{\varDelta \sigma^2}{\mu} R^3$$

Fundamentals of earthquake scaling Surface $M_0 = \Delta \sigma R^3$ R R_0 $\Delta\sigma R^2$ Signal R_0^2 Mo t R \mathbb{R}^2 Spectrum R³ R_{0}^{3} **R**⁻¹ R_0^{-1}

Fundamentals of earthquake scaling Surface R R^2 R Velocity Displacement Signal Signal R Acceleration Signal \mathbb{R}^2 Spectrum R³

R⁻¹

Modelo de escalamiento de la fuente

Deslizamiento medio $\overline{D} = \frac{16}{7\pi} \frac{\Delta \sigma}{\mu} R$

Momento sísmico

$$M_0 = \frac{16}{7} \varDelta \sigma R^3$$

Frecuencia esquina

$$f_c = 0.37 \frac{\beta}{R}$$

Momento vs. frecuencia

$$M_0 \propto f_c^{-3}$$

Escalamiento de momento y corner frequency

Frecuencia f

Modern test of earthquake scaling law

Prieto, Shearer and Vernon, JGR, 2004

Spectral analysis of California earthquakes

Modern tests of earthquake scaling law

Test by Prieto et al JGR, 2004

$$f_p / f_s = 1.6$$

Circular crack model

 $f_p / f_s = 1.7$

(Madariaga, 76)

The Tocopilla Earthquake of 21 November 2007

In red PBO stations used for this study

The Tocopilla earthquake sequence in Northern Chile

Spectral stack of a set Tocopilla aftershocks

From Lancieri et al (GJI 2012)

Accelerograms of the main Tocopilla earthquake

Espectro de desplazamiento del Terremoto de Tocopilla de 2007 observado en 4 estaciones de la red PBO

From Lancieri et al (GJI 2012) and Peyrat et al (GJI 2010)

How to model an earthquake: Maule 27 Febrero 2010

Central Chile Seismicity since 1906

Central Chile

Mw>7.8

From Campos et al, 2002

Preseismic deformation from GPS

 We would then conclude that the southern part of the Concepción– Constitución
gap has accumulated a slip deficit that is large enough to produce a very large earthquake of about Mw= 8.0– 8.5. »

This is of course a worst case scenario that needs to be refined by additional work.

(Campos, Ruegg, Vigny, R.M. et al, 2002, 2003, 2009)

Ground displacement from GPS stations for the Maule earthquake of 2010

Static GPS observation of the Maule 2010 earthquake

Rupture zone 400 km

Vigny et al, Science, 2011

Moreno et al, EPSL, 2012

Vertical displacements measured by GPS

Hinge line

Color diamonds Vertical displacement of biological markers

(Farias et al, 2010)

From Vigny et al, 2011

Inversion of Geodetic slip distribution

Modelling the near field GPS data for the Mw 8.8 Maule 2010 earthquake

From Vigny et al Science (2011)

Maule 2010: geodetic versus Far field BW inversion

Slip inverted from GPS

Slip Inverted from Far field body waves

Moreno et al (EPSL, 2012)

Pro, Buforn, Madariaga (EGU 2013)

Maule 2010: Far field Body wave inversion

10

Ground velocity inversion from cGPS Uses AXITRA for synthetics

Ruiz Mada Ragiz et alb Earthquake Spectra, 2012

Postseismic deformation after Maule

Horizontal cumulated displacement (cm) over 4 years : between M 8.8 Maule Earthquake and 2014.

Use of stacking and backprojection for modelling High frequency features

Low and High Frequency features of Maule 2010 Uses Backprojection

Use of seismic antennaes for stacking

Use of a seismic receiver antenna

Example of Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

From SPUD in IRIS Data Center

http://ds.iris.edu/spudservice/data/1586357

Ruiz et al, EPSL 2013

Example of Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

Example of Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

Far field body wave modellig

SH

Example of Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

Observed and synthetic interferogram

Available data from the IRIS data center Wilber III application

Red US array

25 Marzo 2012 Constitucion EQ

Displacement record « section »

Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

Traces were aligned by Cross correlation

Displacement record « section »

madariag /home/madariag/Chile/obspyDMT_2016_Cours/Data_M001leg6/2012-03-25_2012-03-26/20120325_1/BH_FMW//de55121:39:17 2016

Displacement record « filter » AAM (Michigan)

Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

madariag /home/madariag/Chile/obspyDMT_2016_Cours/Data_Mauleg6/2012-03-25_2012-03-26/20120325_1/BH_S04W//de50102:29:24 2016

Velocity record « section »

Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

5 velocity seismograms of the US array

Ρ sP

Michigan

madariag /home/madariag/Chile/obspyDMT_2016_Cours/Data_iddulice§\$/2012-03-25_2012-03-26/20120325_1/BH_H7MU/de\$50121:58:09 2016

Velocity record « filter » AAM (Michigan)

Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

Maule aftershock Mw 7.1 of 25/3/2012 near Constitucion

Sum the stack at different points on the source area

This is a constant latitude (-35.1) section

Use of a receiver antenna

Example of Maule aftershock Mw 6.7 of 14/2/2011 near Constitucion

z 2011/02/14 03:40 M6.7 Z=17km

Example of stack at different frequencies

Time relative to origin (sec)

Example of Maule aftershock Mw 6.7 of 14/2/2011 near Constitucion

Example of Maule aftershock Mw 6.7 of 14/2/2011 near Constitucion

ongitude [degrees]

2nd order (energy) stack

Back Projection: results

US Array 0.3-1 Hz

POLENET Array 0.3-1 Hz

Teleseismic Kinematic Inversion and Back Projection

