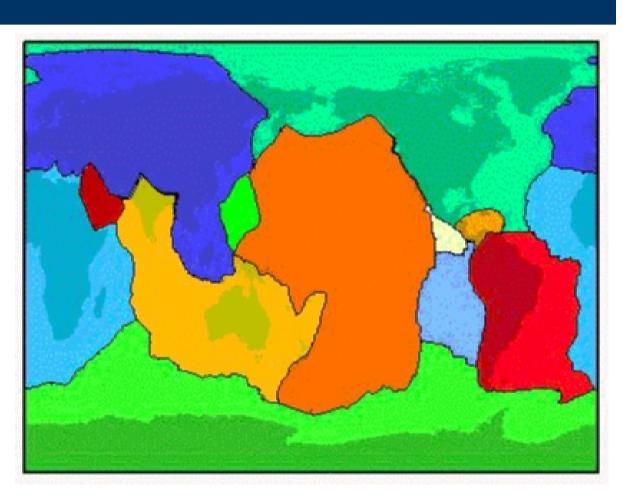

RIGID PLATE TECTONICS


- Plate definition
- Plate motion : Euler pole
- Geological model : Nuvel-1A
- Geodetic model : ITRF
- Rigid plate rotations
- Plate deformation : strain and rotation tensors

World seismicity

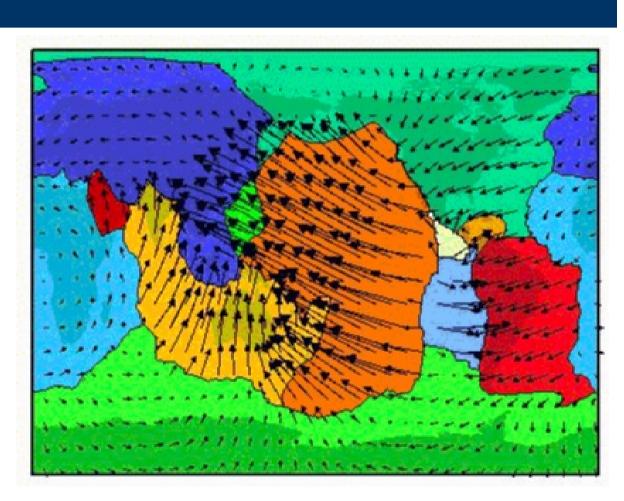

The Earth surface is cut by seismic « lines », separting quite areas, i.e. plates.

Plate geometry

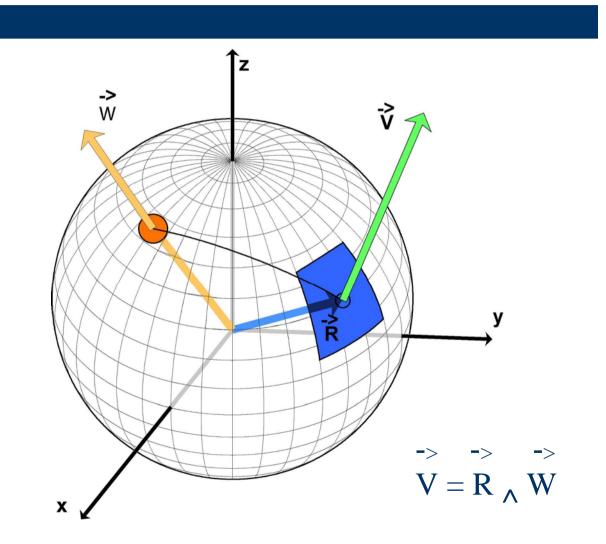
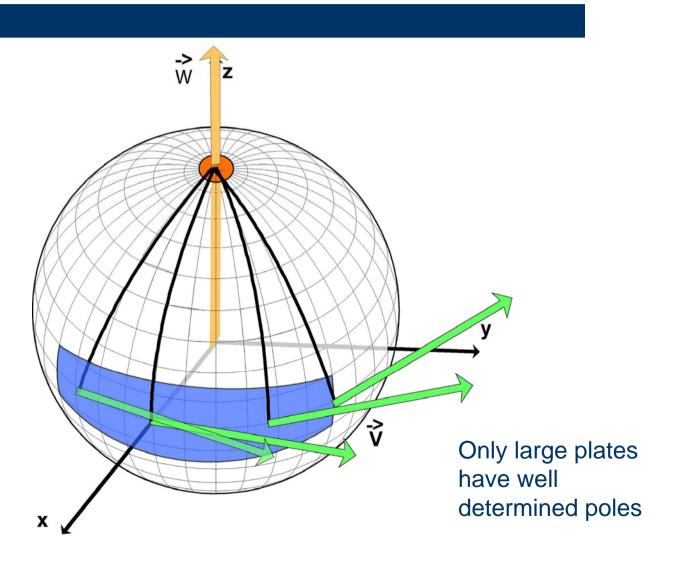
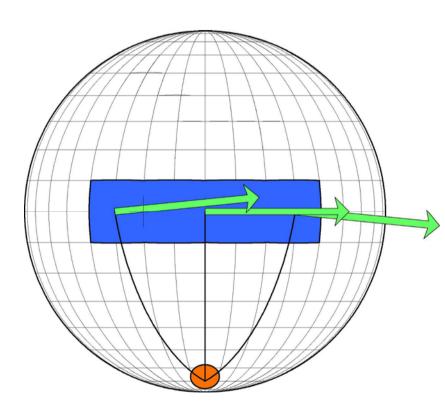

There are 12 main plates

Plate motion

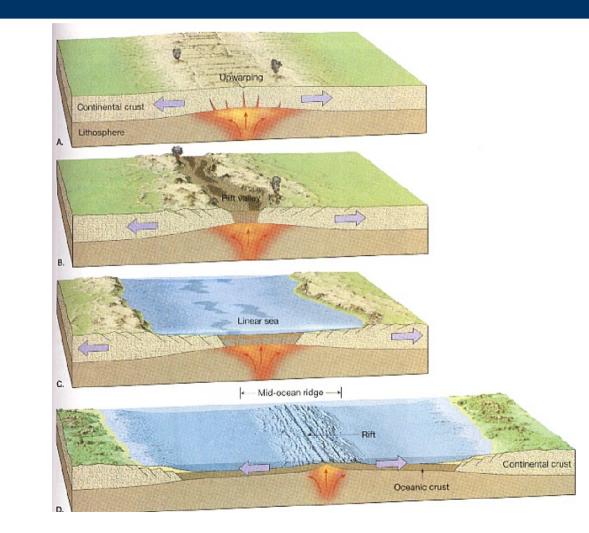


Plates move : it is plate tectonics

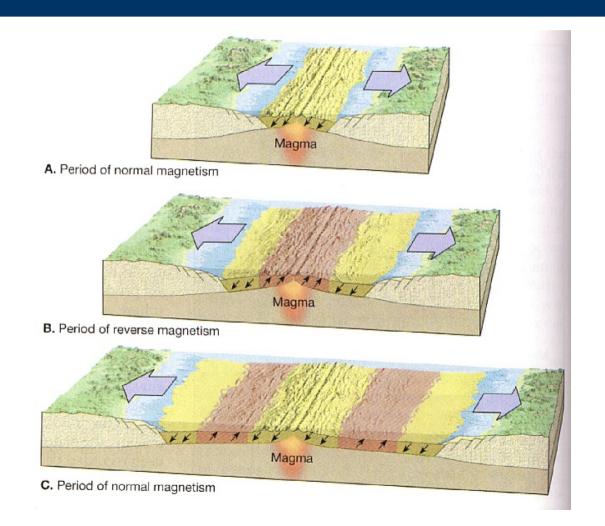

Rotation on a sphere

Finding a pole

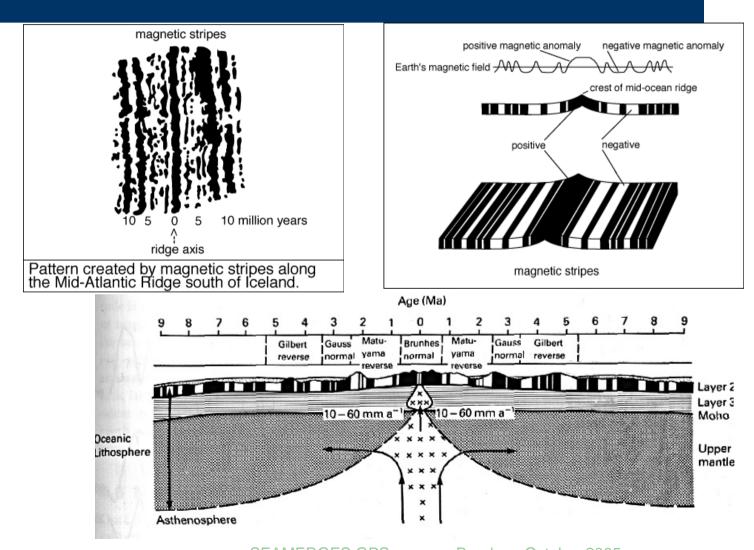
Effect of velocity uncertainty

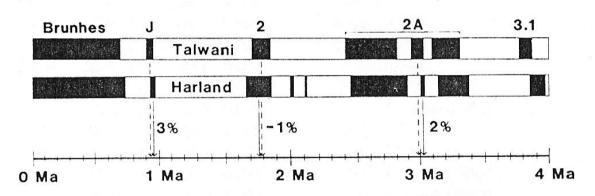

Slightely different velocities can give very different poles

Or reverse :

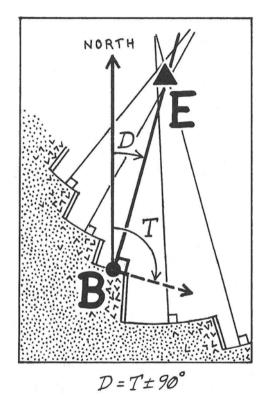

Very different poles can give quite similar velocities

Pole positions don't matter. only velocities do !!!!

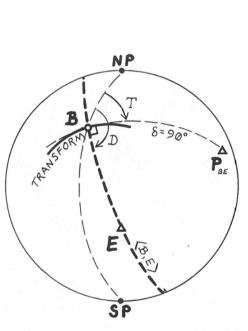

Geological model : how it works Rates : continental drifting


Geological model : how it works Rates : generation of oceanic crust and sea floor magnetic anomalies

Geological model : how it works Rates : Vine and Matthews hypothesis



Geological model : how it works Rates : unecrtainties from magnetic time scale


Figure 1. Comparison since 4.0 Ma of the geomagnetic reversal time-scale used here (Harland *et al.* 1982) with the time-scale used by Chase (1978) and Minster & Jordan (1978) (Talwani *et al.* 1971). We determined rates by seeking the best fit to the centre of anomaly 2A, which is 2 per cent older in the Harland *et al.* time-scale than in the Talwani *et al.* time-scale.

Geological model : how it works directions

Figure 4-1.

Locating an Euler pole \mathbf{E} from the trends T of transforms. Lines nearly intersecting at \mathbf{E} are great circles perpendicular to the transforms.

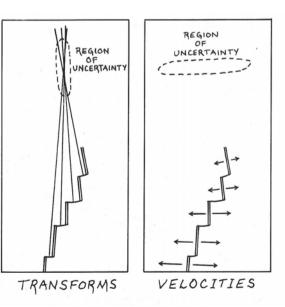


Figure 4-2.

Euler pole **E** is on the great circle perpendicular to the trend of the transform. \mathbf{P}_{BE} is the pole of the great circle $\langle \mathbf{B}, \mathbf{E} \rangle$.

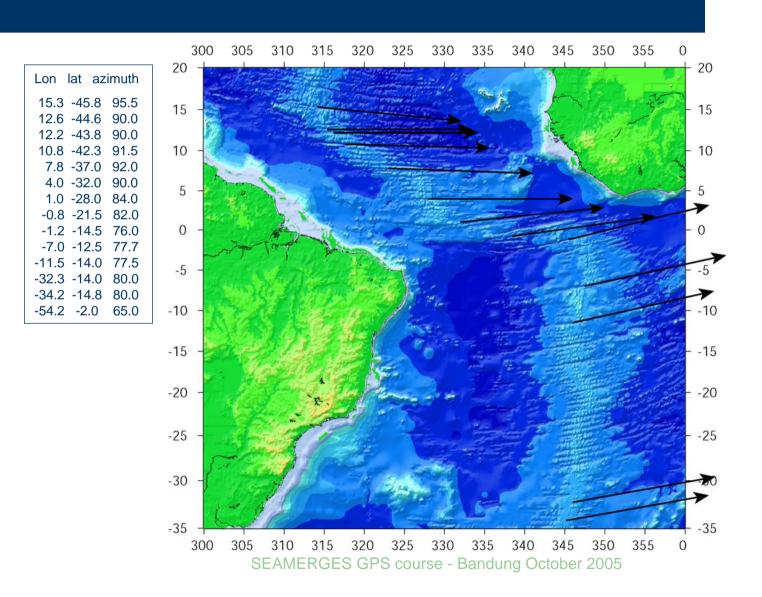
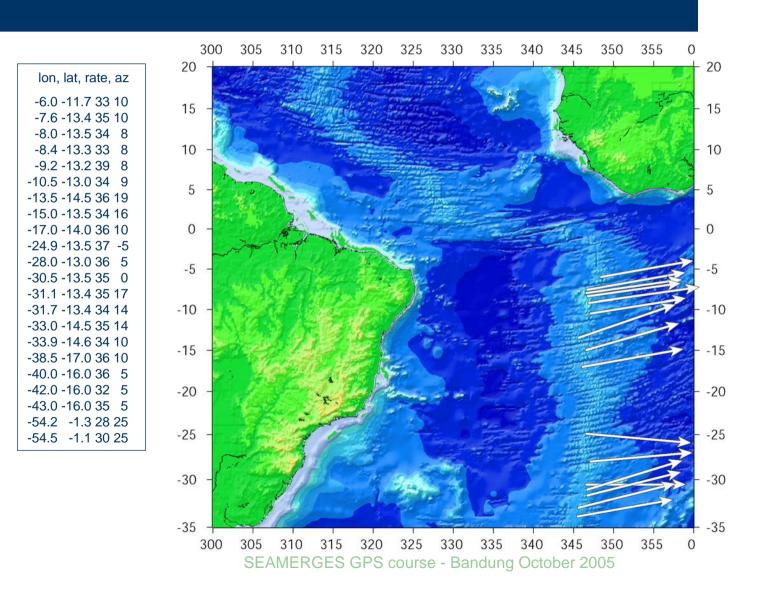


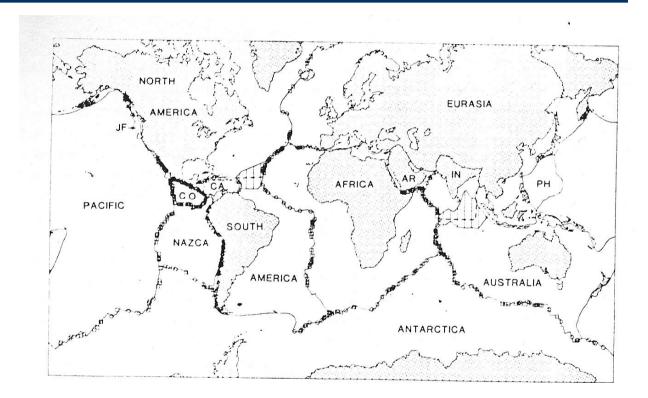
Figure 4-3. Apparent and true trends of transform system offset by short ridge segments.



SEAMERGES GPS course - Bandung (

Geological model : real data Transform faults azimuths

Geological model : real data Spreading rates

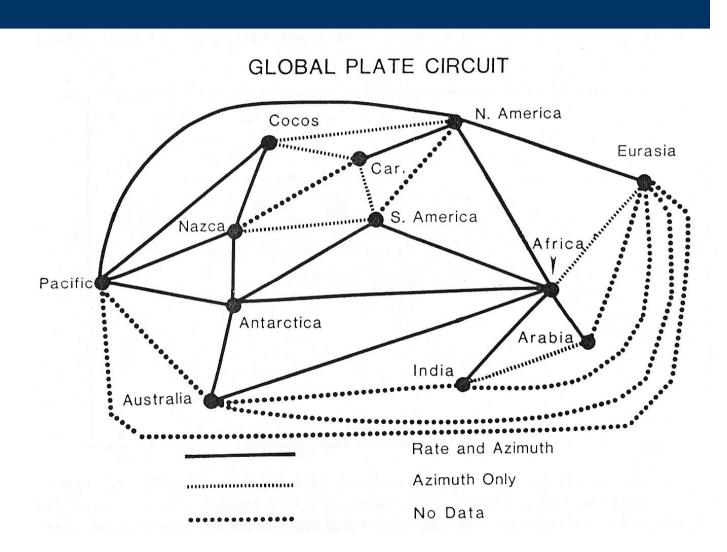


Geological model : real data Slip vector azimuths

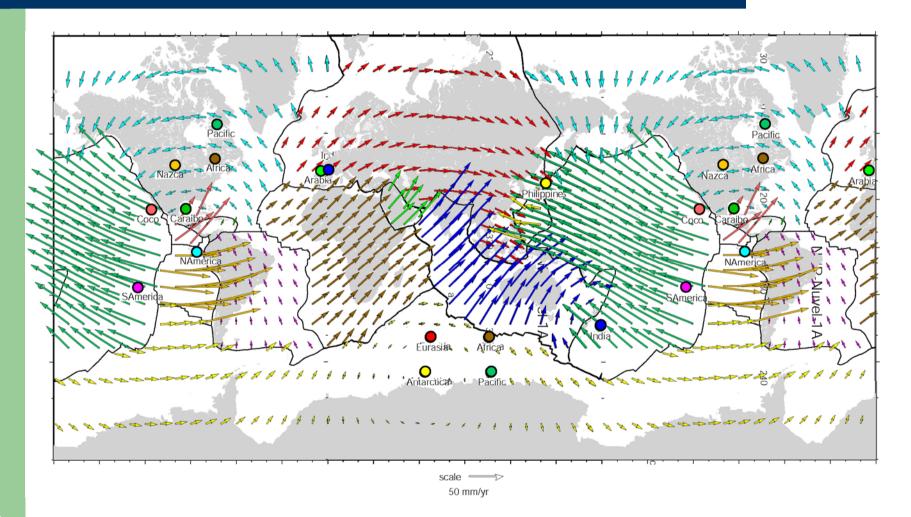
		300	305	310	315	320	325	330	335	340	345	350	355	0
Lon lat azimut	Lon lat azimut	20 -	A to					and f	Elm					20
12.8 -44.6 95.0 10.8 -43.4 90.0	-0.5 -19.9 80.0 -0.1 -18.8 79.0	15 -			Poles				and the second		to	17 17 m	- Est	- 15
10.8 -42.2 96.0	-0.0 -17.9 83.0	2		10				E. S.				211		
8.8 - 39.9 92.0	-1.5 -15.6 76.0	10 -	and a		See 1			Arton Store	19-17		-	74 		- 10
8.1 -38.8 93.0	-1.2 -14.5 79.0								2			199	1	1
8.1 -38.5 89.0	-1.1 -14.0 77.0	5 -	Jun				50		24	Cal.		1	1	- 5
8.0 - 38.4 95.0	-1.0 -13.5 76.0	J 🛃	12.	7-11		and and	1000	H.	E.		1			
7.4 -36.1 88.0	-1.5 -12.7 75.0		1.1	2	123	a de								
7.1 -34.9 80.0	-6.8 -11.6 75.0	0 -	24	A	- CUL	1.	1	60	Y				2	
7.1 -34.0 89.0 7.1 -33.8 94.0	-6.9 -12.6 68.0 -7.1 -12.6 71.0	~	and a	1a.	1 the	The second second	in a				Clar			T
0.7 -30.4 84.0	-11.7 -13.6 70.0	-5 -		1	1 Contraction	48	1-1			5 6	CE I			5
0.9 -29.9 83.0	-32.2 -13.4 73.0	55	120.534	2.23	See.	-		1		Harry C	5		all of	
0.8 - 29.8 88.0	-35.8 -16.0 76.0	-10 -			1	10		- Art		Contract P			1.00	10
0.8 - 29.7 87.0	-35.5 -16.1 81.0		1823	5 A3	100	16	1 2			- the	-		Sint	
0.1 -29.6 80.0	-47.6 -12.9 76.0	-15 -	a la	5 7	1	251	(Ce	1000	-	Eugen				15
0.9 -28.4 88.0	-46.9 -10.8 85.0	-15 7	1.1	Frit				•	-	15			50 g	T5
0.9 -28.1 82.0		÷.	- 41	36-1		16 A	and a		-		2 the state	the state	200	12
1.1 -27.7 85.0		-20 -	10	3	N.		in	-		6 5 4		17 - 7		20
0.9 -27.1 85.0				an di g	2		1		CE	1 2	6 =		1	
0.9 -27.1 82.0 0.9 -26.8 85.0		-25 -	12	Ser.	The second second	A Start	2		Contraction of the second	4				25
0.8 -26.8 81.0		20	1	See.	1	- 27		1	-	72				20
0.7 -26.1 88.0		5.	18	1915			1 2	- mart		-5	10		P	7
0.1 -25.3 84.0		-30 -	19.4	- 70		79	Jan	1				-		30
-1.2 -24.7 87.0		2.5	1 - A	11		-	1	2	2	-	6		-	
-1.0 -23.5 87.0		25	- A	1		1 4		Aler.					15	205
-1.0 -21.9 81.0		-35 -	305	310	315	320	325	330	335	340	345	350	355	
J											545	350	300	0
	SEA	AMERGE	ES GP	S cou	rse - I	Bandu	ing O	ctobe	2005	5				

Geological model : Nuvel-1A, Demets et al., 1990

Current plate motions, Geophys. Journal. Int., 101, 425-478, 1990

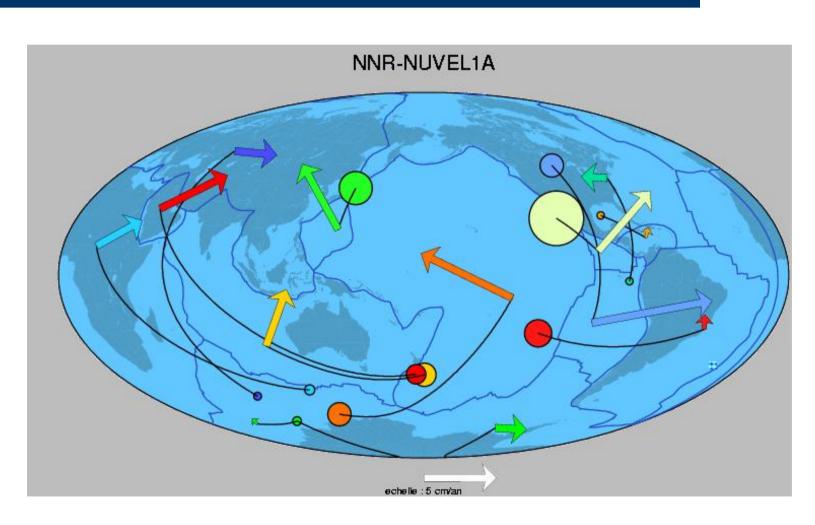

Around 1200 slip vector azimuth, transform fault orientations and spreading rates are compiled in one model for plate motion

Geological model : data table

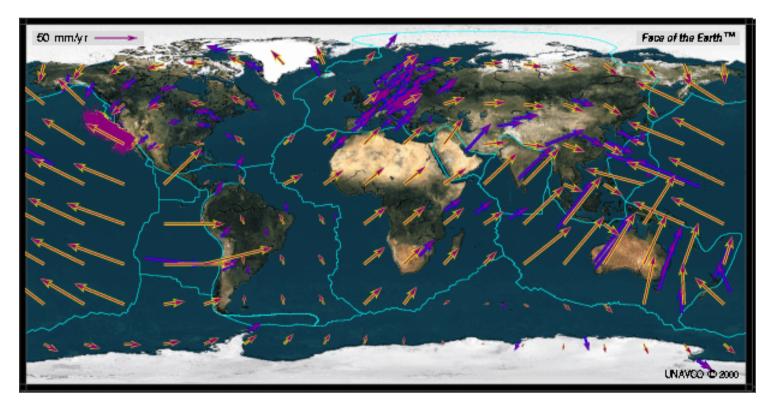

Table	3. (con	(inued)													
	.44.50	26	4	24.5	0.022	n16e	Rabinowitz & Schouten (1985)	4.00	-32	00.5	90.0	5	86.0	0.016	Emery & Uchupi (1984)
	-44,80	22	3		0.037		McGregor et al. (1977)	1.00	-28	00.8	84.0	5	84.1	0.015	Emery & Uchupi (1984)
25.20	-45.00	24	4	24.2	0.022	n24e	Rabinowits & Schouten (1985)	-0.80	-21	50	82.0	2		0.110	Belderson et al. (1984)
25.30	.45.40	22.5	2	24.4	0.089	n24e	Rabinowitz & Schouten (1985)		-14		76.0	3		0.069	Emery & Uchupi (1985)
25.10	-45.40	24.5	2		0.090		Rona & Gray (1980)		-12		77.7	2		0.150	Brozena (1986)
	-46.10	23	4		0.023		Rabinowitz & Schouten (1985)			1,00	77.5	3		0.056	Brozena (1986)
24.20	-46.30	24.5	2			n15e	Roma & Gray (1980)	-32.30	-14	4.00	80.0	2	78.5	0.098	D. Foreyth
	-45.00	25	4			n08e	Rabinowitz & Schouten (1985)								(personal communication, 1985)
22.80	-45.00	25	2	25.1	0.100	n04e	Rabinowitz & Schouten (1985)	-34.20	-14	4.80	80.0	3	78.8	0.042	D. Forsyth
tion N	orth Ame	den Te		-	- the										(personal communication, 1985)
Inca-n	orin Ama	rica: 11	anye	in Aut				-54.20	- 1	2.00	65.0	10	71.0	0.006	Sclater et al. (1976a)
15.20	-35.60	104.5	2	103.6			Roest et al. (1984)								
33.70	-38.70	104.5	2	103.4			Roest et al. (1984)	Africa-	e		den P	- 1/-			
0.00		101.5	3	102.9			Roest et al. (1984)	-							
3.70	45.70	98.0	2	102.2	0.220		Roest et al. (1984) &	15.34	-4	5.92	97.0	10	94.1	0.012	Bergman & Solomon (1988)
							Pockalny et al. (1988)	15.30	-4	5.78	98.0	10	94.0	0.011	Bergman & Solomon (1988)
			- 14-					15.25	-4	5.15	97.0	10	93.6	0.011	Bergman & Solomon (1988)
(nca-N	orth Ama	tuca: 31	(p * e					14.14	-4	5.18	100.0	20	93.6	0.003	Engeln et al. (1986)
\$5.43	-36.03	102.0	20	103.6	0.002		CMT 4.29.85	12.84	-4	4.57	95.0	15	93.1	0.004	CMT 6.09.87
	-36.01	101.0	10	103.7	0.008		CMT 6.06.82	12.05	-4	3.79		20	92.6	0.002	Engeln et al. (1986)
35.35	-36.08	100.0	10		0.008		Bergman & Solomon (1988)	10.79		3.51		10	92.4	0.009	Bergman & Solomon (1988)
35.14	-35.45	101.0	15	103.6	0.004		CMT 7.14.80	10.83	-4	3.43	90.0		92.4	0.008	CMT 1.10.85
33.79	-38.64	101.0	10	103.4	0.009		Bergman & Solomon (1988)	10.83	-4	3.23	96.0	20	92.2	0.002	Engeln et al. (1986)
	-38.46	102.0	15	103.4	0.004		CMT 5.07.84	10.77	-4	3.11	92.0		92.2	0.008	Bergman & Solomon (1988)
	-38.60	103.0		103.4	0.004		CMT 5.03.84	10.79	-4	2.23	96.0	15	91.7	0.003	CMT 3.20.84
	-43.58	91.0		102.8	0.002		Engeln et al. (1986)	10.72	-4	2.02	97.0	20	91.5	0.002	Engeln et al. (1986)
	-45.94		10	102.2			Bergman & Solomon (1988)	10.72		1.68	87.0	10	91.3	0.008	Bergman & Solomon (1988)
	-45.57		10		0.009		Bergman & Solomon (1988)	8.80		9.87	92.0		90.3	0.003	CMT 8.13.80
	-45.44	106.0			0.004		CMT 11.28.81	8.05		8.79	102.0		89.6	0.001	Engeln et al. (1986)
		102.0			0.004		CMT 3.12.77	8.15		8.76		10	89.6	0.005	CMT 11.01.84
23.74	-43.17	102.0	15	102.2	0.004		CMI J.IZ.II	8.10		18.55		15	89.5	0.003	CMT 11.05.78
(rica-h	iuraria: 1	Transfor	m Az	imuths				8.04		18.39	95.0	15	89.4	0.003	CMT 12.06.81
		257.0			0.187		Laughton et al. (1972)	8.04		\$8.39 \$8.09	90.0	10	89.3	0.005	Engels et al. (1986)
36.90		257.0	3		0.187		Laughton et al. (1972)	7.39		5.09 56.10	88.0	15	88.1	0.002	CMT 4.22.81
	-22.60		3		0.399			7.39		95.10 54.86	85.0	10	87.4	0.002	Engeln et al. (1986)
37.10		265.0					Laughton et al. (1972)							0.003	CMT 12.24.85
37.10	-20.50	-90.0	7	270.4	0.098		Laughton et al. (1972)	7.08		34.87	80.0	15	87.5	0.002	CMT 7.26.80
Vrice-F	luraria: l	Slip Vec	tors					7.10		34.04	89.0	15	\$7.0	0.002	CMT 8.30.84
-								7.07		33.85	94.0		86.9		
	-17.25	-89.0			0.022		CMT 10.17.83	0.67		30.39	\$4.0		85.3	0.002	CMT 6.22.84
37.22		-50.0			0.042		Grimison & Chen (1986)	0.86		29.88	\$3.0	10	85.0	0.004	CMT 10.12.85
	-11.84	267.0			0.066		Grimison & Chen (1986)	0.83		29.82	\$8.0		85.0	0.004	CMT 3.20.78
	-10.57	-35.0			0.092		Fukao (1973)	0.77		29.69	\$7.0		84.9	0.004	CMT 3.20.78
	-10.34	-60.0			0.098		Grimison & Chen (1986)	0.11		29.60	\$0.0	20	84.9	0.001	CMT 7.24.80
36.23	-7.61	-35.0	25	-49.8	0.104		Grimison & Chen (1986)	0.82		28.98	90.0		84.6	0.001	Engeln et al. (1986)
Vien.	louth Am	unica: S		Ger Rei				0.95		28.43	88.0	10	84.3	0.004	CMT 6.06.85
								0.97		28.29	89.0		84.2	0.001	Engela et al. (1986)
-6.00		33	6		0.018		van Andel et al. (1973)	0.93		28.09	\$2.0		84.1	0.002	CMT 9.19.84
	-13.40	35	6		0.018		van Andel et al. (1973)	1.14		27.71	\$5.0		83.9	0.002	CMT 6.22.78
-8.00	-13.50	34	2		0.160		Brozena (1986)	0.89		27.11	\$5.0		\$3.6	0.002	CMT 11.14.79
-8.40	-13.30	33	6		0.018		van Andel et al. (1973)	0.95	1	27.08	\$2.0	15	83.6	0.002	CMT 11.02.81
-9.20	-13.20	39	6	34.6	0.017	n08w	van Andel et al. (1973)	0.93	5 -3	26.83	85.0	15	83.5	0.002	CMT 7.01.85
10.50	-13.00	34	3	34.8	0.068	n09w	Brozena (1986)	0.80) -:	26.77	\$1.0	15	83.5	0.002	CMT 6.15.86
13.50	-14.50	36	4	35.0	0.034	n19w	Brozena (1986)	0.90) -:	26.77	88.0		83.4	0.001	Engeln et al. (1986)
	-13.50	34	2	35.4	0.136	nlów	Brozena (1986)	0.87	1.3	26.50	88.0	20	83.3	0.001	Engeln et al. (1986)
	-14.00	36	3	35.6	0.061	n10w	Brozena (1986)	0.75		26.14	88.0	20	83.1	0.001	CMT 3.23.86
24.90	-13.50	37	6		0.013		Dickson et al. (1968)	0.81		25.45	89.0		\$2.8	0.001	Engeln et al. (1986)
	-13.00	36	3	35.7	0.053	n05w	Dickson et al. (1968)	0.11	1.2	25.35	84.0	10	82.8	0.004	CMT 11.01.80
	-13.50	35	3	35.1			Dickson et al. (1968)	-1.15		24.68	\$7.0		82.5	0.004	CMT 8.12.82
	-13.40	35	ŝ	35.7			Welch et al. (1986)	-1.30		24.30	99.0		82.4	0.001	Engeln et al. (1986)
31.70	-13.40	34	3		0.052		Welch et al. (1986)	-0.95		23.48	\$7.0		81.9	0.002	CMT 12.08.84
33.00	-14.50	35	3		0.051		Weich et al. (1986)	-0.85		22.13	85.0		81.3	0.001	Engela et al. (1986)
33.90	-14.60	35	4		0.025		Welch et al. (1986)	-0.83		21.86	81.0		81.2	0.004	CMT 1.03.82
			6		0.013		Dickson et al. (1968)	-0.9		21.80	77.0		81.1	0.004	CMT 10.13.83
38.50	-17.00	36											81.1		CMT 12.29.86
40.00	-16.00	36	3		0.051		Loomis & Morgan (1973)	-0.51		19.92	80.0				
42.00	-16.00	32	4		0.029		Dickson et al. (1968)	-0.50		19.90		20	80.2		Engeln et al. (1986)
43.00	-16.00	35	3			2 m05w	Loomis & Morgan (1973)	-0.5		19.86		10	\$0.2		CMT 4.22.84
54.20	-1.30	28	5			3 n25w	NGDC Chain 115-4	-0.5		19.77) 15	80.1	0.002	CMT 10.09.84
54.50	-1.10	30	3			i n25 w	NGDC Chain 115-4	-0.34	8 -	19.55		15	\$0.0		CMT 6.04.85
54.60	-1.00	30	5	30.8	0.023	3 n25₩	NGDC Chain 115-4	-0.2	2 .	19.19		15	79.8		CMT 6.07.87
			-					-0.3	2.	19.17	83.0	20	79.8	0.001	Engeln et al. (1986)
Africa-	South An	serica:	ran	form As	i mini As			-0.0	4.	19.14	77.0	10	79.8	0.005	CMT 5.05.87
15 30	-45.80	95.5	3	9.4 /	0.12		Roest et al. (1984)	-0.1		18.83	79.0		79.6		CMT 7.07.81
	-44.60	90.0			0.10		Collette et al. (1979)	-0.3		-18.60	88.0		79.6		Engeln et al. (1986)
					5 0.10		Collette et al. (1979)			-18.24	74.0		79.6		CMT 3.12.87
12.60															
12.60	-43.80	90.0													Franks et al. (1986)
12.60 12.20 10.80	-43.80	90.0 91.5 92.0	2	91.3	0.10 0.19 0.00	7	Macdonald et al. (1986) Emery & Uchupi (1984)	-0.1	9.	-18.03	89.1 83.1	20	79.3 79.2	0.001	Engeln et al. (1986) CMT 6.24.86

Arabia	India: Fa	ult Tre	nds			
21.00 18.00	61.80 60.20	30.0 23.0	5	27.8	0.459	Matthews (1966)
Arabia	India: Sli		-	<i></i>	0.554	Matthews (1966)
24.58	66.23	41.0	15	37.5	0.270	Quittmeyer & Kafka (1984)
23.79	64.73	28.0	15	34.6	0.176	Quittmeyer & Kaska (1984)
21.87	62.32	12.0	15	29.5	0.067	Quittmeyer & Kafka (1984)
20.91	62.44	26.0	15	28.3	0.055	CMT 4.7.85
14.94	57.96	23.0	15	16.4	0.171	CMT 12.14.85
14.57	58.09	10.0	15	16.0	0.188	CMT 12.5.81

Geological model : closure circuit



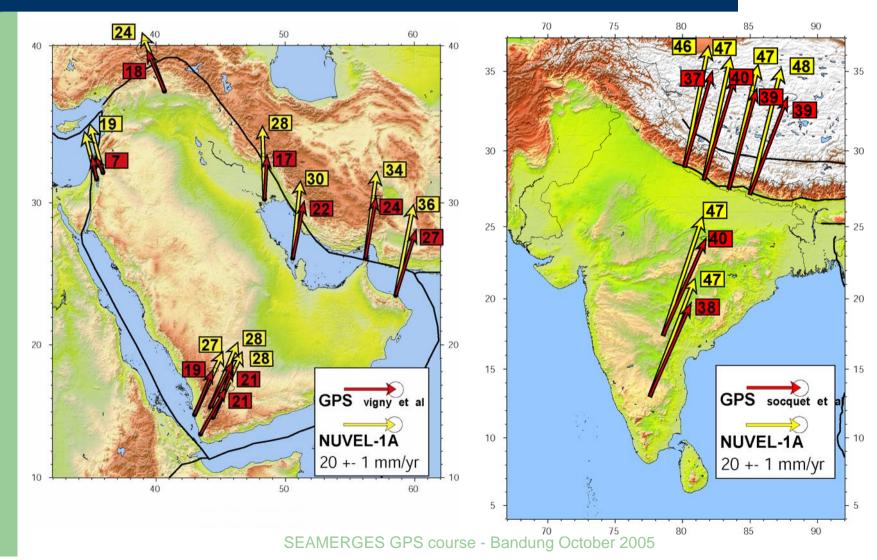
NNR-Nuvel-1A : velocities



SEAMERGES GPS course - Bandung October 2005

NNR-Nuvel-1A : poles

GPS VEL solution

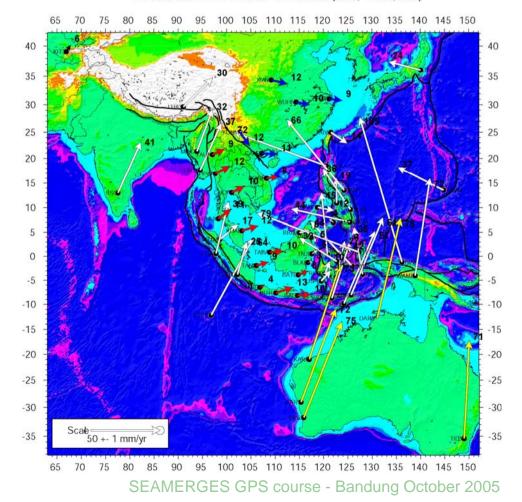


Nuvel-1A (yellow) – GPSVEL (violet)

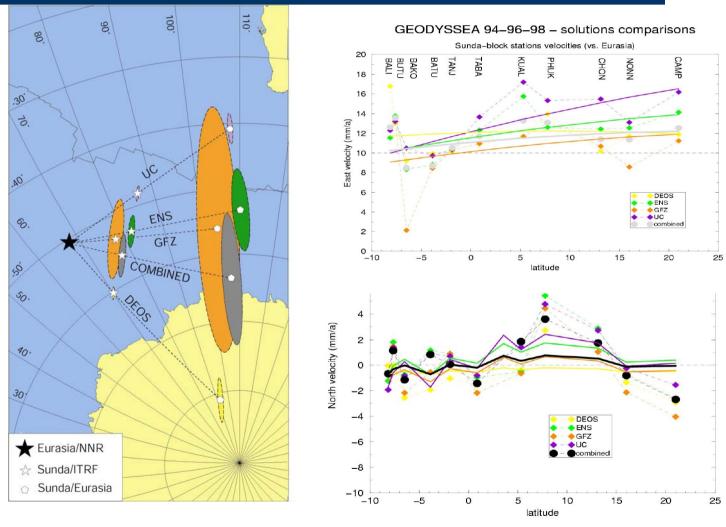
Good match with "geological" velocities: 1 cm/yr = 10 km in 1 million year), but...

SEAMERGES GPS course - Bandung October 2005

GPS finds Arabia and India are slower than expected

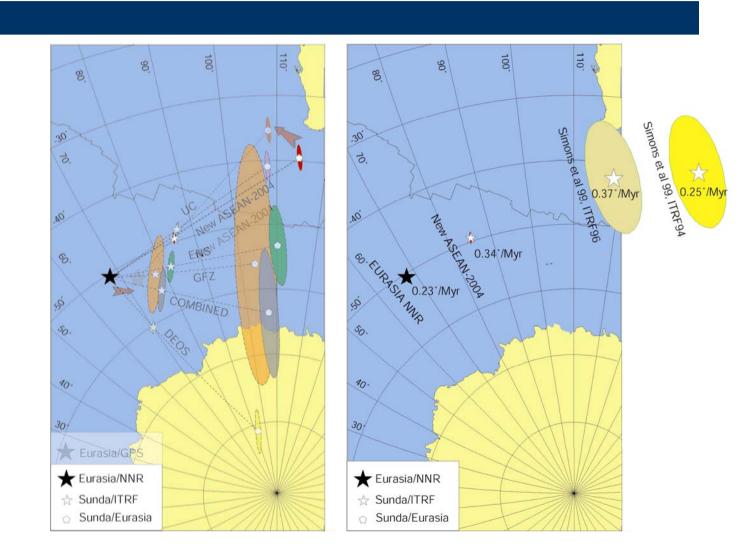

Arabia India relative motion

relative to Nuvel-1A Eurasia 60 70 50 80 40 40 40 350 0 10 20 30 40 40 30 20 O 0.2 deg/Myr 10 30 30 20 20 GPS soln24 10 Arabia (NNR-Nuvel-1A) 10 Arabia (Vigny et al.) India (NNR-Nuvel-1A) India (Paul et al.) India (Holt et al.) India (Socquet et al.) 20 mm/yr 0 - 0 50 60 70 40 80 SEAMERGES GPS course - Bandung October 2005

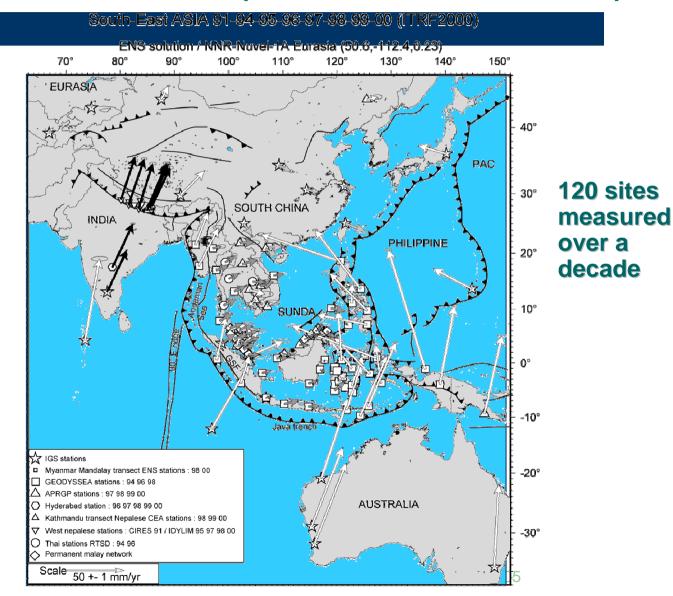

Arabia / India relative motion

Rigid Sundaland

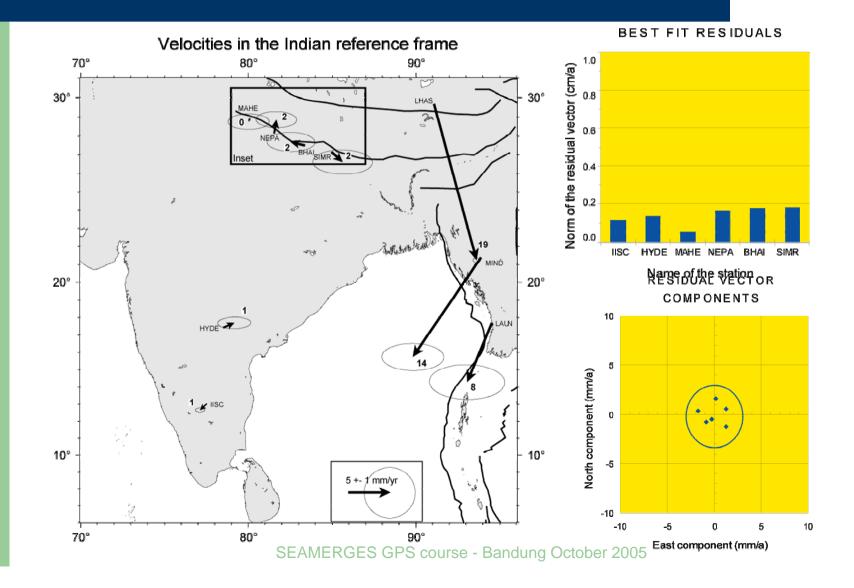
South-East ASIA 94-96-98-00 (ITRF2000) ENS solution / NNR-Nuvel-1A Eurasia (50.6,-112.4,0.23)



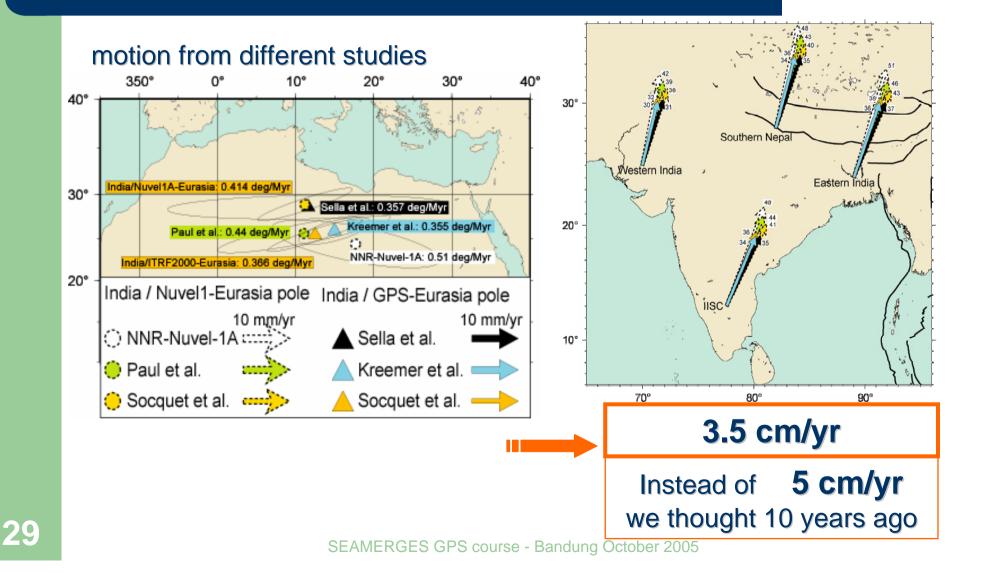
GEODYSSEA poles

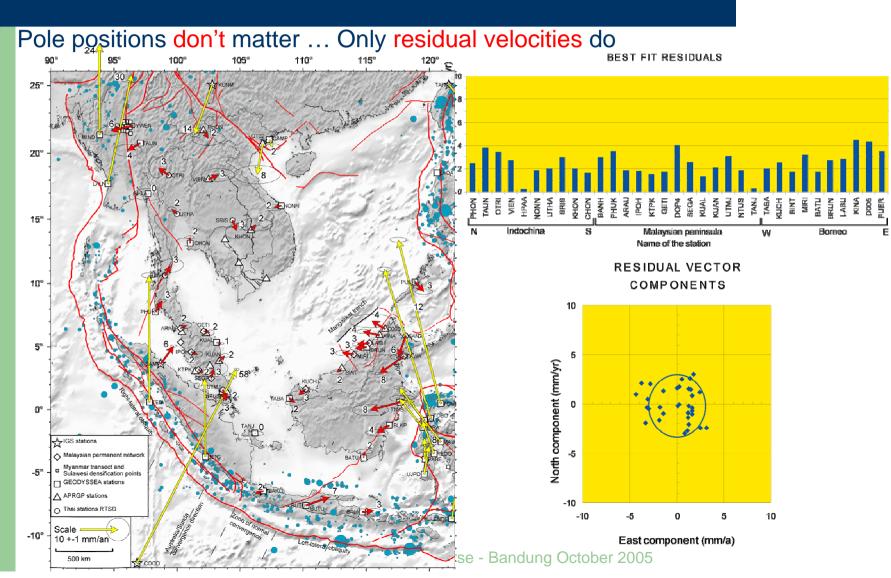

SEAMERGES GPS course - Bandung October 2005

Older GEODYSSEA poles

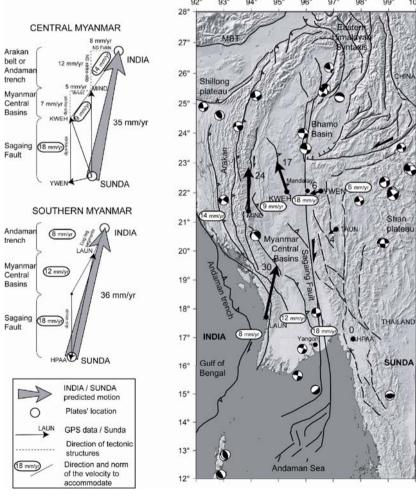


SEAMERGES GPS course - Bandung October 2005


New ASEAN solution (Simons and Socquet, submitted)


Rigidity of India

India-Eurasia **motion**



ASEAN Residual velocities

India/Sunda relative motion

Pole positions don't matter....only predicted motions on plate boundary do

Strain rate and rotation rate tensors (1)

To asses plate deformation :

- 1. Look at station velocity residuals
- 2. Compute strain rate and rotation rate tensors

Strain =
$$\frac{\text{Velocity}}{\text{Distance}}$$
 = $\frac{\text{mm/yr}}{\text{km}}$ = % / yr
Matrix tensor notation : $S_i^j = d(V_i) / d(x_j)$ = $d(V_x) / d(x) = d(V_x) / d(y) / d(y)$

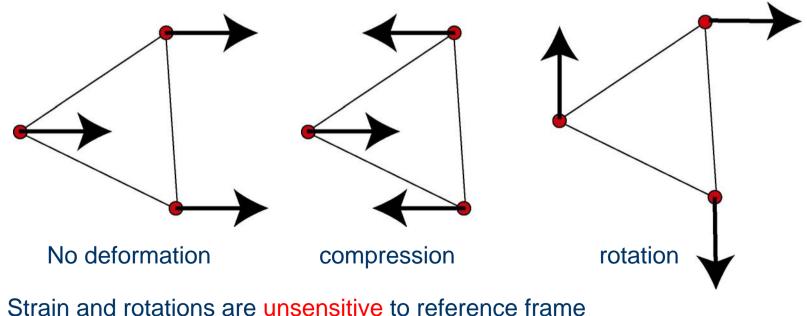
Т

Strain rate and rotation rate tensors (2)

$$[E] = \frac{1}{2} ([S] + [S]^{T}) = \begin{cases} E_{11} & E_{12} \\ & & & & & & & & & \\ E_{12} & E_{22} \end{cases} \qquad (W] = \frac{1}{2} ([S] - [S]^{T}) = \begin{cases} 0 & W \\ & & & & & & \\ & & & & & & \\ -W & 0 \end{cases}$$

[E] has 2 Eigen values : \mathcal{E}_1 , \mathcal{E}_2

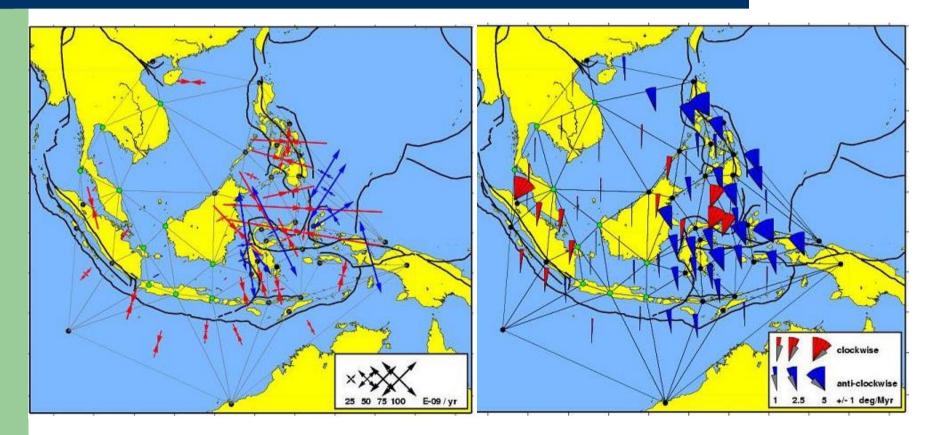
 \mathcal{E}_1 and \mathcal{E}_2 are extension/compression along principal direction defined by angle θ (defined as angle between \mathcal{E}_2 direction and north)


$$\mathcal{E}_{1} = \mathsf{E}_{11} \cos^{2}\theta + \mathsf{E}_{22} \sin^{2}\theta - 2 \mathsf{E}_{12} \sin\theta \cos\theta$$
$$\mathcal{E}_{2} = \mathsf{E}_{11} \sin^{2}\theta + \mathsf{E}_{22} \cos^{2}\theta - 2 \mathsf{E}_{12} \sin\theta \cos\theta$$

Strain rate and rotation rate tensors (3)

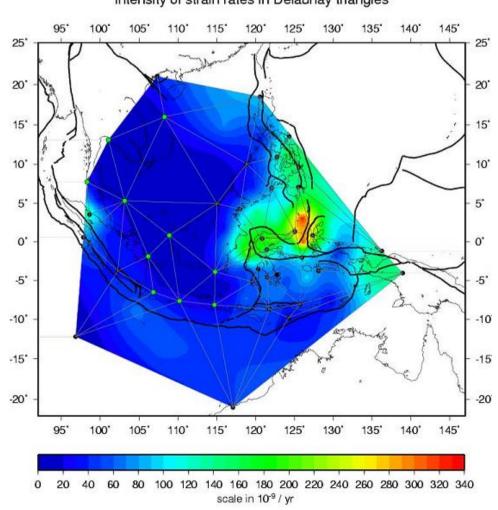
Minimum requirement to compute strain and rotation rates is :

3 velocities (to allow to determine 3 values \mathcal{E}_1 , \mathcal{E}_2 , and W)


Therefore we can compute strain rate and rotation rate within any polygon, the minimum polygon being a triangle

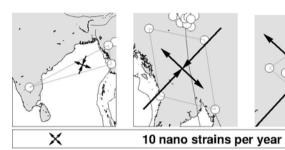
SEAMERGES GPS course - Bandung October 2005

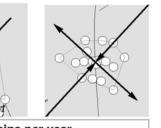
Strain and rotation in GEODYSSEA network


Strains :

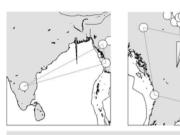
extension/compression/strike-slip

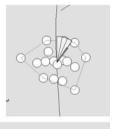
Rotations :

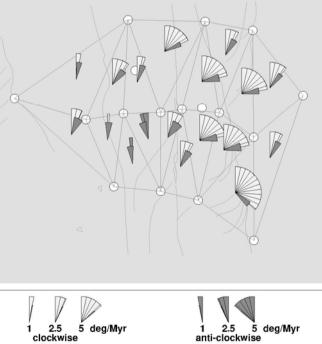

Anti-clockwise/clockwise


Intensity of strain in GEODYSSEA network

Intensity of strain rates in Delaunay triangles

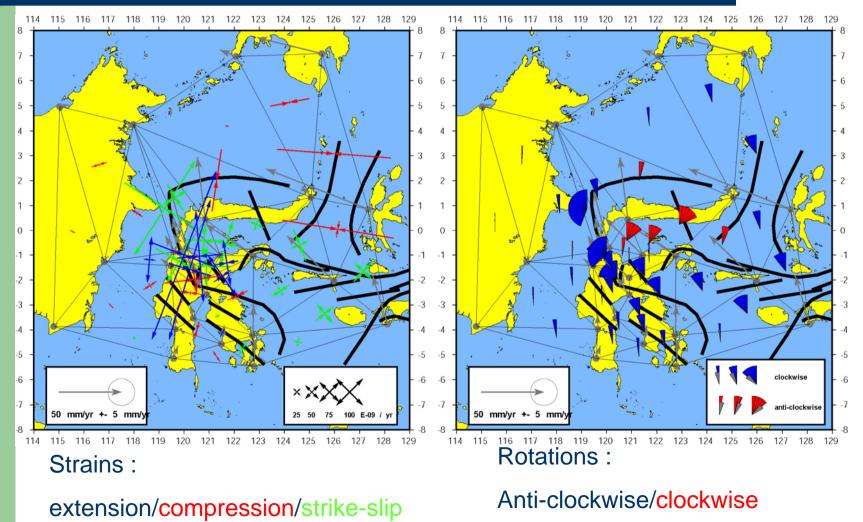

Strain and rotation in Myanmar



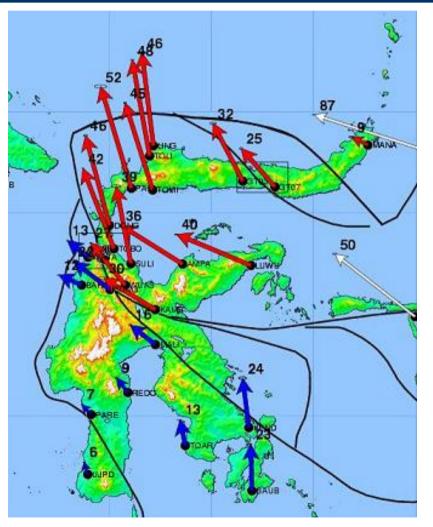


Х

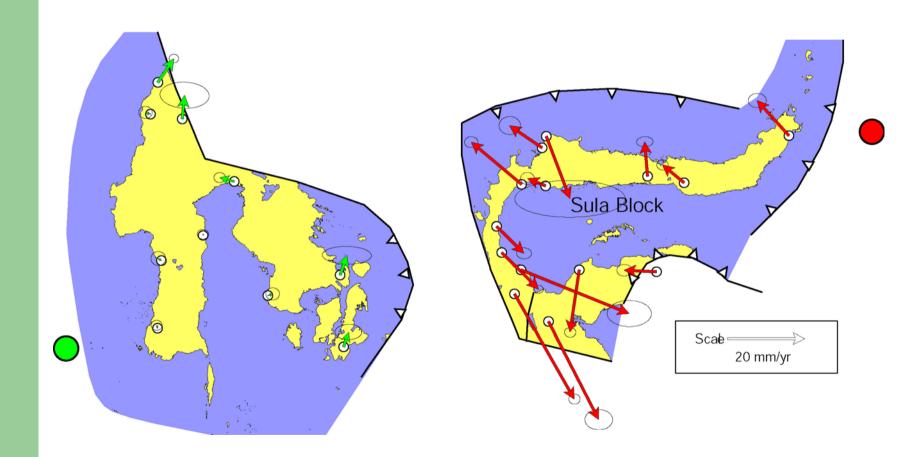
100 nano strains per year



Strain in Northern Sundaland (Thailand)


SEAMERGES GPS course - Bandung October 2005

Strain and rotation in Sulawesi network


SEAMERGES GPS course - Bandung October 2005

Blocks and Internal deformation in Sulawesi

SEAMERGES GPS course - Bandung October 2005

Blocks and Internal deformation in Sulawesi

