GÉOMÉCANIQUE - TD 2

Notion de forces et contraintes

1 Notion de Contrainte

1.1 Tenseur des Contrainte

Soit un élément de volume infinitesimal en 2-D soumis à un champs de contrainte representé par σ_{ij} dans le repère $\left(O,x_1,x_2\right)$ (Fig. 1). Soit f_1 et f_2 les composantes suivant x_1 et x_2 des forces de volumes s'applicant sur l'élément de volume dV. L'hypothèse 2-D permet d'écrire $dV=dx_1\times dx_2\times 1$, en prenant une longueur unité dans la direction x_3 . Toutes les quantités physiques introduites seront considérées par unité de longueur dans cette troisième direction.

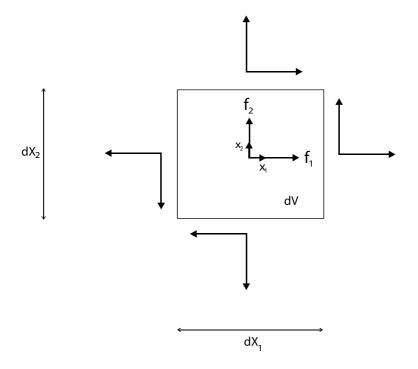


FIG. 1 – Elément de volume infinitesimal 2-D.

Questions:

- a) Représenter les composantes du tenseur des contraintes sur les faces du cube.
- b) Exprimer le bilan des forces s'applicant sur cet élément de volume. En déduire les équations d'équilibre.
- c) Montrer que le tenseur des contraintes est symétrique.
- e) Exprimer les contraintes normales et tangentielles s'appliquant sur le plan diagonal d'un carré.

1.2 Invariants du Tenseur des Contraintes

Soit un élément de volume infinitesimal en 3-D soumis à un champs de contrainte representé par $\underline{\underline{\sigma}}$ dans le repère (O, x_1, x_2, x_3) .

Questions:

a) Décomposer $\underline{\underline{\sigma}}$ en sa composante volumetrique $\underline{\underline{\sigma}_m}$ et déviatorique $\underline{\underline{S}}$.

(Par définition, $\underline{\underline{\sigma}_m}$ se rapporte à un champ de pression, et $\underline{\underline{\sigma}}_m = \frac{1}{3} \text{tr} \underline{\underline{\sigma}} \underline{\underline{I}}$)

Rappel d'algèbre:

Soit une matrice A symétrique 3×3 possédant 3 valeurs propres. On peut écrire son polynôme caractéristique sous la forme

$$\lambda^3 - I_1\lambda^2 + I_2\lambda - I_3 = 0$$

où I_1 , I_2 , I_3 sont les 3 invariants principaux (ils sont indépendants du repère dans lequel la matrice est écrite).

Pour un tenseur $\underline{\sigma}$, il est d'usage d'utiliser les 3 invariants suivants qui sont combinaisons linéaires des 3 invariants principaux :

$$I_1 = \operatorname{tr}(\underline{\sigma})$$
 $I_2 = \frac{1}{2}\operatorname{tr}(\underline{\sigma}^2)$ $I_3 = \frac{1}{3}\operatorname{tr}(\underline{\sigma}^3)$

Par analogie, on peut calculer les invariants du tenseur $\underline{S}:J_1=\mathrm{tr}(\underline{\underline{S}}) \qquad J_2=\frac{1}{2}\mathrm{tr}(\underline{\underline{S}}^2) \qquad J_3=\frac{1}{3}\mathrm{tr}(\underline{\underline{S}}^3)$

- b) Que vaut J_1
- c) Montrer que $J_2 = I_2 \frac{I_1^2}{6}$

On montre également que $I_3 = J_3 + 2I_1J_2/3 + I_1^3/27$, ainsi il sera possible de caractériser tout tenseur $\underline{\underline{\sigma}}$, à partir du triplet I_1 I_2 , I_3 , ou I_1 , I_2 , I_3 .

2 Application Numérique

Soit un élément de volume infinitesimal 3-D soumis à un champs de contrainte (en MPa) representé, dans le repère (O, x_1, x_2, x_3) , par

$$\underline{\underline{\sigma}} = \begin{pmatrix} -2 & 3 & 0 \\ ? & 6 & 0 \\ ? & ? & -37 \end{pmatrix}_{\left(O, x_1, x_2, x_3\right)}$$

Questions:

- a) Compléter le tenseur et expliquer les signes de ses termes diagonaux.
- b) Calculer les contraintes principales $(\sigma_1, \sigma_2, \sigma_3)$ et les directions principales associées (e_1, e_2, e_3) .

Licence - Master des Sciences de la Planète Terre - L3 Géomécanique - TD 2

c) Calculer les composantes du vecteur contrainte \underline{T} agissant sur un plan (\mathcal{P}) dont les coordonnées de la normale \underline{n} dans O, x_1, x_2, x_3 sont

$$\left(\begin{array}{c} 0.8\\ 0.4\\ 0.44 \end{array}\right)_{\left(O, x_1, x_2, x_3\right)}$$

Exprimer \underline{T} , d'abord dans le repère initial $\Big(O,x_1,x_2,x_3\Big)$, puis dans le repère principal $\Big(O,e_1,e_2,e_3\Big)$

Page 3 / 3