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Nonlinear velocity inversion by a two-step

Monte Carlo method

Side Jin* and Raul Madariaga¥

ABSTRACT

Seismic reflection data contain information on
small-scale impedance variations and a smooth refer-
ence velocity model. Given a reference velocity
model, the reflectors can be obtained by linearized
migration-inversion. If the reference velocity is incor-
rect, the reflectors obtained by inverting different
subsets of the data will be incoherent. We propose to
use the coherency of these images to invert for the
background velocity distribution. We have developed
a two-step iterative inversion method in which we
separate the retrieval of small-scale variations of the
seismic velocity from the longer-period reference ve-
locity model. Given an initial background velocity
model, we use a waveform misfit-functional for the
inversion of small-scale velocity variations. For this
linear step we use the linearized migration-inversion
method based on ray theory that we have recently

developed with Lambaré and Virieux. The reference
velocity model is then updated by a Monte Carlo
inversion method. For the nonlinear inversion of the
velocity background, we introduce an objective func-
ttonal that measures the coherency of the short wave-
length components obtained by inverting different
common shot gathers at the same locations. The
nonlinear functional is calculated directly in migrated
data space to avoid expensive numerical forward
modeling by finite differences or ray theory. Our
method is somewhat similar to an iterative migration
velocity analysis, but we do an automatic search for
relatively large-scale 1-D reference velocity models.
We apply the nonlinear inversion method to a marine
data set from the North Sea and also show that
noniinear inversion can be applied to realistic scale
data sets to obtain a laterally heterogeneous velocity
model with a reasonable amount of computer time.

INTRODUCTION

In conventional seismic processing, a very accurate esti-
mate of the background velocity is necessary for obtaining
good images; but, unfortunately, the derivation of an optimal
velocity model is a difficult problem. Traditionally, back-
ground velocity is obtained from normal moveout (NMO)
velocity analysis, based on the assumption of vertical veloc-
ity stratification with flat, horizontal reflectors. Obviously,
this assumption makes the velocity analysis very restrictive.
In fact, Lynn and Claerbout (1982) showed that the process
of converting NMO and/or stacking velocity into interval
velocity is unstable for layers with lateral velocity variation.
To obtain velocity information for media with lateral veloc-
ity variation, kinematic methods such as traveltime tomog-
raphy can be used (Bishop et al., 1985; Chiu et al., 1986).
However, in practice, traveltime tomography suffers from a

serious shortcoming: it requires accurate prestack reflection
traveltime picking.

To be successful, the process of stacking and migration
requires good background velocity information. Migrated
stacks can conversely be used to estimate the background
velocity model as has been proposed by many authors.
Yilmaz and Chambers (1984) and Faye and Jeannot (1986),
for example, proposed migration velocity analysis schemes
based upon wavefront focusing. Kim and Gonzalez (1991)
presented an implementation of the Kirchhoff integral which
makes this approach more practical. Al-Yahya (1989) pro-
posed another approach based on the principle that after
migration with a correct velocity model, images in a com-
mon-receiver gather (CRG) should be aligned horizontally,
regardless of structure. A CRG consists of seismic traces
that have the same receiver coordinate. A detailed compar-
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ison of several migration velocity analysis methods can be
found in Versteeg (1991). The drawback of migration veloc-
ity analysis is that it is usually interactive, requiring human
intervention at each iteration step. The reasons for this are
twofold: first, prestack migration is expensive; and, second,
the criteria used for comparing the fit obtained with different
velocity models are qualitative and nonobjective.

To avoid human intervention in velocity estimation, sev-
eral approaches to nonlinear velocity inversion have been
proposed in the literature. Recently, Snieder et al. (1989) and
Cao et al. (1990) proposed to invert simultaneously both the
short-wavelength impedance variations and the smooth
background velocity by minimizing a least-squares misfit
functional for the waveforms. If the velocity structure is
known, the short wavelength impedance can be obtained by
solving the inversion problem with a gradient algorithm.
Gradient methods, however, are slow because they tend to
converge on secondary minima. To find the reference veloc-
ity, Snieder et al. (1989) and Cao et al. (1990) used a
relaxation method to update the impedance and velocity
models in successive steps. The relaxation method was
successfully used for inverting 1-D velocity backgrounds. In
practical situations, however, the relaxation method is com-
putationally expensive because the computation of the
waveform misfit-functional requires numerous forward seis-
mic modelings by finite differences or other numerical meth-
ods. More recently, to avoid the severe convergence diffi-
culties associated with nonlinear least-squares inversion,
Symes and Carrazone (1991) proposed a differential sem-
blance optimization method (DSO) to invert reflection seis-
mograms. This method exploits both moveout and amplitude
characteristics of reflections. Although this method is based
on the ideas underlying ordinary velocity analysis, it cannot
avoid performing forward seismic modelings. So it is not
clear if DSO can yield a computationally tractable approach
for 2-D problems.

In many nonlinear inversion problems (for instance, simul-
taneous depth and moment tensor inversion from surface
waves, Romanowicz, 1982), it is convenient to separate the
linear from the nonlinear inversion stages. The reason is that
the nonlinear inversion can be formulated with a relatively
small number of parameters, while the linear part may have
a huge number of degrees of freedom. In this paper, we
separate linearized migration-inversion for small-scale im-
pedance contrasts from fully nonlinear velocity analysis. It
turns out that this two-step inversion method is very natural
for seismic reflection profiles which have been processed
separately for velocity analysis and migration. We design the
two-step inversion method using different objective func-
tionals to determine the short wavelength variations and the
background velocity. For a given background velocity
model, impedance contrasts are obtained by linear inversion
optimizing a waveform-fit functional. Since we use a very
fast algorithm for the linear step, we can use a fully nonlinear
Monte Carlo inversion method for the retrieval of the
background velocity model. The optimization criterion for
the background velocity is based on a measure of the
semblance of the spatial short wavelength component of the
model obtained by inverting different subsets of the reflec-
tion data. Because our measure of the coherency is calcu-

lated in model space instead of data space, we do not need
expensive forward seismic modeling to calculate coherency.

In view of the adopted optimization criterion, our method
is similar to migration velocity analysis, but it explores the
background velocity space automatically with a Monte Carlo
technique. By an application to data from a marine seismic
profile, we show that our method is practical, in the sense
that it can be applied to field data sets and produce reason-
able results with present-day computers.

THE PRINCIPLE OF NONLINEAR VELOCITY INVERSION

We study the nonlinear inversion of the acoustic parame-
ters of a 2-D earth model with constant density. The only
heterogeneity allowed in this model is the variation of the
compressional-velocity c(x, z), where x and z are the spatial
coordinates of the model. We assume as usual that the
velocity field can be adequately decomposed into two parts:

c(x, 2) = colx, z) + 8c(x, 2), (1

where cq(x, z) is a smooth large-scale velocity field and
dc(x, z) is a small-scale perturbation superimposed on this
background. In standard seismic processing cg(x, 2z) is
determined by velocity analysis and dc¢(x, z) is determined
by migration or linearized inversion. The information about
dc(x) is contained in the scattered waveforms, whereas the
background velocity cy(x) manifests itself mainly in the
traveltime of reflected waves and in the curvature of the
reflection hyperbolas.

The separation of the velocity field into a smooth and a
small-scale perturbation may seem somewhat arbitrary. As
discussed by Claerbout (1985), this separation occurs natu-
rally because of the finite frequency band of the sources used
in applied geophysics. For wavelengths longer than the
dominating frequency of the source, the heterogeneities
appear to be smooth and their main effect is to modify the
propagation velocity. Shorter wavelength heterogeneities,
on the other hand, scatter the seismic waves and produce
reflections from laterally coherent inhomogeneities. A com-
plete discussion of this separation can be found in Jannane et
al. (1989) who studied the separation by finite difference
modeling. In this paper we will exploit the separation be-
tween short- and long-wavelength heterogeneities to formu-
late a two-step nonlinear inversion method.

Given a certain reference velocity model, an image of the
reflectors defined by the velocity perturbation field dc(x) can
be constructed by linearized inversion, for instance, by the
asymptotic inversion method proposed by Jin et al. (1992).
In linearized inversion, the strength, or reflectivity, of a
reflector is determined by the waveforms, and location is
determined by the traveltime of the waves in the current
background velocity model. Because of the redundancy of
reflection data, if the background velocity ¢ (x, 2) is good,
perturbation models dc(x) obtained from different subsets of
the seismic data (for example, different shot gathers) should
be kinematically the same, a property we have verified
experimentally on seismic data from the North Sea
(Lambaré et al., 1992). Conversely, if the background is
incorrect, the same reflector will be mapped to different
positions by different subsets of the data. Thus, the location
of a reflector inverted from different data subsets contains
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the information needed to obtain the background velocity
field. As proposed by Al-Yahya (1989), by optimization of
the coherency of the small-scale models 8c(x) obtained from
different subsets, it should be possible to obtain the back-
ground velocity model. This principle has in fact always
been used to perform velocity analysis; but in the classical
procedures the background velocity is usually assumed to be
homogeneous and the reflectors to be horizontal and infi-
nitely extended laterally.

In the following we shall assume that the data set is
redundant enough so that several short-wavelength models
dc(x, z) can be determined from selected subsets of the
data. To apply a nonlinear inversion technique based on the
coherency of the small-scale velocity models inverted from
different data subsets, we perform inversion in two steps. In
the first step, given an initial background velocity model, we
use linear inversion to calculate §¢ from several data subsets
for background velocity. In the second step, we perform
nonlinear inversion for the background velocity model by a
Monte Carlo technique. For the second step, we need an
objective criterion to quantify the coherency of the models
obtained from different data subsets.

THE ASYMPTOTIC INVERSION METHOD

For the linearized inversion of the short-wavelength per-
turbations we use the method proposed by Jin et al. (1992) in
the elastic approximation and by Lambaré et al. (1992) for
the acoustic case. We will invert the small-scale velocity
perturbation field from the common source gather (CSG) for
every available source s.

We will briefly review the linearized inversion technique
for reference. For simplicity, we start from the scalar wave
equation for a line source. The extension to a point source in
a medium infinitely extended in the direction perpendicular
to the seismic profile (sometimes called the 2.5-D approxi-
mation) can be found in Lambaré et al. (1992).

2

Vau(x, s, ©) + ‘;— u(x, s, ©) =d(x-s), (2)
c(x)

where u(x, s, ) is the acoustic pressure field, x is the current
field point, s is the source position, w is the frequency, and
¢(x) is the variable acoustic velocity. Density is assumed to
be constant in our inversions, because as has been exten-
sively discussed in the literature, only velocity or impedance
can be inverted for near-vertical reflection data. To invert for
density simultaneously with velocity, we would need either
wide-angle reflections or multicomponent data. As in the
velocity decomposition (1), we split the pressure field into
two parts

u(x, s, w) = uy(x, s, w) + dulx, s, w), (3)

where uy(x, s, w) is the pressure field propagated in the
background model cy(x, z) and du(x, s, w) is the acoustic
field scattered by the small-scale perturbation 3¢(x, z) of the
model.

Within the first Born approximation, the scattered field
du(x,, s, w) at the receiver position x, is given by

dulxe, s, ®) = —w? j G(x, y, 0)G(y, s, ) Ay) dy,
M
4

where G(x, s, w) is the Green’s function for the background
velocity model, i.e., the solution of equation (2) when c(x) is
replaced by cy(x). M is the model space. For convenience
we write X, ¥, and @ as continuous variables. Their integrals
can in all cases be replaced by a sum over sampled data
points. For simplicity of notation in equation (4) we intro-
duce the model! perturbation function

dc
f9) = 8le 2] = —2 = ()
c’(y)
Equation (4) is obtained by standard perturbation methods
(Tarantola, 1984; Beylkin, 1985; Miller et al., 1987). Mathe-
matically, f(y) represents the short-wavelength part of the
velocity field c(y), so that only this part of the field can be
obtained by the linearized inversion of the data. The low
frequency part of the velocity field co(y) affects mainly the
traveltimes and amplitudes implicit in the calculation of G.
We assume, following Beylkin (1985) that the Green’s
function G in equation (4) may be accurately estimated by
the first-order geometrical optics approximation. In 2-D, the
ray approximation to G is given by

G(x, s, w) = (—iw) 24(x, s)e’ =), (6)

where the traveltime function 7 satisfies the eikonal equation
for the background velocity ¢y and the amplitude A satisfies
the transport equation along the ray connecting the source at
s to the current point x.

In linearized inversion, given a certain reference velocity
model ¢,, we view expression (4) as a linear integral
equation for the unknown function f(x). This problem is very
ill-posed unfortunately and can be solved directly only by
making a number of approximations such as assuming a
continuous distribution of sources and receivers (Beylkin,
1985; Beylkin and Burridge, 1990). We can avoid such
assumptions using the generalized inversion methods intro-
duced by Tarantola (1984). Following Jin et al. (1992), we
pose the inverse problem as follows: given a fixed source
point s, find the model perturbation f(x) that minimizes the
following objective functional:

1
J1(f, x|s) = g f dx, f dog(x, s, X;, »)

X [suobs(xr’ S, ®) — dUqi(Xy, S, "-’)]2’ 7

where the integral extends over all available receivers x, for
the present source point s. du,p,(X,, s, ) are the observed
reflection data and Bu (X, S, w) are the seismograms
computed by equation (4) for the current perturbation model
Sf(x) and background velocity c,(x). The weight function
g(x, s, X,, o) was defined by Jin et al. (1992) as

® s ) Ip(s, x, x.)|2$(p; X, s, %)
X, S, Xy, = I’
1 P QmA%s, x, x;)o

where p is the total slowness vector or gradient p(s, x, x,)
= V,1(s, x, X,) of the two way traveltime (s, x, x,) = (s, X)

(8
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+ 7(x, x,) from the source at s to the scatterer at x and then
to the receiver located at x,.. A(s, x, x,) = A(S, X)A(x, x,) is
the product of the amplitudes along these two ray segments.
3(p; x,, s, x) is a Jacobian relating the receiver position x,,
the source s and the point x where we want to estimate the
model to the total slowness vector p(s, x, x,.) (see Figure 1).
If we use the operator notation P to represent the forward
operator defined by equation (4)-—i.e., we rewrite it in the
concise form du = Pf—the least-squares solution of
equation (7) satisfies the following normal equation:

P'gPf = P'gdu,, (%)

where l_’* denotes the adjoint of the operator P. If we define
the Hessian operator H = P*qP, then

Hf = B'qdups. (9b)

In general, it is not possible to solve this equation exactly
because of the huge number of variables in the Hessian.
However, as shown by Jin et al. (1992), by a judicious choice
of the weight function g(x, s, r, ), the Hessian H at the point
x can be approximately diagonalized within the theory of
asymptotic Fourier integrals introduced by Beylkin (1985).
As shown in the appendix, within the frequency band of the
source signal the Hessian H is approximately the identity
operator

H=1 (10)
at x and the approximate solution of the inverse problem (7)
is simply:

f= P'gdu,s, an

Source Receiver

ray from
receiver

x(8:X)
v,(r,s)

V. T(s,x,r)

FiG. 1. Ray geometry in the vicinity of a diffraction point for
the linearized inversion of a CSG. A ray from the fixed
source arrives at this point and is scattered toward the
receiver. The receiver position can be parameterized either
by its coordinate along the surface or by the angle § of the
direction of the total traveltime gradient V ,.7(s, x, r).

which can be written explicitly in the time domain as:

1 p(s, X, Xy)
f(x[s, co) = . fr dx. 3(p; x;, s, x) m
X %[auobs(sa Xy, 7(s, x, xr)]a (12)

where we use the notation f(xs, c;) to emphasize that
equation (12) computes a small-scale model for a fixed
source position s and for a given background velocity model
cg. ¥ denotes the Hilbert transform with respect to the time
variable. Equation (12) is a modified prestack depth migra-
tion with a dynamic correction for amplitude and phase. A
similar equation was found by Beylkin (1985) and Miller et
al. (1987), assuming a continuous distribution of receivers r.
As shown by Jin et al. (1992), the approximation of the
Hessian (10) is not exact, so that expression (12) should be
considered only as the first iteration in a quasi-Newton
iterative procedure. However, for our purposes of estimat-
ing the background velocity, a single iteration is good
enough. Once the background has been inverted, it is still
possible to improve the perturbation model by further iter-
ations. The traveltime 1, the Jacobian §, the slowness p and
the ray amplitude A that appear in equation (12) are calcu-
lated by ray tracing in the current background velocity
model (see Lambaré et al., 1992).

THE COST FUNCTIONAL FOR NONLINEAR INVERSION

Nonlinear inversion is generally done by maximizing or
minimizing an objective functional that measures the difference
between a certain function of the observed data and the same
function calculated from a model. A model is considered to be
good if it can predict the data with the least possible error. The
cost functional used in nonlinear velocity inversion by most
authors (e.g., Snieder et al., 1989; Cao et al., 1990) is a
least-squares waveform misfit-functional defined directly from
the observed seismograms. A practical shortcoming of this
function is that it requires computationally expensive forward
seismic modeling to evaluate it. Another disadvantage is that
the misfit-functional is very flat for bad models and it has deep,
narrow minima near the good models. Most linearized iterative
inversion methods converge extremely slowly, and conver-
gence to local minima is frequent. Thus a vast amount of
seismic modeling is unavoidable if this method is used to obtain
a velocity model, so that velocity inversion using this misfit
function is difficult to envisage in practical situations.

To avoid forward seismic modeling, we propose an objec-
tive function calculated directly in migrated data space.
Inspired by the iterative migration velocity analysis of Al
Yahya (1989), we define a cost functional that is computed
from the data migrated by our asymptotic linearized inver-
sion method. The objective functional we propose is

J2(co) = 2 a(x) 2| 2 Ax, zls, Co)., (13)

X Z

where ¢y is the background velocity model used for the
asymptotic linearized inversion-migration of each common
shot gather (CSG). For each source s, we calculate a
small-scale velocity model f(x, z|s, cy) at a set of surface
locations x and depths z. For each surface point x we can
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construct an Iso-X gather, aligning the different models f
obtained for each source point s. Several of these Iso-X
gathers are shown in Figure 7. As suggested by the synthetic
experiments of Al Yahya (1989) a correct background veloc-
ity model is one that makes the reflection events in each
Iso-X gather flat. It is clear that the sum of an Iso-X gather
over the sources s is a measure of the alignment of the
reflection events and, therefore, of the validity of the back-
ground velocity model used to generate the Iso-X gather.

The objective functional J, that we propose is obtained
summing each Iso-X gather over all sources and depths.
Finally, we sum over x using a weighting coefficient a(x). If
the background velocity model is correct, J,(cy) attains a
global maximum, because for a surface location x, all
flx, zls, cg) are summed constructively. Thus the cost
functional J, provides a measure of the coherency of the
small-scale models f. The velocity model which maximizes
the cost functional J, is considered to be the best model.

Because the number of reflectors may be different for
different surface locations x, we use a weighting coefficient
a(x) in the objective function. a(x) is chosen so that
a(x) X,|3, f(x, zs, cg)| are nearly independent of x. In our
implementation, we obtain this as follows: at the beginning,
we set a(x) = 1. When we have obtained a ‘‘good enough”’
model (tenth accepted model, for example), we set a(x) =
1./Z,|Zs fix, z|s, cg)|. Finally we use this a(x) to continue
the velocity-optimization process. We can do this more than
once in the course of the optimization if necessary.

Let us remark that unlike the norm J(f, x|s) defined in
equation (7), which is an £2-norm (quadratic), J, is an &'
{absolute value) norm. As shown by Crase et al. (1990), £!
norms are usually more robust and can handle noisy data
better than ¥? norms. For the linear step we kept an
$%-norm because it gives the simple migration-inversion
algorithm (12). For the nonlinear step we are free to choose
the more robust £!-norm, since the inversion is entirely
done numerically.

MONTE CARLO NONLINEAR INVERSION OF BACKGROUND
VELOCITY

The goal of the inversion method is to choose a smooth
velocity model which maximizes the objective functional J,
defined in equation (13). This goal is achieved by iteratively
changing the background velocity model ¢y by a Monte Carlo
random walk in model space and calculating f{x, z|s, cg) from
different CSGs. Then we calculate J,(cy) and compare it to
its previous values. The process is repeated until the Monte
Carlo method cannot find a velocity model that increases the
value of J,(cg). We restrict the model space to realistic
velocity models, and the more a priori information we have
about the model we are looking for, the smaller the space of
models we have to explore with the Monte Carlo method.
For instance, if we know the velocity at some locations (at
the earth surface, for example), we fix the velocities of these
points to reduce the number of degrees of freedom of the
problem. We chose the Monte Carlo method for background
velocity inversion because, as suggested by Landa et al.
(1989), this is an efficient method for the global optimization
of a nonlinear functional. Monte Carlo techniques are of
course very expensive if the forward model contains many

parameters. Thanks to our separation of small- and large-
scale velocity inversion, the number of model parameters
used in the nonlinear inversion step can be reduced to a few
B-spline coefficients. Combined with an efficient ray-tracing
technique, we found that it is quite possible to use the Monte
Carlo method to maximize the cost functional J,. Since the
computation of J; does not require human intervention, our
process is automatic.

The flow diagram for nonlinear reference velocity inver-
sion is depicted in Figure 2. Starting from an initial velocity
model ¢y = c,, we choose at random a direction r in
model space and define a new model by

cp =cq tdcr. (14)

The step in velocity model space dc must be chosen suffi-
ciently large so that the Monte Carlo method can rapidly
explore all the interesting parts of the model space. Using
the criterion J,, we decide whether to keep or reject each
successive model. The complete cycle is restarted again by
choosing a new random direction r and using equation (14) to
compute a new trial velocity model. The index n counts the

Initial
velocity
model ¢,
n=0

( »=c+dc.1

(Upward fay-tracing

Y
Compute f(xls) by
asymptotic inversio
using ¢y

velocity model
Ca

FiG. 2. Flow diagram for the nonlinear Monte Carlo inver-
sion method. Starting from an initial background velocity
model c¢,, we do a linear inversion for the small-scale
velocity perturbation f(xs, ¢,). From this we calculate the
cost functional J, and decide whether to keep or delete this
model. The process starts again and continues until a num-
ber n > N models have been tested without increase in the
value of J,. The maximum number of random steps N is
chosen by the user.
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number of trials that fail to find an acceptable model after the
last acceptance. If this number is greater than a given
number N, the random walk in background velocity space is
terminated and the last accepted model—the one with max-
imum J,—is taken as the best velocity model.

A problem that arises when a trial background velocity is
far away from the true earth velocity is that the first Born
approximation used for computing f(x|s, c,) breaks down.
However, this effect is just what we want to observe because
the violation of the Born approximation reveals a bad
velocity model which we will reject. The illegal use of the
Born approximation for an inadequate background velocity
model degrades the obtained images. The error in the images
can be measured by J,. In this sense, J, is a measure of the
validity of the Born approximation. A good background
velocity model has been obtained if and only if the Born
approximation is applicable for this model.

MODEL PARAMETERIZATION

To accelerate the computation, we did not apply the
Monte Carlo method directly for the inversion of the com-
plete velocity model. Instead, we divided the velocity model
into several interlaced layers from top to bottom and inver-
sion was performed for each layer from the top down. This
layer-stripping procedure reduces considerably the compu-
tation volume because the number of ray tracings needed for
migration is reduced by the factor of the number of layers in
the model. Let us remark, however, that the model should
not be divided too thinly, because the top-down strategy has
the obvious drawback of accumulating errors. To alleviate
these errors, the layers must be interlaced and the thickness
of each layer must be large enough to contain a sufficiently
large number of reflectors so the inversion method does not
converge to a local minimum. Of course, if one of the layers
is not well-inverted, we cannot obtain a globally optimized
velocity model. Ideally we would like to invert globally, but
the cost of the Monte Carlo method increases very rapidly
with the number of parameters retained in the inversion.

Because the Monte Carlo method is applied to successive
vertical layers, the velocity model has to be parameterized
using different vertical and horizontal interpolation func-
tions. To decouple the velocity variation in a layer from that
of the other layers, we must use a low order interpolation in
the active layer. In our implementation we used a simple
quasi-bidimensional interpolation function so that the values
of the velocity ¢y at a point (x, z) are given by

= Z;
CO(X, Z) = CO(X’ Zf) +
Zi+1l — %
X [eo(x, zi+1) — colx, z1)], (15)

where z; are the coordinates of the horizontal grid lines. The
velocities ¢y (x, z;) along these lines are obtained by cubic
spline interpolation (de Boor, 1978). The quasi-bidimen-
sional method is particularly adapted to our case where the
knots are regularly spaced in the horizontal direction and at
variable depth in the vertical direction. The quasi-bidimen-
sional approach was reviewed by Gonzalez-Casanova and
Alvarez (1985). The derivatives of cy(x, z) that are needed
for ray and dynamic-ray tracing can be obtained by deriva-

tion of the spline functions. In our implementation, grid
spacing in the vertical and horizontal directions were differ-
ent. Vertical spacing is controlled by the number of signifi-
cant reflectors that are included in each layer. The horizontal
grid spacing, on the other hand, should be chosen as loose as
possible to reduce computer costs.

Figure 3 shows an example of ray tracing where, for
clarity’s sake, we show only a few rays shot from a single
depth horizon. In the actual computer implementation, rays
were traced much more densely and shot from many depths.
In this figure, we also show schematically the velocity grid.
Ray quantities at diffraction points needed for the applica-
tion of our linearized inversion scheme were obtained by
high-order interpolation of the parameters calculated at the
grid points.

AN EXPERIMENT WITH NORTH SEA REFLECTION DATA

To test the ability of our procedure to handle practical
problems, we applied it to a reflection profile from the North
Sea. The reflection profile consists of more than 800 shots
with a total cable length of 2400 m for 96 groups of hydro-
phones; the group interval and the shot interval were
both 25 m; the sampling rate was 0.004 ms; and total record
length was 6 s. In the previous paper by Lambaré et al.
(1992), we applied our linearized asymptotic inversion
method to this data-set. In Figure 4 we show the result of
linearized inversion using a 2-D background velocity model
obtained by classical 1-D velocity analysis.

The only preprocessing that we performed on the data was
to attenuate the multiples coming from the ocean bottom.
Theoretically, to obtain the small-scale variations of the
velocity field using equation (12), we should first deconvolve
the source function from the field data. This is a difficult
procedure, however, because the source functions are band-
limited and they cannot be completely removed from the

v

\&i}\\ 1

Fic. 3. Geometry of upward ray tracing. Rays are traced
from the image point toward sources and receivers located
on the earth surface. The arrows denote the Iso-X points.
Superimposed on the rays we show schematically the typical
size of the grid where the velocity model is defined. Veloc-
ities in each cell are represented by quasi-bidimensional
spline interpolation function.
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seismic data (Lambaré et al., 1992). The main effect of the
source function is to limit the frequency band of the small-
scale velocity model, inverted using equation (12). Decon-
volution is needed only if we want the small-scale velocity
model inverted from (12) to match as closely as possible the
true short-wavelength components of the medium. In non-
linear inversion we are actually interested in the lateral
coherency of the small-scale images obtained by linearized
inversion of continuous Common Source Gathers (CSG), not
on the exact value of f(x[s, ¢y). For this reason we decided
not to deconvolve the source signature from the seismic
traces. An obvious danger of this procedure is that of
cycle-skipping in the inversion which would cause the Monte
Carlo technique to converge to the wrong cycle in the
reflector event. As long as the source-time functions are
nearly the same for all CSGs and do not remove the main
features of the small-scale velocity model, the source wave-
let should not influence the results of background velocity
inversion. However, if the onset times and source functions
vary significantly from CSG to CSG, deconvolution may be
necessary to make the recorded CSGs more consistent. A
final point to notice is that waves propagate in three dimen-
sions. To compensate approximately for 3-D geometrical
spreading, we replaced the weighting coefficient a(x) by
a(x)\/z where z is the depth of an image point.

To reduce computational costs and to save memory we
applied nonlinear inversion to a subsection of the seismic
profile. We chose a 7200-m section from shot numbers 260 to
548. To facilitate ray tracing and to take into account
receivers located beyond the target zone, we extended the
model 400 m on each side, giving a total model length of 8
km. Then, from this segment of the profile, we took only one
of every two shots, so that we inverted a total number of 144
CSGs. A further reduction of the data set was obtained by
using only 48 traces in each CSG, a reduction of 50 percent

from the original data. This reduction has little influence on
the inverted background velocity model, because our data
set is very over-determined. With this reduction of available
data, the shot and receiver intervals both became 50 m.
Since we are interested in inverting the large-scale part of
the velocity model, we used a very coarse parameterization.
The grid spacing was chosen as 1000 m horizontally and
300 m vertically. The velocity field was parameterized using
the quasi-bidimensional scheme presented in the previous
section. Kinematic and dynamic ray tracing were calculated
on this interpolated model. For the computation of each
Iso-X gather we inverted 24 CSGs. Since the intertrace
interval is 50 m, the offset between the first and last trace in
each Iso-X gather was 1.2 km. Iso-X panels were calculated
every 500 m; and in the computation of J,(¢g), 13 Iso-X
gathers were summed for a total profile length of 6 km.
For nonlinear inversion, we used the top-down strategy
described in the previous section. The layers used in inver-
sion, as well as the knots for the definition of the model, are
displayed in Figure 5. We fixed the velocity of the top of the
model at 1570 m/s, which is the acoustic velocity of the sea
water. The model was divided into five layers from top to
bottom. The thickness of the first layer was 1000 m and the
others were 900 m thick. We did not invert for the velocity of
the first layer (from 0-900 m) because of the presence of
strong, complicated water-bottom multiples that appear at
wide reflection angles. The velocity in this range was ob-
tained by interpolation. As explained earlier, to reduce error
accumulation, the layers were interlaced, so that the bottom
of a layer is in the interior of the following one. Each layer
contained 24 unknowns, eight of which were reinverted in
the following step because they belonged to two consecutive
layers. For each layer, nonlinear inversion was automati-
cally terminated after about 800 iterations because of the
inability to find a new acceptable model during the last 120

Location (km)

4 5

6 7

TR

'EJH T T

= t—

(et

F16. 4. Seismic profile from the North Sea. Result of linearized asymptotic inversion obtained by Lambaré
et al. (1992) using the background velocity obtained by velocity analysis.
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iterations. Since we were interested only in smooth velocity
models, in the random walk we accepted only those models
that made ray tracing regular. Therefore, in the implemen-
tation of our algorithm, we systematically rejected models
that contained ray singularities that prevented the rays from
reaching the surface. In the optimization process, the veloc-
ity variation range was limited to the interval from
1700 m/s to 5500 m/s. The maximum step dc (Figure 2) for
the Monte Carlo random walk was chosen as 3000 m/s. This
step is large enough to allow the optimization algorithm to
escape from secondary maxima of the objective functional.

The final result of the inversion is shown in Figure 6. To
facilitate ray tracing, the velocity model is extrapolated on
both sides of the section. Since our objective function J,
measures the lateral coherency of the small-scale models,
Iso-X gathers provide a direct visual verification of the
quality of the result of nonlinear inversion. In Figure 7 we
present several Iso-X gathers calculated using the inverted
background velocity model of Figure 6. From this figure, we
see that maximizing J,(cy) is actually equivalent to aligning
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Fic. 5. Parameterization of the model for Monte Carlo
inversion. The background velocity model for the profile is
parameterized using 72 knots indicated by the filled circles.
A Monte Carlo inversion following the flow diagram of
Figure 2 was performed on each of the four interlaced layers
shown in the figure. Twenty-four parameters were simulta-
neously inverted in each Monte Carlo step.
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F16. 6. Contour plot of the final background velocity model
obtained by nonlinear Monte Carlo inversion.

the reflectors in the different Iso-X gathers. Thus our best
model is expected to be the same as the one that would be
obtained using migration-velocity analysis. Some residual
moveouts in Iso-X gathers of Figure 7 still exist, especially
for the deeper layers. This is probably because of the
accumulation of errors from the process of layer-stripping. It
is likely that this problem would disappear if we had inverted
for all depths simultaneously. But this requires the use of a
much bigger computer than the workstation we had avail-
able.

To compare the result of nonlinear inversion with that
obtained by conventional velocity analysis, we show in
Figure 8 the velocity model obtained by classical procedures
by Lambaré et al. (1992). This model was obtained by
smoothing the interval velocities calculated by the Dix
equation from the stacking velocities. Comparing with Fig-
ure 6, we observe that the result of the velocity analysis is
different from our model obtained by the Monte Carlo
method, especially below the depth of 2 km. The effect of the
velocity model on the inverted small-scale profile can be
observed by comparing the results shown in Figure 4 with
that of Figure 9. Figure 4 was calculated with the background
velocity model obtained by velocity analysis (Figure 8), while
Figure 9 was calculated using the model obtained by nonlin-
ear inversion (Figure 6). Using the background velocity
inverted by our technique, linearized inversion has better
resolution, while, using the velocity model obtained by
velocity analysis, the inverted section (Figure 4) is less sharp
and has many unrealistic lateral discontinuities below the
depth of 2500 m, between surface locations x = 2000 m and
x = 4000 m. To verify that the model obtained by Monte
Carlo inversion was better than that determined by velocity
analysis, we calculated the value of the contributions of each
Iso-X to the objective functional J,. The result presented in
Table 1 shows that the model obtained by nonlinear inver-
sion is systematically better than that of velocity analysis at
all depths. J, is 2 percent larger for the inverted model.
Since our inversion method is based on the lateral coherency
of the Iso-X gathers, in Figure 10 we compare the Iso-X
gathers calculated at x = 3200 m for the two velocity
models. Although in both of them the events in the Iso-X
gathers are visually well-aligned, they do not give the same
migrated sections (cf. Figures 4 and 9). This is because in
nonlinear inversion we assumed the background velocity
model to be 2-D; while, for velocity analysis, velocity
variation was assumed to vary only with depth. Although the
subsurface we studied has only weak lateral variations, the
assumption of a local 1-D earth considerably degrades the
migrated results. The conventional velocity analysis is done
independently at one surface location after another. In this
manner it produces unrealistic strong lateral velocities gra-
dients (Figure 8). In contrast, velocity analysis by the Monte
Carlo method is done simultaneously at many surface points.
The velocities under one surface point must maximize not
only the stacking power of this point but also the stacking
powers of the neighbor points. This means the velocities are
subjected to more constraints than CMP stacking velocity
analysis. In this way, we can reduce more nonuniqueness of
the solutions than can conventional velocity analysis.

As a direct verification of our results, we compare in
Figure 11 the large-scale velocity model obtained from
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nonlinear inversion with a velocity-log from a 2500-m deep
well located in the vicinity of shot 350, near x = 4 km. The
well log has been low-pass filtered with a cut-off frequency
similar to the maximum frequency contained in the seismic
data. The agreement between the low frequency trend of the
average sonic velocity with the result of inversion is quite
satisfactory, although some low frequencies are missing,
especially above 1.2 km depth. The main reasons for the
missing frequencies are: first, the Monte Carlo method can
find the solution only near the true one for finite iterations.
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Second, systematically low velocities above 1.2-km depth
may be produced by the multiples generated at the sea
bottom. Although comparing to the well log is an imperfect
method, this result confirms that our nonlinear inversion
method produces reasonably accurate velocity estimates.
Finally, as an indication of the computer costs of our
algorithm, we provide the following information. The com-
putation of one Monte Carlo step and an evaluation of J, for
one velocity model for the set of 144 shot gathers (a total of
6912 traces, each of which contains 1500 samples) took
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about 2 minutes of CPU on a Sun Sparc-2 workstation. This
CPU time includes the computation of inversion-migration
for all the traces and the computation of J,.

DISCUSSION

We have shown that inverting seismic profiles in two
steps—a fast asymptotic linearized step for the small-scale
velocity perturbations and a full nonlinear Monte Carlo
inversion for the large-scale part—yvields an effective algo-
rithm that can be used in present-day computers. Two
different objective functions were used for the velocity

determination problem. The global minimum of the wave-
form misfit-function J, is obtained only if J, is close to its
global maximum. The use of two different cost functionals is
critical to the success of our method. Without this separa-
tion, optimization based only on the waveform misfit would
be too slow because of the sheer number of degrees of
freedom contained in the waveforms.

Although we did not make explicit use of traveltimes for
the determination of the reference velocity, the cost func-
tional J, belongs to the class of kinematically coherent
criteria. A model that gives the correct kinematical travel-
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times gets a high value of J,, so that it is preferred to those
that give incorrect traveltimes under this criterion. Kinemat-
ically correct models are not unique, however, because there
is always a group of velocity models that do not affect the
traveltime data. For example, Claerbout (1985) and Jannane
et al. (1989) found that, with standard reflection data re-
corded at the Earth’s surface, it is possible to retrieve only
the long-wavelength structure of the velocity and the short-
wavelength structure of the impedance. A whole band of
intermediate wavenumbers is undetermined by reflection
profiles. Only transmitted waves seem to have information
about these intermediate wavelengths. In practice this
means that, under any kinematic criterion, the model ob-
tained from inversion can be modified at certain intermedi-
ate-scale wavelengths without affecting the fit of the wave-
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Fic. 8. Velocity model obtained by Lambaré et al. (1992)
using conventional velocity analysis.

forms or the traveltimes. This basic indeterminacy has to be
taken into account when comparing the results obtained by
classical velocity analysis (Figure 8) with those obtained by
inversion (Figure 6). This nonuniqueness also makes it very
difficult to obtain estimates of the accuracy of the velocity
model obtained by nonlinear inversion. This problem will be
the subject of future work.

In this paper we used a Monte Carlo random search in the
large-scale velocity model space. This is certainly not the
only, or the best, nonlinear method for the exploration of
solution space. Other algorithms that can accelerate conver-
gence can be used; for instance, simulated annealing (Landa
et al., 1989) or genetic algorithms (Stoffa and Sen, 1991). The

Table 1. Comparison of the contribution to the objective
functional J, of several different Iso-X sections for the two
models obtained by velocity analysis and by the Monte Carlo
technique. The objective functional J, is the sum of the
columns.

Iso-X
Location Velocity Monte
X analysis Carlo
1.0 km 0.749 0.759
1.5 km 0.932 1.000
2.0 km 0.653 0.694
2.5 km 0.632 0.634
3.0 km 0.677 0.683
3.5 km 0.718 0.680
4.0 km 0.783 0.829
4.5 km 0.788 0.800
5.0 km 0.696 0.704
5.5 km 0.737 0.749
6.0 km 0.730 0.729
6.5 km 0.778 0.811
7.0 km 0.886 0.898
Js 9.759 9.970

Location (km)
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FiG. 9. Seismic profile obtained by linearized inversion-migration using the background velocity obtained
by the Monte Carlo technique.
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use of genetic algorithms for the inversion of background
velocities was considered by us in a recent publication (Jin
and Madariaga, 1993).

Let us remark that, in principle, any fast prestack migra-
tion or linearized inversion method can be used to determine
the small-scale impedance model used for the evaluation of
the cost functional J,(cg). However, our linearized asymp-
totic inversion based on ray theory has two advantages: first,
since the Iso-X are sparsely sampled, we only need to trace
a relatively small number of rays. Second, in contrast with
finite difference migration-inversion we do not have to do a
backward migration of surface data and then apply the
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Fic. 10. Comparison of the Iso-X gathers calculated at x =
3200 m: (a) using the background velocity obtained by the
Monte Carlo technique, (b) using the background velocity
obtained by velocity analysis.
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Fic. 11. Comparison of the background velocity model
calculated by the Monte Carlo technique (smooth line) at
shot position 350 (close to x = 4 km in Figure 9) with a
filtered velocity log from a well located in the vicinity of this
shot.

imaging condition. The two steps are reduced to a single one
using ray theory. This is the main reason why our nonlinear
inversion is so fast.

Like any method that analyzes reflections, nonlinear in-
version is limited by its inability to resolve the velocities
where there are no reflectors. Our method is also limited by
the lack of redundancy of the data, by strong coherent shot
noise that may degrade the resolution, and by water-rever-
berations and multiple arrivals that perturb the model re-
trieved for shallow depths. Generally, the influence of the
multiples can be removed at greater depths because the
velocity differences between primary and multiple events is
sufficient to remove a significant amount of multiple energy
by common-shot stacking in the cost functional J,(cg).
Errors caused by waveform cycle-skipping in horizontally
aligned Iso-X gathers occur only when the velocity model is
correct. These errors will affect, of course, the small-scale
model but they will not modify the results of velocity
inversion. Once the velocity model has been sufficiently
well-determined, a few steps of iteration of the linearized
inversion method should be performed to eliminate the
effects of cycle-skipping.

The precision of the obtained velocity is mainly controlled
by the offset range of the data. Under the assumption that
the medium is invariant with depth, Lynn and Claerbout
(1982) studied the relation between the minimum obtainable
lateral resolution and cable lengths. The relation between
lateral velocity resolution and source-receiver separations
was also discussed in Bickel (1990).

CONCLUSION

We have proposed a nonlinear Monte Carlo inversion
method for the iterative determination of large- and small-
scale components of the velocity model from surface seismic
data. Realizing that the smooth background model requires
fewer parameters than the short scale model, we separated
the inversion into two parts: a linear inversion for the
small-scale part, and a nonlinear inversion for the smooth,
large-scale part of the model. The advantage of this separa-
tion is that nonlinear inversion can be formulated with a
relatively small number of parameters, while linear inversion
has a very large number of degrees of freedom.

For the inversion of the smooth background velocity
model, we used the fact that the location of reflectors
obtained by linearized inversion contains the required infor-
mation to invert the background velocity. We showed that
the coherency of the images reconstructed by inverting
different data subsets can be used as a measure of the quality
of the velocity model. In our inversion method we used the
coherency of the models obtained by different CSGs. Using
the fast linearized asymptotic inversion technique that we
developed previously (Jin et al., 1992; Lambar€ et al., 1992),
the iterative process of velocity determination can be per-
formed automatically by a standard Monte Carlo method. To
accelerate nonlinear inversion, we do not invert the whole
model in a single operation; instead we proceed by a series of
interlaced layers and perform inversion one layer at a time.
This reduction in the number of parameters for the nonlinear
part renders the problem tractable in present-day computers
for a seismic profile that is almost 7 km long. Much larger
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models could, of course, be inverted in supercomputers and,
in particular, it would be possible to avoid layer-stripping in
the inversion.

Inversion of a profile from the North Sea shows that the
Monte Carlo method can be used to retrieve a laterally
heterogenous velocity model in a realistic situation.
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APPENDIX
ESTIMATION OF THE HESSIAN

We show very briefly the method used to approximate the
Hessian H = P'qP defined in equation (9). The linearized
forward modeling operator P was defined as the operator in
expression (4). Therefore the Hessian is:

_ .4
B, yls) = — [ "™ d o f dxy g%, 5, Xe. ©)
2w .
Omin R
X Gf(xr’ y, w)G*(Y1 S, w)G(xl‘! X, (JJ)G(X, S, 0.)), (A'l)

where M is the support of f(y), dR is the data acquisition
line. (®wmin, ®max) is the frequency band of the seismic source
signal.

To estimate H, we replace the Green’s functions in equa-
tion (A1) by their high-frequency asymptotic approximation
(6). We consider the inversion of f in a small vicinity of the
current point x. We approximate the amplitude functions
A(x,, s, y) = A(y, s)A(x,, y) near x by a constant amplitude
A(x,, s, x), and we expand the two-way traveltime function

(X, 8, ¥) = 1(y, §) + 7(x,, ¥) in a first-order Taylor series
about the point x:

T(xr, s, Y)_T(xr, S, x)=p(xr, S, X)'(y—x)- (A-2)

We thus obtain from equation (A-1)

1 Ymax
H(x, yls) = (21-r)2f o dw LR dx.p$(0, & X;, S, X)

9 min

X glop -y ~x)

where p = ||p|| was defined in equation (8). For a given
source point s there is a one-to-one mapping from the total
slowness vector p to receiver position x,.. We can therefore,
following Figure 1, change variables from x, to & The
Jacobian of this transformation is precisely $. By this
transformation, dR is mapped into a subset = of a unit circle.



590 Jin and Madariaga
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H(x, yls) = o do f dgpZeelrt v,
(2ﬂ)24’:"min

(A-3)
Finally, changing variables from w and & to k defined by
k = wp, (A-4)
we get, using k = |k||:
H(x, yls) = k dx dE e® 0%, (A-5)
v =55 L k

where @, is the domain of definition of equation (A-5) in the
Fourier domain k. This domain depends on the data acqui-
sition geometry and the signal frequency band. It controls
the spatial resolution of f(x|s). Equation (A-5) is a band-
limited approximation to a delta function. When @, is
sufficiently large, H approaches

I:](Xs y, S) = B(X - y)a (A'6)

which is the approximation we have used in deriving equa-
tion (11). Let us remark that the Hessian is unitary thanks to
the choice of the weighting function q in the objective
functional J;. For further details refer to Jin et al. (1992).



