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Criticality of Rupture Dynamics in 3-D

RAUL MADARIAGA1 and KIM B. OLSEN2

Abstract—We study the propagation of seismic ruptures along a fault surface using a fourth-order
finite difference program. When prestress is uniform, rupture propagation is simple but presents essential
differences with the circular self-similar shear crack models of Kostrov. The best known is that rupture
can only start from a finite initial patch (or asperity). The other is that the rupture front becomes
elongated in the in-plane direction. Finally, if the initial stress is sufficiently high, the rupture front in the
in-plane direction becomes super-shear and the rupture front develops a couple of ‘‘ears’’ in the in-plane
direction. We show that we can understand these features in terms of single nondimensional parameter
k that is roughly the ratio of available strain energy to energy release rate. For low values of k rupture
does not occur because Griffith’s criterion is not satisfied. A bifurcation occurs when k is larger than a
certain critical value, kc. For even larger values of k rupture jumps to super-shear speeds. We then
carefully study spontaneous rupture propagation along a long strike-slip fault and along a rectangular
asperity. As for the simple uniform fault, we observe three regimes: no rupture for subcritical values of
k, sub-shear speeds for a narrow range of supercritical values of k, and super-shear speeds for k\1.3kc.
Thus, there seems to be a certain universality in the behavior of seismic ruptures.
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Introduction

Earthquakes are complex at all scales. Recent studies of a number of earth-
quakes that were well-recorded in the near field reveal that both slip and stress drop
in these earthquakes are very complex. The first evidences of these complexities
were discussed by DAS and AKI (1977a), AKI (1979), DAY (1982) and many others.
BEROZA and MIKUMO (1996), BOUCHON (1997), IDE and TAKEO (1997), among
others, showed that stress drop for all well studied earthquakes is highly variable in
space and can be both positive (where fault slips) or negative (stress increases)
where there is no slip. Some of these properties were indeed introduced in the
original ‘‘asperity’’ model of KANAMORI and STEWART (1976) and in the ‘‘barrier’’
model of DAS and AKI (1977b) who realized that the simple uniform stress drop
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models were exceedingly simple representations of the earthquake source. MADAR-

IAGA (1979) showed that seismic radiation from these models would be very
complex and that high frequency radiation would be quite different from that
predicted by the simple circular crack models of KOSTROV (1964) and MADARIAGA

(1976).
The study of complex fault models has gained new attention in recent years in

the wake of the suggestion by CARLSON and LANGER (1989) that earthquakes may
become spontaneously complex due to nonlinear effects in friction. Other alterna-
tives to the origin of complexity were discussed by RICE (1993) and RICE and
BEN-ZION (1996), who suggested that at least some of the complexity found by
Carlson and Langer was due to the lack of a continuum limit in the velocity
weakening friction law they used. Applying a simple regularized friction law with
velocity weakening, COCHARD and MADARIAGA (1996) found that heterogeneity
appears spontaneously only in a limited parameter range of rate-weakening. More
recently, SHAW and RICE (2000) have studied the conditions for the development of
complexity in well-posed numerical simulations.

In order to study complexity we must model earthquakes accurately, taking into
account all the relevant length scales in the problem, both (intrinsic) length scales
associated with friction as well the (extrinsic) scale associated with fault size and
asperity distribution. This is not a simple task because accurate numerical modeling
of ruptures requires vast amounts of computer resources. Although DAS and
KOSTROV (1983) and DAY (1982) made calculations of complex faults with
heterogeneous distributions of stress and rupture resistance, these models contained
insufficient resolution to study the more difficult problem of the interaction between
intrinsic and extrinsic length scales. Recent development of finite difference meth-
ods in 3-D (HARRIS and DAY, 1993; MIKUMO and MIYATAKE, 1995; OLSEN et al.,
1997) or Boundary Integral Equation methods (FUKUYAMA and MADARIAGA,
1998), together with the availability of fast parallel computers, has opened the way
to the study of accurate rupture propagation models.

In this paper we will report on our study of the nature of three-dimensional
rupture propagation for a couple of very simple classical models of rupture: the
rectangular fault and rectangular asperity. With our new computational capabilities
we study the propagation of rupture in these models for a broad parameter range
and demonstrate that rupture propagation is controlled by a simple nondimensional
number. The nondimensional number has a critical value below which ruptures die
very quickly. For nondimensional values slightly above critical, ruptures grow at
speeds close to the shear wave speed as most earthquakes do. For larger values,
ruptures grow faster than the speed of shear waves, which is rarely observed
unambiguously in earthquakes. By examining the stress field of recent events we
suggest that earthquake ruptures occur at nondimensional numbers that are most
often critical. Although we cannot prove it for the moment, we believe that this
may be the actual self-organized criticality of earthquake ruptures.
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Modeling Complex Earthquakes in 3-D

An essential requirement to study dynamic faulting is an accurate and robust
method for the numerical modeling of seismic sources. In our recent work we
have used a fourth-order formulation of the velocity-stress method (MADAR-

IAGA, 1976; OLSEN et al., 1997; MADARIAGA et al., 1998) in order to study
dynamic rupture propagation on a planar shear fault embedded in a heteroge-
neous elastic half-space.

Rupture propagation on a major earthquake fault is controlled by the prop-
erties of the friction law on the fault. Friction controls the initiation, develop-
ment of rupture and the healing of faults. Laboratory experiments at low slip
rates were analyzed by DIETERICH (1978), who proposed models of rate- and
state-dependent friction, and by OHNAKA and SHEN (1999) who concluded that
their experiments could be explained with a simpler slip-weakening friction law.
Actually, from the point of view of earthquake observations, these two models
of friction are essentially indistinguishable as shown by OKUBO (1989). Basically,
both slip-weakening and rate- and state-dependent friction contain finite length
scales that control the behavior of the rupture front. Although, these intrinsic
length scales are of very different origin, we can hypothesize that their effects on
rupture is similar. The length scale, that we will generically refer to as Dc, is the
most important ingredient in our study. Without this length scale earthquake
faulting makes little sense due to lack of energy conservation in the fault system.

Because of the equivalence of friction laws at high slip rates, we used a
simple slip-weakening friction law in which slip is zero until the total stress
reaches a peak value (yield stress) that we denote with Tu. Once this stress has
been reached, slip D increases and T(D) decreases:

T(D)=Tu
�

1−
D
Dc

�
for DBDc

T(D)=0 for D\Dc

, (1)

where Dc is a characteristic slip distance. This friction law has been applied in
numerical simulations of rupture by ANDREWS (1976), DAY (1982) and many
others. We note that in (1) and in the following we refer all our stresses to a
reference value equal to the residual friction at high slip. This is why T(D)=0
in the second equation of (1).

Figure 1 presents the geometry of the fault model we study. The most impor-
tant feature of the friction law is slip-weakening that occurs near the rupture
zone on a so-called breakdown or slip-weakening zone just behind the rupture
front. The propagation of the rupture front is completely controlled by the
friction law and the distribution of initial stress on the fault.
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Figure 1
Geometry of a simple rupture propagating along a flat fault embedded in a 3-D elastic medium. Rupture
propagation is controlled by elastodynamic interactions and is damped by seismic radiation. The
boundary conditions on the fault are dominated by friction. We use a simple slip-weakening friction of

peak stress Tu, slip-weakening Dc and energy release rate G.

Spontaneous Rupture of a Uniform Fault

MADARIAGA et al. (1998) studied spontaneous rupture, starting from a circular
asperity of radius R that is ready to break (with stress Tu), and is surrounded by a
fault surface at a constant effective stress level (TeBTu). Rupture is initiated at
time t=0 by instantaneously triggering stress relaxation inside the asperity of
radius R according to the friction law of equation (1). This instantaneous rupture
of the circular patch is less physical than starting from a critical fault and letting the
rupture grow spontaneously. Unfortunately, rupture of a critical fault is an
expensive numerical problem because rupture must start from one point on the
edge, encircle the asperity and then grow outside the initial patch. Such a problem
would take excessive time to solve in our currently available computer.

As ANDREWS (1976) and many other authors have noted, in order for rupture
to expand stress must be high over a finite zone, sometimes referred to as the
minimum rupture patch. Once rupture has broken the asperity, it will grow or stop
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depending on the values of the stress field inside (Tu) and outside the asperity (Te),
the shear modulus m, the half-width of the asperity L=R and the slip-weakening
constant Dc of the friction law in (1).

ANDREWS (1976) computed the minimum patch for a 2-D in-plane fault from
energy considerations and found that the critical half-width of the fault was:

Lc=
1

p(1−n)
Tum

Te
2 Dc, (2)

where n is Poisson’s modulus. He derived this relationship by equating the available
strain energy in the vicinity of the fault to the energy needed to propagate rupture
(i.e., G=1/2TuDc) at one edge of the fault. A similar expression for a circular fault
was computed by DAY (1982) who found that the minimum radius of the initial
patch was:

Rc=
7p

24
Tum

Te
2 Dc. (3)

It is well-known in fluid mechanics (see, e.g., LANDAU and LIFSHITZ, 1959) that
expressions like (2) and (3) can also be derived from dimensional analysis. In doing
that we introduce a nondimensional number k defined as follows:

k=
Te

2

mTu

L
Dc

, (4)

where L is a characteristic length scale, for instance the half-width of the fault, and
Te, Tu, m and Dc were defined earlier. These are the only parameters in this problem,
thus there is no need to introduce additional nondimensional numbers to study the
bifurcation.

When considered as a function of L, expression (4) together with (2) or (3)
defines a bifurcation at a certain critical value L*c, so that ruptures grow only for
values of L]Lc. For in-plane faults kc can be derived from ANDREWS (1976)
expression reproduced in equation (2). We obtain kc=1/[p(1−n)]#0.424 for
n=1/4, the usual value of Poisson’s ratio for crustal materials. For anti-plane
rupture the minimum patch can be computed from IDA’s (1972) expressions, we
find kc=1/p=0.318. Thus, as expected, it is easier to initiate shear fracture in
anti-plane mode than in in-plane mode. For a circular fault the critical number can
be estimated from (3) as kc=7p/24=0.916. From numerical simulations MADAR-

IAGA et al. (1998) found a kc#0.6. The difference probably comes from the loading
conditions assumed by DAY (1982) who studied the rupture of a quasi-statically
loaded crack, while MADARIAGA et al. (1998) triggered rupture by suddenly
loading a circular asperity.

We realize that kc defines a typical Hopf bifurcation. For kBkc rupture does
not grow beyond the initial asperity; while for k\kc it grows indefinitely at
increasing speed without ever stopping. This is a typical bifurcation first noted by
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GRIFFITH (1929). However there is a further complication: if the parameter k is
considerably larger than kc the rupture front in the in-plane direction jumps to
speeds higher than the shear-wave speed. The jump to super-shear speeds was first
reported for plane faults by ANDREWS (1976), who attributed it to the interaction
between an S wave running ahead of the crack and the rupture front itself. In
MADARIAGA et al. (2000) we show that in 3-D the jump from sub-Rayleigh to
super-shear speeds is due to an instability of the rupture front that spreads along
the rupture front like a wave. For the initially circular shear fault, the rupture front
acquires a very nice elliptical shape with two ‘‘ears’’ elongated along the in-plane
direction (see the bottom snapshots in Figure 2).

Rupture in the simple uniform model studied here will never stop once it starts.
Stopping ruptures in 2-D was discussed by HUSSEINI et al. (1975) who showed that
ruptures would stop either because they met unbreakable barriers, or because they
ran out of steam when they entered regions with low stress (a sort of anti-asperity).
In 3-D there are many other possibilities for rupture to stop because stress
distributions can be very complex as mentioned above.

Very Long Rectangular Barrier Model on a Flat Fault

We study two simple models that will put in evidence a simple nondimensional
number that controls rupture growth in 3-D. In order to understand rupture we
must introduce external length scales. These length scales are naturally associated
either with the distribution of rupture resistance in the ‘‘barrier’’ model or with the
distribution of initial stress in the ‘‘asperity’’ model. We will demonstrate that
although the same nondimensional number controls rupture processes in both
models, the critical value of the bifurcation differs.

We study first a model of faulting with only one external length scale. We
assume that rupture is guided by the presence of two strong barriers defining a long
rectangular fault zone (see the upper part of Fig. 3). Rupture resistance is constant
(Tu=1) inside a zone of width W. Outside this zone rupture resistance is sufficiently
high (effectively �), so that ruptures never break outside the fault zone. For
numerical reasons and to avoid end effects we also put barriers along the direction
of faulting. We assume that the entire fault plane is subject to constant ‘‘effective’’
shear stress Te. The only additional ingredient in our model is the friction law
defined above (1). This problem has two stress parameters Tu and Te although only
their ratio is relevant to rupture. Two length scales are involved: W, the half-width
of the fault and Dc, the slip-weakening distance of the friction law. Using the same
dimensional arguments that led to (4), we define the nondimensional number

k=
Te

2

mTu

W
Dc

, (5)
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Figure 2
Rupture growth on a flat perfectly uniform fault embedded in a homogeneous elastic medium. Rupture
starts from a finite initial asperity and then grows at subsonic speed in all spatial directions. After an
interim rupture along the in-plane direction jumps at a speed that is higher than that of shear waves. The
snapshots on the left show slip rate on the fault; and those on the right show the corresponding shear
stress field. Snapshots are shown at four successive instants of time. Time is measured in units of time
for a shear wave to propagate across the asperity. Around time 18, rupture jumps to super-shear speed

along the in-plane direction (horizontal axis).
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Figure 3
Two models of simple dynamic shear faults studied in this paper. (top) A rectangular fault loaded by
uniform stress and bounded by unbreakable barriers. (bottom) A rectangular asperity where rupture

resistance is uniform but initial stress is concentrated in a band or asperity.

in which we have replaced L by the half-width W of the fault. We will now show
that this nondimensional number completely controls rupture propagation.

In the numerical simulations we surrounded the fault by a finite homogeneous
elastic medium with absorbing boundary conditions. As in the unbounded fault
plane, we triggered rupture by instantaneously starting slip on a circular patch of
radius R. This radius was fixed in our computations (R=W/2). It is smaller than
W because as will be shown below the critical number for the initiation of rupture
from a circular patch is always less than the critical number for propagation along
a rectangular fault. All computations were done with W=48 grid points.

In Figure 4 we present snapshots of the slip rate and shear stress fields on the
fault at the same instant of time t=5W/b. All these snapshots were calculated with
a value of Dc=0.416 WTu/m. The control parameter for these calculations was the
ratio Te/Tu that varied from 0.55 on the top panel of Figure 4 up to 0.7 at the
bottom. In the top panel (k=0.726) rupture has already stopped at time t=5W/b.
This shows clearly that seismic ruptures can stop spontaneously. The stress field
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shown on the right hand of the top panel is very close to the final static stress
change around the ruptured part of the fault. In the middle panels (k=0.864) we
show the results for a fault that is very close to critical. Here, rupture advances at
subsonic speed along the longitudinal direction of the fault. The rupture front in
this model is almost steady state and will simply continue to propagate forever at
this speed unless it encounters stress or frictional heterogeneity. The slip rate
indicates that the width of the rupture front is probably controlled by the fault
width, as suggested by DAY (1982). The stress field on the right-hand side manifests
a peak in stress that propagates slightly ahead of the rupture front. This is the
shear-wave front that establishes that rupture is sub-shear in this case. Finally in
the bottom two panels (k=1.176) we show slip rate and stress change for a
super-critical rupture. Here the rupture front has jumped ahead of the shear-wave
front and is close to a steady state. Rupture will continue forever at super-shear
speeds unless it encounters stress or strength heterogeneities.

The results shown in Figure 4 are clearly reminiscent of a bifurcation in the
behavior of the system for a particular value of the effective stress Te/Tu. These
results were found for a particular value of the slip-weakening distance Dc/W=

Figure 4
Snapshots of the shear stress (right) and slip rate (left) fields on a fault bounded by two unbreakable
barriers as shown in Figure 3. The critical value for this configuration is kc=0.8 as shown in Figure 5.
The top panels show ruptures at subcritical (k=0.726), slightly super critical (k=0.864) and very super

critical (k=1.176) values of the nondimensional parameter k.
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Figure 5
Bifurcation conditions for the growth of a rectangular fault. The crosses represent parameter values for
which rupture stops spontaneously. The empty circles are parameter values for which rupture propagates
along the fault with a rupture velocity below the shear-wave speed. Filled circles are parameter
combinations that produce super-shear fracture. The thick continuous and discontinuous lines separate
these parameter fields. The thin dashed line is the approximate critical value kc=0.8 and corresponds

very well with the thick line, the critical boundary found experimentally.

0.416 Tu/m ; changing this ratio affects the value of Te/Tu at which the bifurcation
between non-growth and growth occurs.

In order to explore the conditions of criticality in this model, we carried out
numerous simulations varying the ratios Dc/W and Te/Tu. In Figure 5 we present
the results of our study. Numerical computations are reproducible and feasible only
in the range shown. For Dc/WB0.30 the accuracy of the rupture front resolution
is inadequate (see MADARIAGA et al., 1998) and for Dc\0.7 W, faulting is not well
resolved across the fault width. Thus we expect strong end effects at low and large
values of Dc/W. These limitations could be reduced by using a denser numerical
grid. However, there is a clear systematic separation between the region of growth
and non-growth indicated by the thick line in Figure 5, and a similar boundary
between sub-shear and super-shear fracture further into the zone of rupture, as
indicated by the thick, dashed line. We can approximate the critical boundary using
the expression (5) with a value of k=0.8. This is indicated by the thin dashed lined
marked with the value k=0.8. This is the critical value for this particular model of
rupture, although as remarked earlier its exact value can only be approximately
determined because of end effects. We note that it is larger than the critical value
we inferred for the circular fault (kc=0.6). This explains why it is sufficient to start
the rupture from a circular patch of radius R=W/2.
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Very Long Rectangular Asperity on a Flat Fault

In order to study the condition for rupture propagation in a heterogeneous
initial stress field, we turn to a very simple rectangular asperity model described in
the bottom panel of Figure 3. In this model the initial stress field contains a long
asperity of width W loaded with a longitudinal ‘‘effective’’ shear stress Te. The
asperity is surrounded by a fault plane in which stress is very low (only 0.1 � Tu).
At time t=0 rupture is initiated by forcing rupture over a circular patch of radius
R\Rc where Rc is the critical size for the circular asperity discussed earlier in the
paper. Depending on the value of Te, and the slip-weakening distance Dc, rupture
either grows along the asperity or stops very rapidly. As for the rectangular fault we
again have a bifurcation in rupture behavior, controlled by a critical value.

In Figure 6 we show the slip rate and stress fields on the fault at the same
instant of time t=5W/b, for three values of the load Te/Tu. In all these simulations
the slip-weakening distance was kept fixed at Dc/W =0.833 Tu/m. On the top right
we show the results for Te/Tu=0.7. Rupture started in this case near the left end
of the asperity and stopped growing very rapidly. At time t=5 W/b rupture has
already stopped and what we see on the right-hand panel is the static shear stress
field left over by the rupture. The second row shows the results obtained for

Figure 6
Snapshots of the shear stress and slip rate fields on a fault containing a very long and narrow asperity
(clear in the stress snapshots). The top panels show ruptures at subcritical (k=0.588), slightly super

critical (k=0.768) and very super critical (k=0.972) values of the parameter k.
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Te/Tu=0.8, where rupture propagates along the asperity at sub-shear speeds. We
see that the rupture zone extends beyond the asperity, leaving an elongated final
fault shape. Finally, at the bottom of Figure 6 we show snapshots of slip rate and
stress for a super-critically loaded asperity with Te/Tu=0.9. In this simulation the
rupture front is running faster than the shear wave, producing a wake that spreads
deeply into the lower prestress zone. Thus, as for the rectangular fault model, we
are again in the presence of a bifurcation: when k is smaller than critical as in the
case in the top panels of Figure 6, rupture stops. When rupture is lightly
super-critical as in the central panel, rupture grows slowly at speeds close to the
shear-wave velocity. Finally, for very super-critical conditions, as in the bottom
panels, rupture becomes faster than the shear wave speed, producing strong
super-shear head waves in the low stress areas that surround the asperity.

For the rectangular asperity model we omitted the systematic exploration of the
parameter space that we carried out for the rectangular fault (Fig. 5). Such
parameter study is computationally expensive and we expect the effects to be
similar. The sole difference between the asperity is lower for the former than for the
latter. We find kc=0.7 for the asperity model which may be compared to 0.8 for
the barrier model. This is expected since an asperity compared to a barrier of the
same dimensions is easier to break because rupture will extend into the low stress
areas surrounding the asperity. This is of course impossible in the barrier model.
Finally, as shown in Figure 6, we find again that for large enough k ruptures grow
initially at very high speeds and then jump to a speed higher than the shear-wave
velocity.

Although many authors have studied rupture conditions in the presence of
asperities and barriers, most notably DAS (1981), DAS and KOSTROV (1983),
KOSTROV and DAS (1989) and DAY (1982), we believe that this is the first time that
conditions for rupture growth and arrest are systematically studied in a simple 3-D
rupture model. Our results are entirely compatible with and extend those of
HUSSEINI et al. (1975) who studied conditions for rupture of 2-D faults. As we will
show the nondimensional number k is closely related to the minimum patch that
appears for all friction laws containing a length scale (see the pioneering work by
IDA, 1972; ANDREWS, 1976; DAY, 1982).

Spontaneous Rupture on a Realistic Fault: The Landers 1992 Earthquake

OLSEN et al. (1997) generated a fully dynamic rupture model of the Landers
earthquake of July 1992 that was based on the kinematic model inverted by WALD

and HEATON (1994) using a combination of seismic and geodetic data with
minimum wavelengths of 3–4 km. From the kinematic slip model they computed
the stress drop on the fault and found that it was very heterogeneous, containing
both large positive stress drops where the fault slipped and very negative values
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where it did not slip. They generated from this stress drop field an initial stress field
that is shown in the top panel of Figure 7, superimposed with the patch in the
upper right part of the fault where rupture was initiated in the simulation. The
range of variation of initial stress in this and the following panels of Figure 7 is
roughly from −12 MPa to 12 MPa. In addition to the initial stress field, the only
other assumption in the dynamic simulation is that the friction law (1) was the same
everywhere on the fault plane. After trial and error modeling, OLSEN et al. (1997)
fixed Tu at 12 MPa, which approaches the maximum value of the initial stress field
shown in the first panel of Figure 7. The only free parameter that was left to be
determined was the slip-weakening distance Dc. OLSEN et al. found that rupture
would be similar to the kinematic one only if Dc was close to 0.8 m. For smaller
values the rupture would break the fault at super-shear speed, leaving a uniform
final stress field, and a slip distribution that was completely different from that of
WALD and HEATON (1994). For larger Dc, on the other hand, rupture would simply
not propagate along the fault. Thus again, we are dealing with a critical phe-
nomenon, as in the two previous examples discussed above.

We can make a quick calculation of the value of k for the OLSEN et al. model.
As we mentioned above, Tu=12 MPa and Dc=0.8 m so that the energy release
rate G=4.8 MJm−2. This is a large value but on the order of magnitude of those
proposed by AKI (1979) and OHNAKA and SHEN (1999). In order to compute k we
need an average value for Te which is estimated from the initial stress field to be 4
MPa (see MADARIAGA, 1979 for a discussion of different ways to compute the
average stress drop). Then, using the average value m=3.45×1010 Pa and a fault
half width of 15 km, we find k=0.72 for the OLSEN et al. (1997) Landers
earthquake model. We note that in order to estimate k for Landers we used a fault
half-width of 15 km instead of 7.5 km in order to take into account approximately
the effect of the free surface. k for the Landers earthquake is well below the critical
values we obtained above for the rectangular fault models (k=0.8). This is not
surprising since the rupture in Landers propagated mainly on those parts of the
fault where stresses were close to the maximum of Te=10 MPa. All this seems to
indicate that rupture in the Landers earthquake reproduces the general behavior of
the kinematic model of WALD and HEATON only if k is very close to critical. There
are many corrections applicable to this calculation, however we believe that the
main result will stand further scrutiny: rupture in the Landers earthquake was very
close to critical, enough to make the rupture grow but not enough for the rupture
to become super-shear.

The result that the Landers earthquake rupture was close to critical may be
obtained in another way. Careful study of rupture propagation in the initial stress
field shown at the top of Figure 7 reveals that rupture only propagates in regions
of high stress and sufficient width. It takes a very minor modification of the initial
stress field to either stop it or guide it into a different area of the fault.
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In Figures 7 and 8 we show the longitudinal shear stress and slip rate fields at
several successive instants of time at 2 s intervals. Only the initial instants of
rupture simulation are shown here. Note that slip rate is faint and weak. As
proposed by HEATON (1990) the instantaneous rupture width seems not to be
controlled by the overall width of the fault but by the size of the local asperities or
concentrations of the initial stress distribution on the fault. This is in agreement
with the observations of BEROZA and MIKUMO (1996) and with theoretical results
of COCHARD and MADARIAGA (1994). Rupture in Figure 8 is never super-shear, it
barely makes it through the fault just as one would expect from a critical
phenomenon.

Next we analyzed the details of rupture. The stress field is not very favorable to
rupture initiation because the stresses in the vicinity of the initial patch are
relatively weak. Therefore as shown in Figures 7 and 8, the initial rupture takes a
long time before reaching the vertical high stress zone to the northwest (left) of the
initial patch. Upon entering this zone, rupture propagates downwards at high
speeds because the loaded zone is relatively wide. Upon hitting the bottom of the
fault it stops because there is no lateral communication in this area.

As a final remark concerning criticality, we observe that rupture can initiate
from many points on the fault for the initial stress field shown in Figure 7. We have
generated models of rupture that start from any high stress spot on the fault, all
indicating that the final stress and slip distributions were almost insensitive to the
actual kinematics of rupture. As long as we stay close to critical conditions rupture
seems to be controlled mainly by the initial stress field. We have yet to complete the
study of rupture in Landers although we expect that we can control the way rupture
grows by simple manipulation of the initial stress field (the kinematics).

In conclusion, the initial stress field controls rupture propagation very closely.
As long as rupture conditions are very close to critical, rupture extends following a
relatively clear pattern of infiltration. It penetrates places where stress is high over
large patches and completely avoids the zones where stresses are low. The overall
kinematics are then similar to those determined by WALD and HEATON (1994),
COHEE and BEROZA (1994) or COTTON and CAMPILLO (1995).

Discussion: Where Does the Nondimensional Number Come from?

Determining the origin of the nondimensional number that controls the bifurca-
tion is a complex problem that will require the study of many models with other

Figure 7
Snapshots of the shear stress field on the fault of the Landers 1992 earthquake. Snapshots were
calculated at regular intervals of 2 s. The initial shear stress is shown in the upper snapshot, modified

by the stress drop shortly after rupture initiation.
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geometries and more complex stress distributions. The fact that we have a bifurca-
tion in the behavior of the system means that we must have a single nondimen-
sional control parameter that determines whether a rupture will grow or stop. The
determination of such a number can be very complex as shown by SCHMITTBUHL

et al. (1996) who carried out an exhaustive study of the parameters’ space of the
BURRIDGE and KNOPOFF (1967) model. In the rectangular barrier and asperity
models the stress field is uniform such that we expect no fractional powers; for this
reason we successfully applied the simple dimensional analysis approach to find
nondimensional numbers (see, e.g., LANDAU and LIFSHITZ, 1959, page 63).

Following IDA (1972) and ANDREWS (1976) we can easily show that the
nondimensional number k derives from the competition between a measure of the
strain energy released during rupture and the energy dissipated in fracture. Rupture
resistance, or energy release rate for our slip-weakening friction model (1) is

G=
1
2

TuDc. (6)

Strain energy change DU per unit fault surface in a rupture zone of characteristic
length W is on the order of:

DU=
1
2

�D�Te#ATe
2/mR (7)

where �D�#Te/mW is the average slip on a fault of length W, Te is the effective
stress drop and A a numerical coefficient on the order of 1. Thus, our definition (5)
implies that

k#DU/G. (8)

For simple uniformly-stressed models, ANDREWS’ (1976) critical rupture patch
implies that kc#A. The critical value is simply the numerical coefficient A that
relates these two measures of energy. As we mentioned earlier, it is more difficult to
estimate the critical value for faults in 3-D, because the shape of the fault and the
rupture mode will produce variations in A that are not easy to calculate. For the
long rectangular fault we prefer the determination of Figure 5 which yields k=0.8.
For the asperity we found k=0.7.

In a more realistic situation, as for the Landers earthquake, stress is complex
and we expect the numerical value of kc to be different because somehow the
measure of energy must integrate spatial variations of stress. We believe, however,
that this number should be of order 1 as we obtained in our analysis. For more
general models with fractal distributions of stress and fracture resistance G, we
expect that the simple expression for k may include fractional powers.

Figure 8
Snapshots of the slip rate field on the fault of the Landers 1992 earthquake computed at regular intervals

of 2 s, starting with the initial stress field shown in the upper snapshot of Figure 7.
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We can now speculate on the behavior of active faults in the earth. We have
seen from these simple examples that the essential requirement for rupture growth
is that k\kc where the critical value of k depends on the geometry of the problem
but is of order 1. Once k becomes substantially larger than critical, ruptures tend
to become super-shear very rapidly although this is rarely observed in nature. Why
is that? We believe that ruptures are in general sub-shear because faults always stay
close to the critical condition. The reason may be very simple: as soon as the
conditions for rupture in a fault area are fulfilled, a rupture will occur unloading
the fault. When the system is reloaded to criticality another earthquake will occur
and so on. The size of these earthquakes is not determined by the load but by the
connectivity of the stress or rupture resistance field. In other words, the earthquake
will propagate to the extent the stress field permits! Under special circumstances
stress can be high and the fault remains in supercritical condition. Only in those
exceptional circumstances will super-shear speeds be observed (e.g., ARCHULETA,
1984). The normal behavior for earthquakes is to break under critical conditions at
speeds below the shear wave speed. This eliminates the longstanding dilemma of
why earthquakes stop, and why there are earthquakes of vastly different sizes on
the same fault segment.

Conclusions

We have carefully studied rupture growth on a simple flat fault embedded in a
homogeneous elastic medium of rigidity m. It emerges from our studies that rupture
is controlled by a nondimensional number k=T e

2/mTu×L/Dc where L is a charac-
teristic size of the stress field, for instance the patch (asperity) radius or the width
of the fault or asperity, Te is a characteristic stress load on this patch, and Tu×Dc

is a measure of energy release rate on the fault.
We then estimated k for the dynamic simulation of the 1992 Landers earth-

quake by OLSEN et al. (1997) that was based on the WALD and HEATON (1994)
kinematic model. From a rough estimate we found that k was slightly less than 1,
implying that the Landers earthquake rupture occurred under conditions that were
almost critical. Considerable additional evidence in favor of criticality was exam-
ined, leading to the hypothetical suggestion that earthquake ruptures occur as soon
as the stress distribution on the fault becomes critical and that faults rarely stay in
a meta-stable state that would allow large super-critical states on the fault.

In our analysis to date we have assumed uniform rupture resistance (constants
Tu and Dc). All the complexity in our models arises from the heterogeneity of initial
stress. As important as stress heterogeneity is probably the small-scale geometry of
faulting. Its integration in fault models is difficult because most of the observations
of fault rupture are still limited to the range of frequencies less than 1 Hz or about
3 km wavelength. This is too coarse a resolution to observe effects of complex
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geometry other than major fault segmentation as in Landers or Kobe. High-fre-
quency seismic radiation is probably the only source of information regarding
small-scale geometry.

The implications of this simple number are wide ranging and require extensive
tests and analysis of modeling. We are currently carrying out such tests for the case
of the Landers earthquake.
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