

Boundary Conditions for numerical modelling of seismic ruptures Raúl Madariaga

Finite difference simulation in staggered grids

- Velocity-stress formulation
- 4th order in space,
- 2nd order in time
- Constant Dx and Dz
- Thick or thin boundary conditions

Boundary conditions for dynamic faulting in Finite Differences

Thick Boundary conditions

Thin Boundary conditions

The SCEC Original Problem

Simplified version of SCEC problem by Luis Dalguer

Homogeneous rupture resistance Homogeneous initial shear stress field except for 3x3 km asperity

Our best Finite Differences Solution

Thin Boundary conditions

Comparison of two implementations of the boundary conditions

Thick Boundary Conditions

0 2.5 20 1.5 1 60 80 100 120 0 2.5 0 20 40 60 80 100 120

Thin Boundary Conditions

X

Х

Comparison of two implementations of the boundary conditions

Why we did not see it?

Which is the good one?

Conclusions

- Resolution of crack boundary conditions is very delicate
- For the same delta x thin boundary zones do a better job
- For the same accuracy thick BC require twice as many points
- The error is difficult to see, since it only exists in inplane mode

