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Abstract Narrow and wide rifts are end-member expressions of continental extension. Within the
framework of passive rifting, the transition from wide to narrow rifts requires lowering the geothermal
gradient. Reconciling this view with observational evidence for narrow rift zones in regions underlain by
sublithospheric hot plume material, such as the eastern branch of the East African Rift, requires invoking
preexisting weak zones for strain to localize in a warm crust. Based on thermomechanical numerical models,
we show that along-rift width variations can develop spontaneously as a consequence of spatial variations of
the geotherm over an evolving mantle plume impinging a lithosphere subjected to ultraslow extension. The
eastern branch of the East African Rift, with a narrow Kenya segment underlain by a mantle plume head and
widening to the north and south in the colder regions of the Turkana depression and North Tanzania
divergence, is in agreement with this numerical prediction.

Plain Language Summary This study is inspired by a contradiction between the usual inference
from passive rifting models that predict a transition from narrow to wide rifts correlated with increasing
lithospheric temperatures, while observations in the eastern branch of the East African Rift show that its
narrowest segment is underlain by a deep-seated positive thermal anomaly. We present the results from 3-D
thermomechanical numerical experiments showing that narrow rifting, conventionally attributed to “passive”
rifting of cold and strong lithosphere, can also develop in hot and weak lithosphere in the case of
plume-assisted rifting, as observed in the Kenyan rift. Preexisting lithospheric structures are not required to
determine and control rift initiation and development, in contrast to the classical interpretation based on
passive models that require preexisting rheologically weak zones to initiate and guide fault propagation.

1. Introduction

Variations in the width of continental rifts from narrow (e.g., Main Ethiopian Rift) to wide (e.g., Basin and
Range) are classically explained in terms of the temperature and strength of the lithosphere undergoing ten-
sional stress (Buck, 1991). Some numerical experiments (Gueydan et al., 2008) indeed show that a hot and
weak lithosphere (i.e., Moho temperature > 700°C) promotes distributed deformation and a broad rift zone
in the upper crust while narrow rifts occur under low (i.e.,<700°C) Moho temperature. However, recent high-
resolution, 3-D experiments of lithospheric stretching with free surface and a thermomechanically coupled
mantle-lithosphere show that narrow rifts, conventionally associated with cold and strong lithosphere, can
develop as a result of plume impingement, which acts to weaken the lithosphere and focus brittle strain in
the crust (Burov & Gerya, 2014).

Here we test this mixed mechanism of active-passive rifting using observations from the eastern branch of
the East African Rift System (EARS, Figure 1) as guidelines for model setup and validation. The EARS, the
~3,000-km-long active volcano-tectonic structure that marks the extensional boundary between the
Nubian and Somalian plates (Braile et al., 2006; Dawson, 1992; Ring, 2014), cuts across the high elevation
(~1,500 m) East African plateaus, a long wavelength topography dynamically supported by a broad low-
velocity seismic anomaly imaged in the lower mantle, the African Superplume (Lithgow-Bertelloni & Silver,
1998; Ritsema et al., 1999; Van der Hilst et al., 1997). A robust feature of its upper mantle, despite some differ-
ences in body-wave and surface-wave tomographic models (e.g., Kendall et al., 2006), is the presence of the
low-velocity Kenyan plume under the central part of the EARS (e.g., Chang et al., 2015; Nyblade et al., 2000;
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O’Donnell et al., 2013; Ritsema et al., 1998), possibly rooted in the deeper African Superplume according to
He, Ar, and Ne isotopic data from Neogene volcanics (Halldórsson et al., 2014).

Rifting in the western branch localizes within preexisting Proterozoic mobile belts sutures and shear zones at
the margin of the Tanzanian craton (e.g., Katumwehe et al., 2015; Morley,2010), leading to narrow elongated
basins such as the Tanganyika and its southern prolongation in the Malawi rift (Laó-Dávila et al., 2015; Ring
et al., 1992; Versfelt & Rosendahl, 1989). On the contrary, the eastern branch shows the along-axis transition
from a wide rift (200–350 km) in the Turkana depression between the Kenyan and Ethiopian domes (Hendrie
et al., 1994; Morley et al., 1992), to a narrow rift (60–70 km) at the Tanzanian craton margin in the Kenya rift
(Melnick et al., 2012; Zeyen et al., 1997), then further south to the 300 to 400-km-wide Tanzania divergence
zone (Corti et al., 2013; Dawson, 1992; Isola et al., 2014; Le Gall et al., 2004, 2008). Within this wide-narrow-
wide rift system, the narrow Kenya rift cuts across a topographic dome interpreted as the signature of the
underlying Kenyan plume head according to geochemical (e.g., George et al., 1998; MacDonald et al., 2001;
Pik et al., 2006) and geophysical data (e.g., Chang & Van der Lee, 2011; Nyblade et al., 2000).

The explanation for this wide-narrow-wide transition has often been that modern rift basins remobilize pre-
existing crustal structures inherited from a poly-phased geological history (e.g., Ebinger et al., 2000; Morley
et al., 1992). For instance, the fact that the present-day Turkana rift is superimposed on a complex

Ethiopian
 dome

Kenyan
 dome

Figure 1. Tectonic setting of the East African Rift System. The black lines indicate major faults (Corti et al., 2007). The white
dashed line shows the edges of the Tanzanian craton. Low-velocity zones (less than 4.4 km/s at a depth of 200 km) in red
were imaged by Swave tomography analysis from O’Donnell et al. (2013). The white circles show earthquake epicenters. The
top left inset illustrates the location of the studied area within Africa. The red arrows indicate wide rifting in the Turkana
depression and the North Tanzania divergence zone, whereas the blue arrow indicates narrow rifting in the Kenya segment.
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Mesozoic rift system associated with Gondwana rupture that extended from Sudan through Turkana and
eastern Kenya led to the proposal that its breadth was a result of the superposition of ancient and modern
structures (e.g., Ebinger et al., 2000; Hendrie et al., 1994). However, themodern Turkana rift is oblique to these
Mesozoic extensional structures. Modern extension started in Turkana in the upper Eocene (Furman et al.,
2006) within a “broadly rifted zone” (Rooney, 2017) marked by widespread volcanism that included southern-
most Ethiopia (Morley et al., 1999). Rift basins started forming in the late Oligocene, crosscutting theMesozoic
Anza rift (Morley et al., 1992; Vetel et al., 2004). Faulting and seismicity currently concern a 200 to 350-km-
wide zone (Figure 1).

Analog and numerical models of rifting in the EARS have focused on the lithosphere, imposing inherited lat-
eral strength variations (e.g., Brune et al., 2017), and neglecting the active role of the mantle, at odds with the
unequivocal presence of deep-seated low-velocity anomalies underneath the rift (e.g., Nyblade et al., 2000;
O’Donnell et al., 2013; Ritsema et al., 1999). Here we ask whether along-axis rift variations in Cenozoic rifts
are necessarily determined by crustal structures inherited from past tectonic events or if that spatial variabil-
ity can develop spontaneously as a result of the interaction of an active mantle plume with a continental
lithosphere that is initially laterally homogeneous. To address this question we use high-resolution, 3-D ther-
momechanical numerical models of active-passive rifting with a setup inspired from large-scale EARS struc-
tures. We intentionally keep the model geometry as simple as possible and avoid prescribing preexisting
zones of crustal weakness.

2. Methods

We implement high-resolution, rheologically stratified, 3-D thermomechanical numerical models using the
staggered grid/particle-in-cell viscous-plastic 3DELVIS code (Gerya, 2010; Gerya & Yuen, 2007), based on a
combination of a finite difference method with a marker-in-cell technique. We chose rheological parameters
(Table 1) in consideration of previous successful experiments of plume-lithosphere interaction (e.g., Beniest,
Koptev, & Burov, 2017; Beniest, Koptev, Leroy, et al., 2017; Burov, 2011; Burov & Cloetingh, 2010; Burov &
Gerya, 2014; Burov & Guillou-Frottier, 2005; François et al., 2017; Koptev, Burov, et al., 2017; Koptev,
Cloetingh, et al., 2017). The initial model setup and geotherm are consistent with observation-based esti-
mates of the regional thermal and rheological structures of the crust and the lithosphere (Albaric et al.,
2009; Artemieva, 2006; Fishwick & Bastow, 2011; Pérez-Gussinyé et al., 2009) and with surface heat flow
(Nyblade, 1997) in East Africa.

The model domain is 1,500 × 1,500 km wide by 635 km deep with a 3 × 3 × 3 km grid resolution. It contains a
150-km-thick lithosphere with a two-layer, 36-km-thick crust. We initiate a plume by seeding a 200-km-radius

Table 1
Rheological and Material Properties Used in the Models

Material
ρ0

(kg/m3)

Rheological parameters Thermal parameters

Flow law

Ductile Brittle

k
(W/(m × K))

Hr
(μW/m3)

HL
(kJ/kg)E (kJ/mol) n AD (Pan × s)

V
(J/(MPa x mol))

C (MPa) Sin(φ) ε

C0 C1 b0 b1 ε0 ε1

Upper crust 2,750 Wet quartzite
(WetQz)

154 2.3 1.97 × 1017 0 10 3 0.6 0.3 0.0 0.25 0.64 + 807/
(T + 77)

2.00 300

Lower crust 1 2,950 Wet quartzite
(WetQz)

154 2.3 1.97 × 1017 0 10 3 0.6 0.3 0.0 0.25 —//— 1.00 300

2 3,000 Plagioclase
(An75)

238 3.2 4.80 × 1022 0 10 3 0.6 0.3 0.0 0.25 1.18 + 474/
(T + 77)

0.25 380

Lithosphere-
sublithosphere
mantle

3,300 Dry olivine 532 3.5 3.98 × 1016 1.6 10 3 0.6 0.3 0.0 0.25 0.73 + 1293/
(T + 77)

0.022 380

Plume mantle 3,200 Wet olivine 470 4.0 5.01 × 1020 1.6 3 3 0.1 0.0 0.0 0.25 —//— 0.024 300

Note. ρ0 is reference density (at P0 = 0.1 MPa and T0 = 298 K), E is activation energy, n is power law exponent, AD is material constant, V is activation volume, C is
cohesion, φ is friction angle, ε is strain, C0, C1 are maximal and minimal cohesion (linear softening law), b0, b1 are maximal and minimal sines of frictional angle
(linear softening law), ε0, ε1 are minimal and maximal strains (linear softening law), k is thermal conductivity, Hr is radiogenic heat production, and HL is the latent
heat of melting of rock.
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temperature anomaly at the base of the upper mantle, 300 K warmer than the surroundings. We simulate
tectonic forcing by applying constant divergent velocity normal to two opposing model boundaries at a
rate derived from Neogene plate kinematic reconstructions (DeMets & Merkouriev, 2016; Saria et al., 2014).

We perform two sets of 3-D numerical experiments (Table 2). First, we run generic models with an initial lat-
erally homogeneous lithosphere (models 1–9). As Moho temperature is assumed to be a key parameter con-
trolling surface strain and the associated fault pattern (e.g., Buck, 2006; Gueydan et al., 2008), we use these
models to investigate the influence of the thermal structure of the continental lithosphere on the style of
plume-induced deformation in the upper crust. Second, we run one slightly more complex experiment
(model 10) that includes an oval-shape, 250-km-thick craton with a lateral extent of 800 × 400 km that mimics
the Tanzanian craton and a mantle plume initially laterally shifted to the northeast with respect to the center
of the model box (Adams et al., 2012; Artemieva, 2006; Mulibo & Nyblade, 2013; Ritsema et al., 1998). This
model, similar in setup to those of Koptev et al. (2015, 2016), is meant to simulate a setting close to that of
the eastern branch of the EARS.

Except for the simulated mantle plume and the craton, the models do not contain initial lateral variations in
mechanical properties or preexisting zones of weakness. Because we consider a relatively short time interval
(5 Myr), the relative motion of the African continent with respect to the plume source is small over the course
of our model evolution, on the order of 100 km given the ~2-cm/yr absolute velocity of the African plate over
the past 20 Myr (O’Connor et al., 1999). We therefore assume a stationary plume-lithosphere system in the
simulations. The size and temperature of the mantle plume have been chosen in order to agree with
observed data for both the final distribution of hot material ponding at the lithosphere-asthenosphere
boundary (e.g., O’Donnell et al., 2013) and the observed temperature anomaly at the 410-km discontinuity
(Huerta et al., 2009).

3. Results

We tested nine generic setups (models 1–9), varying the horizontal extensional velocity and the Moho tem-
perature, which we use here as a proxy for the thermal and rheological lithospheric layering. Figures 2a–2c
show the resulting strain rate at a depth of 10 km for the experiments with a boundary extensional velocity
of 3 mm/yr (models 4–6). Along-axis variations in rift width develop in all experiments, with consistent
narrowing over the plume. Increasing the boundary velocity results in a more distributed extension, with rift
width increasing from 75–175 km to 150–425 km (widths of deformation zones are measured in the center of
the model domain along the blue lines shown on Figures 2a–2c) when the boundary velocity increases from
1.5 to 6 mm/yr (Figure 2d). Increasing the lithospheric geotherm has the opposite effect of narrowing the rift:
An increase in Moho temperature from 600 to 800°C reduces rift width from 175–425 km to 75–150 km
(Figure 2d). Note that the areas away from the plume also show this narrowing under higher geothermal
gradients (Figures 2a–2c).

This result contradicts the usual inference, derived from passive rifting models, that a warm (weak) litho-
spheric mantle produces wide rift zones, whereas a cold (high-strength) sub-Moho mantle is promptly

Table 2
Main Controlling Parameters of the Experiments

Model number Model series Model title

Controlling parameters

Presence of the
Tanzanian craton

Temperature
at the Moho (°C)

Horizontal extension
velocity (mm/yr)

1 Generic Gen.TMh = 600°C, Vext = 1.5 mm/yr No 600 1.5
2 Generic Gen.TMh = 700°C, Vext = 1.5 mm/yr No 700 1.5
3 Generic Gen.TMh = 800°C, Vext = 1.5 mm/yr No 800 1.5
4 Generic Gen.TMh = 600°C, Vext = 3 mm/yr No 600 3
5 Generic Gen.TMh = 700°C, Vext = 3 mm/yr No 700 3
6 Generic Gen.TMh = 800°C, Vext = 3 mm/yr No 800 3
7 Generic Gen.TMh = 600°C, Vext = 6 mm/yr No 600 6
8 Generic Gen.TMh = 700°C, Vext = 6 mm/yr No 700 6
9 Generic Gen.TMh = 800°C, Vext = 6 mm/yr No 800 6
10 EARS-oriented EARS.TMh = 700°C, Vext = 3 mm/yr Yes 700 3
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subjected to localized strain in areas of preimposed lithospheric weakness (Brun, 1999; Buck, 1991; Gueydan
et al., 2008). In passive rifting experiments, fast strain localization in the brittle lithospheric mantle usually
develops from the combination of large far-field forcing and a preimposed weak seed localized in space at
the start of rifting. On the contrary, our active-passive models are consistent with ultraslow extension rates
and a broad, warmer than average upper mantle plume, two key features observed in the central EARS
(Birhanu et al., 2016; Calais et al., 1998; Nyblade et al., 2000; O’Donnell et al., 2013; Saria et al., 2014). We
find that these conditions are not sufficient for large faults to propagate through the high-strength

Figure 2. (a–c) Strain rate shown on horizontal (at model depth of 10 km) and vertical sections for the experiments with
boundary extensional velocity of 3 mm/yr (models 4–6) and Moho temperature (TMh) of (a) 600°C, (b) 700°C, and
(c) 800°C after 3 Myr. The blue circles indicate the boundary of the deformation zone across the center of the model domain
(i.e., along the blue line). The white lines on the cross section show the 1,300 and 1,800°C isotherms, corresponding to the
lithosphere-asthenosphere boundary, and the outline of the plume head (see also inset in Figure 3b), respectively. The
initial rheological structure is shown for each experiment by a schematic vertical profile. (d) Width of the rift zone as a
function of Moho temperature for boundary extensional velocities (Vext) of 1.5 mm/yr (models 1–3), 3 mm/yr (models 4–6),
and 6 mm/yr (models 7–9) shown by green, blue, and red lines, respectively. Note that a characteristic hour glass rifting
pattern develops in all experiments (see plan views) because of increased decoupling within the lithosphere in the central
part of the model due to the thermal effect of the plume material. In the lower part of the vertical sections, the bulk of high
strain rates refers to deformation associated with hot plume material ponding at the base of the lithosphere. A higher
geotherm favors a deeper penetration of the plume into the lowermost lithospheric mantle. In contrast, a colder geotherm
results in wider lateral spreading with a concave shape of plume head-related deformation zone.
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uppermost lithospheric mantle but lead to a long stage of extensional
deformation in an upper crust rheologically decoupled from the
sub-Moho mantle by a ductile lower crust. In the models, brittle defor-
mation in the upper crust localizes as a result of the compensating
ductile flow of lower-crustal material (see cross sections in Figure 2).
The width of this deforming zone is therefore controlled by the degree
of rheological coupling between the brittle upper crust and the litho-
spheric mantle (the more decoupled the system, the narrower the
deformation) that, in turn, is determined by the initial lithospheric
geotherm.

During their long, initial evolution stage, our models share similarities
with the “core-complex” extension mode of Buck (1991), which devel-
ops under conditions of high Moho temperature and low strain rate.
In both cases deformation is accommodated by faulting in the upper
crust and diffuse flow in the ductile lower crust, thus keeping the
Moho flat and the lithospheric mantle almost undeformed. In contrast
with Buck (1991), our models remain in the ultraslow extension
regime (a few mm/yr over a few hundred kilometers), as observed in
the EARS, and therefore do not reproduce the classical “lithospheric-
scale” rifting with localized strain along normal faults that cut through
the entire lithosphere, with significant lateral gradients in crustal and
lithospheric thicknesses.

A slightly more complex model setup, with a craton embedded in the
EARS lithosphere (model 10), is shown on Figure 3. Similarly to previous
3-D experiments (Burov & Gerya, 2014; Koptev et al., 2015, 2016, 2018),
this model predicts a rapid mantle ascent (vertical speed of ~80 cm/yr)
with the plume head reaching the base of the lithosphere 0.5 Myr into
the model evolution. The plume material is then deflected to the east-
ern side of the craton, where it generates a broad topographic high
reaching a maximum of 2 km similar in spatial extent to the Kenya
dome of the central EARS (Figure 1). After 1 to 2 Myr, extensional defor-
mation localizes through the topographic dome and splits it in two
along a narrow rift basin with maximum strain localization at the apex
of the dome, coincident with themaximum thermal effect of the plume
material, that is, the maximal decoupling within the lithosphere. The
thermal influence of the plume head and its buoyancy-driven mechan-
ical effect decrease to the north and south, resulting in extensional
deformation distributed across an area that is at least twice as broad,
with the formation of several subparallel rift basins (Figure 3b). This set-
ting is similar to the transition observed between the narrow Kenya rift
and the broader Turkana depression to the north and the multibasin
Tanzania divergence to the south (Figure 1).

The sensitivity of the models results to parameters such as the size,
temperature, and density of the mantle plume or extension rate has

been thoroughly investigated in previous work, although for broader-scale setups (Koptev et al., 2015,
2016). Varying mantle plume parameters and the far-field extension rate only affects the timing of plume
impingement at the base of the lithosphere and the absolute values of localized strain rates, respectively,
while rifting style and geometry remain the same. Small variations in the craton configuration do not affect
the model features, which are mostly controlled by the plume head impingement on the base of the litho-
sphere to the east of the craton. Total strain over the course of the model evolution, localized on one or sev-
eral basins (depending on rift width), amounts to 12 to 37 km of total extension, in accord with geological
estimates of 10 to 40 km from the Kenyan rift to Turkana (Hendrie et al., 1994; KRISP Working Group, 1991;
Morley et al., 1992, 1999). This agreement is, however, not an accurate model validation as geological

Figure 3. Numerical experiment with a craton embedded into the lithosphere
and a mantle plume initially shifted to the northeast with respect to the craton
center (model 10. EARS.TMh = 700°C, Vext = 3 mm/yr; see Table 2) after 4 Myr.
(a) 3-D view of themainmodel features. The plumematerial is shown in dark red;
the craton is the dark blue volume. (b) Top view of the along-axis transition
between narrow and wide rifts. The dark blue arrows indicate the zones of wide
deformation, whereas the light blue one illustrates the narrow rift segment
above hot mantle plume material ponding at the bottom of the lithosphere to
the northeast of the craton. Left bottom inset: The white line refers to the 1,800°C
isotherm at the lithosphere-asthenosphere boundary (150 km); the orange lines
(790–810°C isotherms) illustrate the plume-induced thermal perturbation at
35.5 km depth (i.e., 500 m above the Moho).
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estimates remain largely uncertain and model parameters were not specifically tuned to match the details of
the EARS geology.

4. Discussion and Conclusion

Model results predicting along-strike rift width variations are consistent with the observation of a narrow
Kenya rift coincident with the maximum uplift—and warmer—region of the eastern branch of the EARS,
while the rift broadens to the north and south as the influence of the plume decreases. This result,
counter-intuitive in the framework of passive rifting models that assume large far-field forcing together with
predefined weak zones, finds a simple explanation in the active-passive framework advocated for here.
Model simulations indicate that rift width variations develop as a consequence of spatial variations of the
lithospheric geotherm associated with the evolving mantle plume impinging underneath a prestressed litho-
sphere under very slow extension. In this framework, narrow rifts occur spontaneously, without the need for
an ad hoc weak zone between the craton and the embedding lithosphere since the plume acts to weaken the
lithosphere and focus brittle strain in the crust (Burov & Gerya, 2014).

Along-axis variations of rift width similar to the eastern branch of the EARS are also observed in the Baikal rift
system, whose narrow southwestern basin at the Siberian craton border widens to the northeast, transition-
ing to diffuse deformation in the Sayan-Baikal belt (Petit & Déverchère, 2006). Similarly to the Kenya rift, the
narrow southwestern segment of the Baikal rift is associated with an upwarped lithosphere/asthenosphere
interface (Gao et al., 2003) interpreted either as an ascending branch of small-scale convection (e.g.,
Huismans et al., 2001) or as a narrow mantle plume that reaches the bottom of the cold Siberian craton
and follows its border in the Baikal area (e.g., Petit & Déverchère, 2006).

It is commonly assumed that normal faults localize within mobile belts along the edges of cratonic blocks
(e.g., Corti et al., 2007; Guillou-Frottier et al., 2012; Ring, 1994; Tommasi & Vauchez, 2001). Our experiments,
supported by observations in the East African and Baikal rift systems, show that the localization and style
of continental rifting in a coupled mantle-lithosphere system are controlled by the presence and location
of warm mantle material ponding at the lithosphere-asthenosphere boundary and channeled under areas
of lithospheric thinning. Regardless of preexisting lithospheric heterogeneities, such coupled mantle-
lithosphere system can evolve into complex rift zones whose width and magmatic characteristics vary
significantly along-axis.
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