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The time-dependent deformation of volcanic edifices can help one understand the dynamics of pre-
eruptive overpressure build-up in magma chambers. Thus, geodetic time series recorded at the Okmok 
volcano, in Alaska, show a pattern of fast and short inflations — referred to as “pulses” — followed by 
either slower and longer deflations, or time intervals with no deformation. This pattern is superimposed 
onto a longer-period inflation. A rapid inflation occurred just before the 2008 eruption, which suggests 
that the underlying process may lead to eruptions. It is crucial to understand whether such a behavior 
is driven by external forcing, such as melt supply variations, or whether it can develop spontaneously 
within the volcano’s plumbing system. Here we model the observed oscillations (2004–2008) as resulting 
from the hydraulic interaction between two shallow magma chambers fed by a deeper source region, a 
geometry that is consistent with geochemical, petrological, and geophysical data. The model shows that 
episodes of periodic fast inflations occur (i) when a viscosity gradient is present in the vertical pipe, for 
instance as the result of a temperature gradient; and (ii) when the flux supplying the shallower chamber 
lies between two bounds that we derive analytically. The deformation pulses observed at Okmok can, 
therewith, be fully explained by the internal variability of the magmatic system and do not require time-
variable external forcing. The proposed model can also be seen as an improvement upon the classic 
hydraulic models regularly used to explain a commonly observed pattern of volcanic deformations, i.e. 
exponential inflation.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Volcanic eruptions are often considered to occur when the over-
pressure inside a shallow magma chamber is large enough for the 
tensile stress acting on the chamber’s walls to exceed the tensile 
strength of the surrounding rock. The induced fracture can lead 
to a dyke filled with magma from the reservoir to propagate until 
it reaches the surface (e.g., Blake, 1981). Monitoring the evolution 
of overpressure in a magmatic reservoir is therefore key to un-
derstanding the mechanism behind the onset of eruptions. Defor-
mation observations offer the opportunity to accomplish this task 
because the deformation of volcanic edifices is often directly re-
lated to magma chamber overpressure (e.g., Mogi, 1958; McTigue, 
1987).

A common temporal pattern of deformation observed at volca-
noes is that of exponential inflations and deflations (e.g. Dvorak 
and Okamura, 1987; Reverso et al., 2014). These phenomena can 
be explained by the linear dynamics of magma influx or outflux 
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driven by a pressure gradient between a storage reservoir embed-
ded in an elastic medium, on the one hand, and a deeper source 
region or the surface, on the other (e.g. Jaupart and Tait, 1990; 
Lenglin et al., 2008; Pinel et al., 2010). In this case, the charac-
teristic time scale of deflation is smaller than that of inflation, as 
shown for instance by time series of tilt measurements at the Ki-
lauea volcano in Hawaii (Dvorak and Okamura, 1987).

Other types of temporal deformation patterns — such as the 
one reported by Walwer et al. (2016) and Ji et al. (2017) at Aku-
tan, with its rapid inflation phases and slower deflations — are 
more difficult to relate to physical processes. This type of behavior 
is sometimes interpreted as the result of ad hoc time-dependent 
forcing mechanisms, be it “pulses” of magma flux, degassing or 
heat flux (e.g., Biggs et al., 2009, 2010; Peltier et al., 2009). Here 
we seek instead to understand this behavior as a manifestation of 
the magmatic system’s internal variability. As we shall see, this 
approach allows us to understand the conditions under which the 
occurrence of such pulsating behavior is possible.

To do so, we take the Okmok volcano as a case study be-
cause of the relatively large geophysical, petrological, and geo-
chemical dataset that is available, and of the associated long 
geodetic time series that show both gradual inflations and pulsat-
ing behavior with episodes of fast inflations (Biggs et al., 2010; 
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Fig. 1. Location map of the Okmok shield volcano, showing the GPS sites (grey tri-
angles) from which the displacement time series used herein have been extracted.

Masterlark et al., 2010; Larsen et al., 2013). Caricchi et al. (2014)
integrated this substantial dataset into a model in which surface 
deformation is driven by the thermodynamic evolution of phase 
equilibrium in a magma reservoir under the influence of crystal-
lization, remelting, and degassing. Their model is consistent with 
a geodetic inversion suggesting that the deformation source re-
mained stable from 1997 to 2008; because of its large number 
of degrees of freedom, though, does not provide a simple under-
standing of the conditions under which the observed deformation 
pulses can occur.

Here, instead, we rely on an approach that was previously pro-
posed in the context of volcanology by Whitehead and Helfrich 
(1991) and Barmin et al. (2002). This approach relies on a model 
with a small number of variables that is mathematically quite 
tractable. We show that such a model provides a simple explana-
tion for the circumstances under which the volcanic system can 
produce oscillatory pressure variations inside magma chambers, 
variations that can eventually result in deformation pulses like the 
observed ones.

2. Geophysical observations

The Okmok shield volcano (Fig. 1) is one of the most active 
of the Aleutian arc and it benefits from a set of geophysical and 
geochemical observations that suffices to infer its plumbing system 
and its deformation history. These two elements are crucial for our 
study, and they are briefly reviewed below.

2.1. Evidence for multiple reservoirs

Larsen et al. (2013) analyzed and compared samples from cones 
and vents created during Okmok’s various eruptions in the last 
1000–2000 yr. Their trace element compositions plotted against 
the SiO2 weight fraction show two distinct poles: one with less 
than 53% SiO2 weight fraction, while the other corresponds to a 
more evolved melt with SiO2 larger than 53 wt.%. The two poles 
are separated by roughly 1 wt.% of SiO2, as shown in Larsen et al. 
(2013, Fig. 4).

These authors interpret their geochemical data as evidence 
for shallow magma chambers in which melt evolved for about 
2000 yrs and thus became enriched in silica, with more mafic 
melt inflow from a deeper reservoir, just before the 2008 eruption. 
This inference is consistent with observations that ascertain the 
more mafic character of the materials from eruptions that occurred 
Fig. 2. Geodetic time series related to the recent deformation history of Okmok vol-
cano, 1997–2008. (a) Cumulative volume change estimated from InSAR time series, 
cf. Biggs et al. (2010). The error bars correspond to the uncertainties in the vol-
ume changes obtained by the inversion. The two vertical dashed lines represent, 
from left to right, the end of the 1997 eruption and the beginning of the 2008 
eruption. The rectangular inset in panel (a) shows the time window presented in 
panel (b). (b) A selected GPS time series reflecting the deformation regime before 
the 2008 eruption. Note that the abscissa of panel (a) starts in 1996, while the one 
in panel (b) starts in 2003; both abscissas end in 2008.

between 1900 and 1997, compared to the preceding ones, thus sig-
nificantly breaking the long-term trend of silica enrichment.

The spatial pattern of deformation observed using GPS instru-
mentation shows that both the source of the precursory inflation 
that occurred in 2008, just before the eruption, and the source 
of the co-eruptive deflation are shallower and horizontally shifted 
from the source of the 1997 and 2008 deformation episodes (Frey-
mueller and Kaufman, 2010). Freymueller and Kaufman (2010)
also reported that the post-eruptive deformation corresponds to 
an uplift superimposed over a broader subsidence. This deforma-
tion pattern suggests that a shallow storage zone is inflating while 
a deeper one is deflating.

2.2. Geodetic time series, 1997–2008

The history of surface deformation between the end of the 1997 
eruption and the beginning of the 2008, as derived from InSAR and 
GPS data, is plotted in Figs. 2(a, b). This history shows that the 
1997 co-eruptive deflation was followed by an inflation; in Fig. 2, 
the inflations are reflected by the positive volume variations shown 
in the figure. The inflation rate exponentially decreases until be-
coming almost null by mid-2002; see also Lu et al. (2010) for the 
corresponding InSAR images. Then Okmok starts to inflate again at 
a progressively decreasing rate, until a new eruption that occurred 
in 2008.

These two inflation episodes have different time constants τ , 
which we estimate by fitting exponential functions to the InSAR-
derived cumulative volume time series in Fig. 2a, namely τ1 �
2.2 yr for the first episode, and τ2 � 1.1 yr for the second one. The 
inflation rate during the second episode is thus decreasing faster 
than during the first one.

The higher temporal resolution and accuracy of GPS observa-
tions provides the additional observation of a change in the tem-
poral deformation pattern before the 2008 eruption. From 2004 to 
2008, GPS time series show two oscillation cycles superimposed 
onto the second exponential inflation phase mentioned above. 
They both start with a fast and relatively short inflation followed 
by a longer, almost flat, subsidence; see Fig. 2b here, and also Biggs 
et al. (2010, Fig. 7). The amplitude of the second oscillation is 
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Fig. 3. Schematic representation of the components of the model described in the 
main text, including some of the associated parameters. Two shallow reservoirs with 
volumes V B and V T , respectively, contain magma at pressures P B and P T . They are 
fed by a deeper source region of constant pressure P S . The pipe segments that link 
the deeper source to the lower chamber and the latter to the upper chamber have 
dimensions (aS , LS ) and (aR , LR ), respectively.

smaller than the first one, suggesting a damped oscillation regime. 
The last deflation of the second oscillation is followed by a fast 
precursory inflation, followed immediately by the co-eruptive sub-
sidence that resulted from the 2008 eruption.

3. Model of magma reservoir interactions

3.1. Fluid flow in a pipe with temperature-dependent viscosity

Classical linear hydraulic interactions between magma reser-
voirs — as used for instance by Reverso et al. (2014) to explain the 
deformation episodes observed at Grímsvotn volcano in Iceland — 
cannot spontaneously give rise to oscillations or to the alternat-
ing fast and slow inflations and deflations observed at Okmok; see 
Appendix A. A limitation of this approach is that it does not ac-
count for viscosity variations in the melt, which must occur as 
temperature changes and/or fluid exsolution takes place as well as 
crystallization induced by either or both mechanisms (Blundy and 
Cashman, 2001).

We introduce, therefore, a model of fluid flow in a vertical 
cylindrical pipe along which a vertical temperature-driven viscos-
ity gradient exists. We also discuss in Section 5.3 a model with 
viscosity change driven by crystallization induced by gas exsolu-
tion, and show there that both types of flow models can result in 
the same qualitative dynamics.

In our main model presented herewith, a pipe of length LR and 
radius ar connects two shallow chambers of volume V T and V B , 
and pressure P T and P B , respectively; the subscript, B and T re-
fer to bottom and top. As the magma rises through the pipe, part 
of the advected heat is lost by diffusion through the pipe wall into 
the surrounding medium. The resulting decrease of temperature 
in the magma induces a viscosity increase described quantitatively 
below. The bottom chamber is connected to a source region inside 
which the pressure P S is constant, supplying the shallow reser-
voirs with magma of constant viscosity through a pipe of radius 
aS and length L S . A schematic representation of the system is dis-
played in Fig. 3.

Our model of the flow in the cylindrical pipe connecting the 
shallow chambers builds upon the theory of Whitehead and Hel-
frich (1991), which is supported by experimental observations. We 
use a cylindrical system of coordinates, with r the radius and z the 
height. We take the z-axis to be oriented positively upwards and 
the reference level z = 0 is located at the basis of the pipe.

We assume that the flow is in a laminar regime and that the 
vertical velocity is the only nonzero component of the velocity 
field. We consider the horizontally averaged momentum equation 
in the vertical direction:

dw

dt
= − 1

ρ

dP

dz
− ρg − 8ν(T )w

a2
R

; (1)

here w is the horizontally averaged vertical velocity, P is the fluid 
pressure, ρ and g are the bulk density of the magma and the 
acceleration of gravity, ν(T ) is the temperature-dependent kine-
matic viscosity, and aR is the radius of the pipe, cf. Jaupart and 
Tait (1990).

The viscosity ν is assumed to depend linearly on temperature 
T , according to:

ν(T ) = νB + α(T B − T ), (2)

where νB and T B are reference values. We assume a steady-state 
regime for the temperature inside the cylindrical conduit, in which 
the vertical temperature advection is balanced by the radial tem-
perature diffusion:

w
∂T

∂z
= κ

1

r

∂

∂r

(
r
∂T

∂r

)
. (3)

The boundary condition for the partial differential equation (3) on 
the wall, at r = aR , is

T = T H − �T

LR
z, (4)

which yields, in particular, that T = T H at the basis of the pipe, 
where z = 0.

According to Eqs. (3) and (4), a vertical temperature gradient is 
always developing in the pipe and its surroundings as the magma 
is rising; see, for instance, Delaney and Pollard (1982), Bruce and 
Huppert (1989) and Jaupart and Mareschal (2010, p. 325). One eas-
ily verifies that

T = T H − �T

LR
z + w�T

4κ LRa2
R

(a2
R − r2) (5)

is a particular solution of equation (3). The homogeneous solution 
that has to be added to the particular one must have T = T H when 
z = 0.

For analytical convenience we follow Whitehead and Helfrich 
(1991) and approximate the temperature along the axis of the 
pipe, at r = 0, as follows:

T = T H for 0 < z <
wa2

R

4κ
, and

T = T H − �T

LR
z + w�T

4κ LRa2
R

for
wa2

R

4κ
< z < L.

(6)

This approximation is consistent with the boundary conditions, in 
particular with T = T H at z = 0. The length L∗ = wa2

R/4κ equals 
the depth below which most of the heat that entered the conduit 
still resides in the fluid, resulting in a uniform temperature T H

(Delaney and Pollard, 1982).
Let us substitute solution (6) into the momentum equation (1)

and integrate it from the bottom to the top of the conduit. This 
integration gives:
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−1

ρ
((P B − P T ) + ρgLR)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8w

a2
R

⎡
⎣νB LR + α

�T

2LR

(
LR − wa2

R

4κ

)2
⎤
⎦ + LR

dw

dt

for w ≤ 4κ LR

a2
R

,

8νB wLR

a2
R

+ LR
dw

dt
for w >

4κ LR

a2
R

.

(7)

Equation (7) connects the pressure difference (P B − P T ) driving 
the flow with the vertical flow velocity w and the rate of variation 
of the flow velocity dw/dt .

Letting LR = L∗ in equations (6) and (7) allows us to define a 
velocity scale w∗ = (4κ LR)/a2

R , which in turn provides us with a 
Reynolds number:

Re ≡ w∗ρaR

μ
= 4κ LRρ

aRμ
= 1

Pr
× 4LR

aR
, (8)

where Pr ≡ ν/κ is the Prandt number (Delaney and Pollard, 1982).
Considering a basaltic magma with a viscosity μ � 102 Pa s 

and a density ρ � 3.103 kg m−3, and assuming that both the 
magma and the surrounding rocks have the same thermal diffusiv-
ity κ = 10−6 m2 s−1, while LR � 103 m and aR � 1 m, the resulting 
Reynolds number is � 10−1, which is small compared to 1.

Such dimensional analysis is generally used to neglect the iner-
tial term ρdw/dt in the momentum equation (1). Because of the 
nonlinearity in w that enters equation (7), (P B − P T ) as a function 
of w may not be single-valued when dw/dt vanishes. Contrary to 
the case of the viscosity being constant, in which a priori neglect-
ing dw/dt is valid, here the inertial term has to be kept in the 
equation; as we will see below, it actually plays an important role 
in the dynamics of the phenomenon we are studying (Barenblatt, 
1996, p. 10).

3.2. Two shallow magma reservoirs fed by a deeper source

Having described in section 3.1 the geometry of our model 
and the equations that govern the fluid flow between the shallow 
reservoirs, we now present the equations that govern the evolution 
of pressure inside the shallow chambers. As the magma is either 
flowing in or out of one of the two chambers, its volume changes. 
This change of volume �V in either chamber can easily be related 
to the change of overpressure �P inside the chamber by assuming 
that it is embedded in an elastic medium. In this case, the change 
of pressure is given by:

�P = E
�V

V
. (9)

For an incompressible magma, the proportionality constant E
depends on the intrinsic elastic properties of the surrounding 
rocks, as well as on the geometry of the chamber (e.g., Tait et al., 
1989; Delaney and McTigue, 1994). We will refer to E as the effec-
tive bulk modulus of either magma chamber (Huppert and Woods, 
2002).

The volumetric flux associated with the pipe of radius ar is sim-
ply wπa2

r . The volumetric flux feeding the shallow reservoirs from 
below is Q S = (a4

Sπ/8μL S )[P S − P B − ρgL S ] (e.g., Lenglin et al., 
2008; Pinel et al., 2010). With this additional information on the 
model parameters, we can finally write down the three coupled 
ordinary differential equations that govern the model:
dP B

dt
= a4

S Eπ

V B 8μLS
[P S − P B − ρgLS ] − w

Eπa2
R

V B
,

dP T

dt
= w

πa2
R E

V T
,

dw

dt
= − 8w

a2
R LR

⎡
⎣νB LR + α�T

2LR

(
LR − wa2

R

4κ

)2
⎤
⎦

+ 1

ρLR
[P B − P T − ρgLR ].

(10)

The first equation relates the change of pressure P B in the deeper 
shallow chamber with the influx coming from the underlying 
source region and the outflux leaving towards the shallower reser-
voir. The second equation relates the change of pressure P T in the 
shallower chamber with the flux of magma arising from the cham-
ber below. Finally, the third equation couples the variation of the 
vertical velocity w of the magma with the difference of pressure 
(P B − P T ) between the two shallow reservoirs.

By taking into account the fact that the pressure driving the 
flow is the sum of the lithostatic pressure at the outlet of the pipes 
and the overpressure of the magma reservoirs, i.e., P = Plitho +�P , 
the former equations become:

dP B

dt
= a4

S Eπ

V B 8μLS
[�P S − �P B + �ρgLS ] − w

Eπa2
R

V B
,

dP T

dt
= w

πa2
R E

V T
,

dw

dt
= − 8w

a2
R LR

⎡
⎣νB LR + α�T

2LR

(
LR − wa2

R

4κ

)2
⎤
⎦

+ 1

ρLR
[�P B − �P T + �ρgLR ].

(11)

Here �ρ = ρr −ρ is the density contrast between the surrounding 
rocks and the magma, while �P S , �P B , �P T are the overpres-
sures of the corresponding reservoirs. The system of equations (11)
shows that the fluid flow in our model is driven by both the cham-
ber overpressure and the buoyancy of the magma (Jaupart and Tait, 
1990). If �ρ is kept constant, the buoyancy term acts as a constant 
flux and constitutes a constant forcing term.

3.3. Dimensional analysis

The dimensionless variables are denoted by primes, and they 
are defined by:

w = w ′w∗, w∗ = 4κ LR

a2
R

,

t = t′ 8μLS V B

Eπa4
S

,

P = P ′ LRρ8νB w∗

a2
R

.

(12)

The velocity scale w∗ , mentioned in section 3.1 in connection with 
equation (8), is the velocity above which most of the heat still re-
sides in the magma (Delaney and Pollard, 1982). The time scale 
in the second equation of (12) is the characteristic time associated 
with the balance of pressure between one shallow reservoir of vol-
ume V B and a deep source region (e.g. Pinel et al., 2010). Finally, 
the pressure scale is a viscous pressure scale that can be extracted 
from the steady-state version of the momentum equation (1).
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Table 1
List of main variables and parameters described in the main text.

Description Symbols

Variables
Pressure in the top magma chamber P T

Pressure in the bottom magma chamber P B

Overpressure in the top magma chamber �P T

Overpressure in the bottom magma chamber �P B

Horizontally averaged vertical velocity w
Difference of overpressures X = �P T − �P B

Volume concentration of crystals β

Geometrical parameters
Feeding conduit length LS

Shallow conduit length LR

Feeding conduit radius aS

Shallow conduit radius aR

Magma properties
Dynamic viscosity μ
Kinematic viscosity ν
Density ρ
Thermal diffusivity κ
Density contrast �ρ
Critical volume concentration of crystals β�

Crystal growth rate χ
Number density of crystals n

Rock properties
Density ρr

Shear modulus G

Magma chambers properties
Volume of the top magma chamber V T

Volume of the bottom magma chamber V B

Effective bulk modulus E
Effective bulk modulus for compressible magma E

Important dimensionless parameters
γ — proportional to the vertical acceleration dw/dt ( 8νB

a2
R

)2 ρD R V T

Eπa2
R

A — proportional to the temperature difference �T α�T /νB

B — proportional to the length ratio LS/LR of the 
pipe segments

a4
R LS /a4

S LR

C — volume ratio between the two magma chambers V B/V T

ν� — viscosity ratio νT /νB

By substituting these dimensionless variables into the sys-
tem (11), dropping the primes, and considering that �ρ = 0, one 
ends up with the following dimensionless system:

d�P B

dt
= �P S − �P B − w

LSa4
R

LRa4
S

, (13a)

d�P T

dt
= w

V B

V T

a4
R LS

a4
S LR

, (13b)

dw

dt
= γ [ f (w) + �P B − �P T ], (13c)

where

f (w) =

⎧⎪⎨
⎪⎩

− w

(
1 + A

2
(1 − w)2

)
for w ≤ 1, and

− w for w > 1.

(14)

Four dimensionless parameters appear in equation (13):

γ = 8νB

a2
S

2 ρLS V B

Eπa2
R

, A = α�T

νB
, B = a4

R LS

a4
S LR

, C = V B

V T
. (15)

As described in the following subsection, the values of these four 
dimensionless parameters strongly affect the qualitative dynamics 
of the system. A complete listing of variables and parameters ap-
pears in Table 1.
3.4. Linear stability analysis and Hopf bifurcation

In order to understand the behavior of such a system and its 
relevance to the geodetic observations of deformation presented 
in section 2.2, we assume first that the dimensionless flux enter-
ing the deeper reservoir is constant, Q ≡ �P S −�P B = const. The 
number of variables of the resulting system can be reduced by let-
ting X ≡ �P T − �P B , which leads to a system of two coupled 
differential equations that governs the evolution of the pressure 
difference X between the two magma chambers, and the vertical 
velocity w of the magma:

dX

dt
= −Q + (1 + C)B w, (16a)

dw

dt
= γ ( f (w) − X) . (16b)

System (16) has a unique fixed point, i.e., a single stationary 
solution that corresponds to dX/dt = dw/dt = 0. This fixed point 
(X0, w0) is given by:

X0 = f (w0), (17a)

w0 (1 + C) · B = Q . (17b)

The first step to understand the dynamics of such a nonlinear 
system is to linearize it around the fixed point (17), by letting (X =
X0 +εξ, w = w0 +εω), substituting into system (16), expanding in 
ε , and gathering terms that are of order one in ε . This procedure 
yields:

dξ

dt
= (1 + C)Bω,

dω

dt
= γ

(
d f

dw

∣∣∣∣
w0

ω − ξ

)
.

(18)

The eigenvalues of the linear system (18) are

λ± = γ

2

⎛
⎝ d f

dw

∣∣∣∣
w0

±
(

d f

dw

∣∣∣∣
2

w0

− 4(C + 1)B

γ

)1/2
⎞
⎠ . (19)

A nonlinear dynamical system is linearly unstable when at least 
one of the eigenvalues of its linearization (18) has a positive real 
part. The fixed point thus loses its stability when (d f /dw) at 
w = w0 becomes positive, since γ is always positive. In this case, 
any trajectory of the system starting near the fixed point will nec-
essarily spiral away from it. One can show that this transition is 
possible only for values of the fixed point defined by the double 
inequality:

2

3
− 1

3

√
1 − 6

A
< w0 <

2

3
+ 1

3

√
1 − 6

A
. (20)

This inequality enables us to extract two criteria for the fixed 
point to be unstable. First, A must be larger than 6, otherwise 
(d f /dw) cannot be positive at w0. Second, equation (17a) and in-
equality (20) imply that the magma flux Q feeding the shallow 
reservoirs must verify the following two-sided inequality:(

2

3
− 1

3

√
1 − 6

A

)
(1 + C) B < Q <

(
2

3
+ 1

3

√
1 − 6

A

)
(1 + C) B.

(21)

Far enough away from the fixed point, (d f /dw) can change 
sign, as shown in Fig. 4, thus giving rise to a limit cycle, i.e. to 
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Fig. 4. Changes in the shape of f (w) as the dimensionless parameter A varies. 
When A ≥ 6, there is a range of w-values for which f (w) increases. This increase 
is the critical characteristic of f that gives rise to the emergence of the relaxation 
oscillations.

Fig. 5. Nonlinear oscillation of the reduced model governed by Eq. (16). (a) Phase 
portrait in the (X, w)-plane; (b) and (c) the associated time series represent-
ing, respectively, X(t) and w(t). All plots are computed using (γ , A, B, C, Q ) =
(10, 350, 1, 200, 70) in the equations. In panel (a), the closed trajectory (heavy solid 
line) is the limit cycle, while the dashed curve represents the function X = f (w)

that allows one to understand the shape of the limit cycle. For 1/γ small — with 
1/γ = 0.1 here — the limit cycle follows, to a good approximation overall, either 
the graph of X = f (w) or the two vertical lines on either side of this graph.

a closed, periodic trajectory that arises when the fixed point be-
comes unstable; see Fig. 5a. B. Van der Pol (Van der Pol, 1926) first 
described such oscillatory solutions and called them “relaxation 
oscillations.” Their anharmonic, asymmetric shape arises from the 
nonlinearity of the damping term (Van der Pol, 1926; Gucken-
heimer and Holmes, 1983). In fact, the name itself was associated 
by Van der Pol with a much slower relaxation of a variable, after 
reaching a threshold value, so that the entire period of the oscilla-
tion is dominated by its relaxation time.

In the present case, the phase of increasing X is much shorter 
than the decreasing phase, thus leading to a sawtooth-shaped os-
cillatory time series, as shown in Fig. 5b. Another characteristic 
feature of relaxation oscillations is that their amplitude does not 
depend on the initial state from which they arise, but on the 
model parameters, contrary to classical harmonic oscillations of 
linear systems (Van der Pol, 1940).

The change in the dynamics of a nonlinear deterministic system 
from a unique stable fixed point to a stable closed orbit — like the 
one seen in Fig. 5 — is called a Hopf bifurcation (Guckenheimer 
and Holmes, 1983; Ghil and Childress, 1987; Jordan and Smith, 
2007).

4. Exponential inflations followed by oscillations

4.1. Two successive exponential inflations

The first aspect of Okmok dynamics that needs to be under-
stood is the presence of two consecutive episodes of exponential 
inflation that have different characteristic time scales, called here 
τ1 and τ2 (Fig. 2a). A common explanation for the presence of ex-
ponential inflation is to consider a single shallow reservoir fed by 
a source region inside which pressure is constant (e.g., Pinel et al., 
2010).

We assume first that the deeper one of the two shallow cham-
bers in Fig. 3 is fed by a deep source and is not connected to any 
other reservoir. The evolution of �P B can then be expressed ana-
lytically as:

�P B = �P B(0)exp(−t/τ1) + �P S (1 − exp(−t/τ1)) , (22)

where τ1 = V B 8μL S/Eπa4
S . Here, the characteristic time scale τ1

is related to the hydraulic connection between the source region 
and the shallow reservoir. This is also the time scale that was used 
to nondimensionalize the system of equations (11) in Section 3.3.

As shown in Fig. 2, the second exponential inflation phase oc-
curred when the first one had almost subsided. This sequence of 
events suggests that the second inflation phase is related to the 
transfer of magma from the deeper chamber mentioned above to 
the shallower one of the two that are sketched in Fig. 3. Indeed, 
when the overpressure �P B is large enough, then a new pathway 
for magma may open — or, as the case may be, an already exist-
ing one may reopen — allowing for the transfer of magma to a 
shallower reservoir.

If this scenario is correct, then the second exponential inflation 
phase can be related to the dynamics of pressure balance between 
the two shallow chambers. Neglecting, for now, that the bottom 
shallow reservoir is connected to a source region, it follows that 
�P B and �P T evolve according to:

�P B = V T

V B + V T
(�P B(0) − �P T (0))(1 − exp(−t/τ2))

+ �P B(0),

�P T = V B

V B + V T
(�P T (0) − �P T (0))(1 − exp(−t/τ2))

+ �P T (0),

(23)

where τ2 = (8μD R/Eπa4
R)(V T V B/(V T + V B)) (Reverso et al., 

2014).
If one assumes that E and μ are the same for both conduits 

and that L Sa4
R/a4

S LR � 1, then

τ1

τ2
= V T + V B

V T
. (24)

This means that τ1 is necessarily larger than τ2 — as is the case for 
the fit to the Okmok time series in Fig. 2a — since V T + V B ≥ V T .

Clearly, the above heuristic reasoning is only acceptable to first 
order, and the entire system — i.e., the two reservoirs fed by a deep 
source region— should be treated as a whole, since the transfer 
of magma between the two shallow reservoirs affects the pres-
sure of the bottom shallow reservoir, which in turn affects the flux 
of magma from the source region. The dynamics of this model — 
when neglecting the effect of temperature variations �T on the 
viscosity in the pipe — is governed by system (13) with A = 0. 
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Fig. 6. Time series reflecting the dynamics of the reservoir overpressures �P B and 
�P T that are governed by the system (13). (a) Time series of both P B (grey solid) 
and P T (black solid); and (b) time series of P T − P B . The curves in (a) are computed 
using (γ , A, B, C) = (10, 350, 1, 200), while the parameter values in plot (b) are the 
same, except that we add a time series computed also with A = 100. The bounds 
on �P B (dashed) in panel (a) are given by the double inequality (25). Note also 
that the overpressures are normalized by the overpressure of the source region so 
that their values at equilibrium is 1.

The solution shows that, in fact, such a system does possess two 
characteristic time scales. One of them is larger than the τ1 above 
and the other one larger than τ2 but still smaller than τ1 (see Ap-
pendix A).

4.2. Transition from exponential inflation to oscillations

The last phase of deformation at Okmok, prior to the 2008 
eruption, started in 2004 when a damped oscillatory signal 
emerged from the second inflation phase (Fig. 2). Because of their 
relatively small amplitude the damped oscillations can only be ob-
served on the GPS time series recorded at Okmok — such as the 
one shown in Fig. 2b — and not on the InSAR derived time series 
shown in Fig. 2a. This signal, as well as the transition from the ex-
ponential trend, can be explained using the system of differential 
equations (13).

As described above, the reduced system governed by equa-
tions (16)(a,b) behaves in an oscillatory manner only if the magma 
flux Q entering the system is bounded by the values given by the 
two-sided inequality (21); these values depend on the dimension-
less parameters A, B , and C . This type of bounds on Q is also valid 
for the full system (13), even though in that case the flux Q is 
not constant and depends on the overpressure �P B in the bottom 
chamber.

From the double inequality (21), one can derive the thresh-
old values for �P B required for the emergence of an oscillatory 
regime. The corresponding two-sided inequality for �P B is given, 
in terms of the source overpressure �P S , by

�P S −
(

2

3
+ 1

3

√
1 − 6

A

)
(1 + C)B < �P B < �P S

−
(

2

3
− 1

3

√
1 − 6

A

)
(1 + C)B. (25)

Fig. 6 shows the time series of the overpressures �P B and �P T
that are governed by equations (13). As the pressure equilibrates 
between the shallow reservoir and the source region, both �P B
and �P T increase. When P B reaches the lower threshold in in-
equality (25), the pressure starts to oscillate in a sawtooth manner, 
as illustrated in Fig. 6a. These oscillations are superimposed onto 
the overall trend of exponential pressure increase and are slightly 
damped as the flux entering the shallow system decreases. When 
the pressure �P B reaches the upper threshold of inequality (25)
the oscillations cannot be sustained anymore.

This qualitative dynamics can be directly compared with the 
observations at Okmok. The fact that the observed oscillations are 
damped and start when the rate of inflation decreases suggests 
that the transition from the exponential inflation regime to the 
oscillatory one is controlled by the evolution of the flux entering 
the shallow system.

Note that, as shown in Fig. 6b, as the parameter A increases, 
both the amplitude and the period of the oscillations increase. Be-
cause the time in Fig. 6a is scaled by the characteristic time scale 
τ1 associated with the pressure balance between a source region 
and a shallow reservoir, the period of the oscillations is also quan-
titatively consistent with observations at Okmok.

The model simulations plotted in Fig. 6 show that the ampli-
tude of the dimensionless pressure oscillations is roughly equal 
to 0.1, when choosing A = 350. The pressure scale we used is 
[P ] = LRρ8νB w∗/a2

R . Let us choose LR = 500 m, ρ = 3.103 kg m−3, 
νB = 102 Pa s, w∗ = 0.004 m s−1 and aR = 1 m, so that [P ] �
1 MPa. The overpressure variations in the top chamber induced by 
the oscillations have then an amplitude � 0.1 MPa. Since the oscil-
lations represent � 10% of the amplitude of the total deformation, 
this is consistent with the observed surface displacement and with 
overpressures that come into play during eruptions in general that 
is of order 1–10 MPa (Huppert and Woods, 2002).

Of course, all the parameters involved — such as A, aR , and so 
on — can be tuned to produce oscillations of smaller or larger am-
plitude in order to produce deformations that would fit well the 
observed surface displacements.

This consistency between model results and observations is 
achieved by using large values for A — e.g., in Fig. 6a, A = 350
— which imply large variations in the viscosity as the magma is 
flowing from a reservoir to another. This point is further discussed 
in section 5.2.

5. Discussion

5.1. Volatile exsolution in the magma chamber

The GPS time series show that the oscillations at Okmok are 
damped (Fig. 2b). While part of the damping can be explained by 
the decreasing flux of magma supplying the system (section 4.2), 
an other contribution may come from exsolution of gas in the shal-
low magma chamber.

If volatiles are present in the magma and are exsolved, then the 
effective bulk modulus E of the magma chamber can change sig-
nificantly (Huppert and Woods, 2002). Larsen et al. (2013) showed 
that water is present in melt inclusions entrapped at a depth of 
roughly 3 km and above, with H2O concentration in the melt in-
clusions of the 2008 ejecta ranging from about 0.1% to about 4.4% 
of weight fraction. Although these estimates of H2O content in 
the melt inclusions show that, in all likelihood, the water exsolves 
mainly during the decompression of the magma while ascending 
to the surface, some of it might also have exsolved in the shal-
low chamber while crystallization occurred; see Larsen et al. (2013, 
Fig. 11), and Tait et al. (1989, and the references therein).

Let us assume that only one volatile species, H2O say, is present 
when the melt arrives in the deeper shallow reservoir, at a depth 
of about 2 km. We follow the formalism of Huppert and Woods 
(2002) to determine how the presence of the volatile affects the 
effective bulk modulus E of the magma chamber; see Appendix B
for details on the model. The variation of E as a function of the 
weight fraction of crystals is shown in Fig. 7.
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Fig. 7. The effective modulus E of a magma chamber as a function of both the 
weight fraction of crystals x and the total weight fraction of volatile. The com-
putation is explained in Appendix B, and the curves are computed using ρm =
3000 kg m−3, ρc = 3200 kg m−3, T = 1100 ◦C, P = 60 MPa, and E = 1010 Pa.

Fig. 8. Effect of volatile exsolution on the oscillations in the top magma chamber’s 
overpressure �P T . Two time series have been computed using two values of γ
that are separated by two orders of magnitude: this is approximately the effect that 
volatile exsolution would have on γ , according to the results plotted in Fig. 7. Such 
an increase in γ causes, in turn, a decrease in the amplitude and period of the oscil-
lations. Both time series have been computed using (A, B, C, Q ) = (350, 1, 200, 70).

We chose two values of total H2O: N = 2.5% and N = 3% per 
weight; both are within the range measured in the melt inclusions 
at Okmok. In both cases, as crystallization develops the resulting 
melt can reach H2O saturation. At this point, the effective bulk 
modulus values drop by almost two orders of magnitude, which 
leads to an increase in γ by about two orders of magnitude.

The pressure evolution of P T in the case of a constant flux 
from the deep source region into the shallow chambers is shown 
in Fig. 8 for γ = 0.1 and γ = 10. Clearly, such a large change in 
the vertical acceleration of the magma leads to large changes in 
both the amplitude and period of the pressure oscillations inside 
the upper magma chamber.

5.2. Amplitude of the viscosity variations inside the conduit

In the model, the critical dimensionless parameter is A =
α�T /νB , which corresponds to the ratio between the viscosity 
variations induced by the vertical temperature gradient �T along 
the pipe and the viscosity νB at its bottom outlet. Nonlinear oscil-
lations can take place only if A ≥ 6, which means that the viscosity 
needs to increase by 600% or more during the magma ascent. An-
other important point is that the period and amplitude of the 
oscillations increases as A increases, as shown in Fig. 6b, where 
we used A = 350 (solid black) vs. A = 100 (solid grey) to illustrate 
this effect. In Fig. 6a, we used only A = 350 in order to simulate 
oscillations of large enough period and amplitude compared, re-
spectively, with the time scale and the pressure variations that are 
associated with pressure equilibrium between the shallow cham-
bers, on the one hand and the deep source region, on the other; 
see the discussion at the end of section 4.2.
Larsen et al. (2013) carried out a thermometric study based on 
the analysis of equilibrium between liquid, olivine microlite and 
olivine phenocryst in samples from the 2008 eruption, and ob-
tained temperature estimates inside the Okmok plumbing system 
that are in the 1000–1200 ◦C range. According to these authors, 
olivine phenocryst and olivine microlite crystallized under differ-
ent pressure conditions, suggesting that they formed at different 
depth. Their estimates lead us to suppose that the same temper-
ature interval provides a plausible range for the vertical tempera-
ture gradient across the shallow plumbing system before the 2008
eruption, i.e., �T � 200 ◦C.

Inside the pipe, the temperature gradient is smaller and results 
from the competition between the advected heat and the con-
ducted heat, cf. Eq. (3). According to the simple model presented 
above, if LR = 1 km and aR = 1 m, and we assume that the velocity 
w = w∗ = 0.004 m s−1, the amplitude of the vertical temperature 
variations inside the pipe would be � 100 ◦C when the surround-
ing temperature gradient is �T � 200 ◦C.

If one assumes, as in the model governed by equations (13)–
(15), that viscosity varies only with the temperature, this corre-
sponds to viscosity variations of approximately one order of mag-
nitude, i.e., A � (103−102)/102 � 9; see, for instance, Shaw et al. 
(1968). According to the linear stability analysis in section 3.4, this 
viscosity variation suffices to give rise to oscillations, but their am-
plitude and period would not be large enough to produce ground 
deformations that are measurable using geodetic instruments.

Both decrease of temperature and release of H2O-dominated 
fluids during magma ascent lead to crystallization and increase of 
viscosity (e.g., Shaw et al., 1968; Hess and Dingwell, 1996). These 
phenomena would increase sufficiently A to generate oscillations 
of easily measurable period and amplitude.

5.3. Oscillations due to decompression-induced crystallization

The key relation that leads to nonlinear oscillations in the 
model of section 3.1 is the coupling between the flow velocity and 
the viscosity. We considered so far that this coupling is achieved 
through the advected heat, cf. equation (3).

Other processes occurring in the conduit that are not linked to 
temperature variations may also induce a coupling between vis-
cosity and velocity (e.g., Melnik and Sparks, 1999). We consider 
herewith the effect of H2O degassing and the induced crystalliza-
tion (Blundy and Cashman, 2001). As the magma rises from the 
bottom to the top reservoir, H2O can exsolve as the result of its 
solubility decreasing with decreasing pressure. This process proba-
bly occurred in Okmok’s plumbing system, as described by Larsen 
et al. (2013).

Here the associated crystallization kinetics provides a relation 
between the rate of decompression and the amount of crystals 
that, in turn, induces a coupling between velocity and viscosity 
because the viscosity is a function of crystal content in the magma 
(Lejeune and Richet, 1995; Caricchi et al., 2007).

To discuss the latter processes, we used the model developed 
by Barmin et al. (2002) that considers the dynamics of fluid flow 
inside a vertical conduit in which decompression of the magma 
induces crystallization. Following Barmin et al. (2002) and to fo-
cus on the cause of the oscillations in such a system, we make 
the following hypotheses: (1) there are no density changes due to 
gas exsolution and crystal growth; (2) the nucleation of crystals 
is instantaneous; (3) crystal growth rate is constant; and (4) the 
magma is a Newtonian liquid in which viscosity depends on vol-
ume concentration of crystals via a step function.

In the static case — i.e., the time derivatives dw/dt and ∂β/∂t
are equal to zero — the vertical pressure gradient and vertical gra-
dient of volume concentration of crystals are given by
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Fig. 9. Changes in the shape of g(w) as the dimensionless parameter ν� varies. This 
figure is quite similar to Fig. 4 for the function f (w). Here, when ν� ≥ 2, there is a 
range of w-values for which g(w) increases. This increase is the critical character-
istic of g that gives rise to the emergence of the relaxation oscillations.

1

ρ

dP

dz
= −ρg − 8νw

a2
R

; ν =
{

νT , β < β�,

νB , β ≥ β�;
(26a)

w
dβ

dz
= (36πn)1/3β2/3χ. (26b)

Here β is the volume concentration of crystals, β� is a concentra-
tion threshold of crystals above which the viscosity changes from 
νB to νT , and χ is the linear growth rate of the crystals, while n
is the number density of crystals and is taken to be constant. From 
the qualitative dynamics point of view, equation (26b) plays a role 
analogous to the heat equation (3) in the model of section 3.1, 
namely it introduces a coupling between the velocity and the crys-
tal content that produces, in turn, a coupling between velocity and 
viscosity.

One can follow the same approach as in section 3.1. Equa-
tion (26b) yields the length scale,

L� = w�β

(36πn)1/3β�
2/3χ

, (27)

above which the crystal content β is approximatively greater than 
β� , where �β is the difference between the threshold value of 
crystal content β� and the crystal content value at the bottom out-
let of the conduit, i.e., �β = β� − β at z = 0. The length scale L� is 
analogous to the length scale L∗ of section 3.1.

Knowing L� , it is easy to integrate equation (26a) to obtain a 
relation that relates the pressure difference to velocity:

g(w) ≡ �P T − �P B =

⎧⎪⎪⎨
⎪⎪⎩

− (1 − ν�)w2 − ν�w

for w ≤ 1, and

− w for w > 1.

(28)

This relation has been rendered dimensionless by using the viscous 
pressure scale of section 3.3 and the velocity scale

w� = (36πnch)
1/3β�

2/3χ LR

�β
(29)

obtained by letting L� = LR . The key dimensionless parameter ap-
pearing here is ν� = νT /νB ; it is analogous to the parameter A in 
the model of section 3.1.

The shape of g(w) is displayed in Fig. 9 and has to be com-
pared directly with the shape of f (w) displayed in Fig. 4. The two 
functions are similar: there is a range of velocities for which the 
derivative of either function changes sign. In other words, for a cer-
tain velocity range, the absolute value of the pressure difference 
�P T − �P B increases as velocity decreases. This change of slope 
is possible only when A > 6 for f (w) or when ν� > 2 for g(w). 
It is this change of sign that is responsible for the linear instabil-
ity that gives rise to oscillatory behavior of the volcano’s plumbing 
system in both cases.
We can also derive here two-sided bounds on the dimension-
less flux feeding the system, namely

(1 + C)B < Q <
ν�

−2(1 − ν�)
(1 + C)B (30)

This analysis shows that the emergence of nonlinear oscillations 
is also possible when a highly nonlinear viscosity profile, for in-
stance a step function, is present inside the conduit.

5.4. The sources of the deformation

Independent data sets suggest that the Okmok plumbing sys-
tem is composed of several reservoirs and that two shallow stor-
age zones played a role in the occurrence of the 2008 eruption; 
see section 2.1 and Freymueller and Kaufman (2010), Larsen et al. 
(2013). The two consecutive exponential inflations that had differ-
ent time scales can also be interpreted as an evidence for interac-
tions between two distinct shallow magma chambers (section 4.1).

The plumbing model we proposed in section 3 is designed to 
provide an explanation of the oscillatory dynamics of the Okmok 
volcanic system. This model is based on the evidence supporting 
the role of several reservoirs in the occurrence of the 2008 erup-
tion; it is, however, not consistent with part of the geodetically 
based localization of the deformation source. Most authors seem 
to agree with the fact that the source of the deformations that oc-
curred between 1997 and 2008 remained stable; see, for instance, 
Biggs et al. (2010) and the reference therein. Here we discuss this 
inconsistency.

An important point shown by the model of section 2.1 is that 
the oscillations occur once the pressure reaches an equilibrium 
between the top and the bottom chamber. Fig. 6 illustrates this 
result: while P T is oscillating (black curve), P B is inflating expo-
nentially (grey curve) but it follows exactly the same trend as P T . 
Hence, the resulting surface deformation might still reflect the de-
formation of the bottom reservoir and thus the inversions based 
on surface displacements may still localize the bottom reservoir.

This plausible inference implies that the time interval that is 
best suited to examine whether the deformation requires the pres-
ence of two reservoirs is the one that follows immediately after the 
end of the first exponential inflation and precedes the oscillations, 
i.e., roughly between the beginning and the middle of the year 
2003. We may, therefore, expect to see a ‘sombrero’-type of pattern 
indicative of shallow uplift superimposed over deeper subsidence 
during this interval, provided the coherence of the interferograms 
is good enough (Fialko and Pearse, 2012). However, the interfero-
grams displayed in Lu et al. (2010) show that the interferograms’ 
coherence is essentially limited in extent to the Okmok volcano’s 
caldera, and is thus insufficient to draw conclusions about the 
wider presence or absence of such a pattern.

During the post-eruptive deformation, Freymueller and Kauf-
man (2010) detect a shallow uplift superimposed over a deeper 
subsidence, thanks to GPS data recorded at the station OKFG that 
is far from the rim of the caldera, at about 5 km; see again Fig. 1. 
InSAR data may, therefore, not be able to detect such a som-
brero type of pattern because of the lack of coherence outside the 
caldera limits that is probably due to topographic and atmospheric 
effects inherent to InSAR analysis, effects that are difficult to cor-
rect for.

Fournier et al. (2009) carried out a numerical experiment in 
which the positions of a moving Mogi source were inverted us-
ing GPS data recorded at Okmok from 1997 to 2008. Their results 
show a shift in the horizontal localization of the source between 
the beginning and the middle of the year 2003 (Fournier et al., 
2009, Fig. 7a). These authors disregarded the result so obtained, 
because a fixed Mogi source gave a better fit to the data than the 
moving one. Still, we feel that, given the limited data, one should 
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not rely exclusively on this fit in discriminating between a single-
and a multiple-reservoir model, given all the arguments in favor of 
the latter.

Concerning the depth of the source of the deformation that oc-
curs between 1997 and 2008, the GPS-based study of Fournier et 
al. (2009) found that it is located roughly 2.5 km below sea level. 
The joint inversions of Biggs et al. (2010) used both InSAR and 
campaign GPS data and found that the source is located slightly 
deeper, at about 3 km. These independent estimates of source 
depth suggest that the associated uncertainty is � 500 m.

In addition, the GPS-based study of Freymueller and Kaufman 
(2010) suggests that the source of the co-eruptive deflation is 
roughly 500 m shallower than the same authors’ estimation for 
the previous inflations. The two shallow reservoirs that played a 
role in Okmok’s 2008 eruption may be separated by a conduit of 
length LR � 500 m, which lies within the uncertainty of the above 
depth estimates.

The relative proximity of the two shallow reservoirs may thus 
render the two indistinguishable from each other by the use of 
purely geodetic inversions. The above arguments, together with the 
intrinsic correlation between either volume or pressure change and 
source depth obtained using a Mogi model justify the apparent 
stability of the source from 1997 to 2008 reported by studies that 
relied exclusively on the latter.

6. Conclusion

Episodes of fast inflation, followed by longer quiet periods, are 
observed at the Okmok volcano, cf. Fig. 2. We have demonstrated 
that these sequences can be explained by the hydraulic interac-
tion of two magma reservoirs connected by a conduit, as shown in 
Fig. 3, provided the viscosity varies with depth along this conduit. 
Several physical processes may contribute to such viscosity gradi-
ents in the melt; they include heat diffusion, fluid exsolution, and 
the formation of a solid phase as the magma crystallizes.

The simple model presented herein, and governed by equa-
tions (13)–(15), shows that a nonlinear oscillatory regime arises 
if: (i) the flux supplying the shallow reservoirs is limited within 
a specified, plausible range; and (ii) the viscosity gradient is suffi-
ciently large. If these conditions are met, our model explains the 
observed deformation pulses as a manifestation of the internal 
variability of the magmatic system, without the necessity to call 
for ad hoc variations in external forcing.

The Okmok-type oscillations may not be unusual. Similar be-
havior was observed at Akutan volcano (Walwer et al., 2016; Ji et 
al., 2017). It would be interesting to test whether the model we 
propose applies to other active volcanic systems.
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Appendix A. Nonoscillatory interaction of two shallow magma 
chambers fed by a deeper source

Let us consider the purely hydraulic, linear system (13) without 
any temperature-driven viscosity variation — i.e., with A = 0. In 
this case the system reduces to

d�P B

dt
= �P S − �P B − B(�P B − �P T ), (31a)

d�P T

dt
= BC(�P B − �P T ); (31b)

here B and C are the two dimensionless parameters introduced in 
equation (15); see Table 1.

The solution of the corresponding homogeneous system has 
necessarily the form(

�P B

�P T

)
= α

(
eλ1t

eλ2t

)
, (32)

where α is a constant matrix with entries that depend on the 
initial state. The exponents λ1 and λ2 are the eigenvalues of the 
matrix(−(1 + B) B

BC −BC

)
, (33)

and they are given by:

λ1 = −(B(C + 1) + 1) + (
(B(C − 1) − 1)2 + 4C B2

)1/2

2
, (34a)

λ2 = −(B(C + 1) + 1) − (
(B(C − 1) − 1)2 + 4C B2

)1/2

2
. (34b)

Because λ1 and λ2 are real, it follows that — in the absence 
of a viscosity gradient — the purely hydraulic system (31) can-
not oscillate. Equations (34a) and (34b) also show that the dy-
namics of the system (31) is associated with two time scales, 
(8μL S V B/Eπa4

S)(λ1, λ2).

Appendix B. Effect of a magma’s volatile content on its bulk 
modulus

We follow Huppert and Woods (2002) to show how the pres-
ence of volatile can affect the effective bulk modulus E of the 
magma chambers. When the bulk density of the magma varies, 
mass conservation yields the equation

d

dt
(ρV ) ≡ ρ

dV

dt
+ V

dρ

dt
= Q , (35)

where Q ≷ 0 is the total mass flux of magma either entering 
or leaving a chamber. The density ρ is a function of tempera-
ture, pressure, mass fraction of crystals and total mass fraction of 
volatile, either dissolved and exsolved.

Differentiating the equation (35) with respect to ρ gives the 
following equation

dV

dt
+ V

ρ

∂ρ

∂ p

dp

dt
= Q

ρ
− V

ρ

∂ρ

∂T

dT

dt
. (36)

As we already saw in equation (9), volume change V inside the 
chamber can be related to pressure change P by

dV

dt
= V

E

dP

dt
. (37)

Substituting the above expression (37) into the equation (36) gives

V

(
1 + 1 ∂ρ

)
dP = Q − V ∂ρ dT

. (38)

E ρ ∂ P dt ρ ρ ∂T dt
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One can now identify the left-hand side of equation (38) with 
the right-hand side of equation (37) to define an effective bulk 
modulus E for a magma chamber with compressible magma by 
the following harmonic mean between E and ρ∂ P/∂ρ:

1

E
= 1

E
+ 1

ρ

∂ρ

∂ P
. (39)

The harmonic mean plays an important role in calculating the ef-
fective properties of heterogeneous materials (e.g., Ericksen et al., 
2012).

The effective modulus E for a magma chamber that contains 
volatile can be evaluated by using an expression of the bulk den-
sity ρ as a function of the pressure P , namely

ρ =
(

n

ρg
+ (1 − n)

(
x

ρc
+ 1 − x

ρm

))−1

. (40)

Here ρg and ρc are, respectively, the gas density and the crystal 
density, x is the weight fraction of crystals, and n is the weight 
fraction of exsolved volatile.

The gas density ρg obeys the ideal gas law

ρg = P

RT
, (41)

where R is the universal gas constant. The exsolved volatile con-
tent n is assumed to follow Henry’s law. For water, this law states 
that n = N − sP 1/2(1 − x) ≥ 0 when the magma reaches satura-
tion, and n = 0 otherwise. Here N is the total volatile content and 
s = 4 · 10−6 Pa−1/2.
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