Back-projection analysis of the 2020 Cuba earthquake

Han Bao & Lingsen Meng (UCLA)
February 25 2020

(modified by J. P. Ampuero, Geoazur)
0.5-2 Hz back-projection using the Alaska array and the **beamforming method**

- Rupture starts subshear, transitions to supershear
0.5-2 Hz back-projection using the Alaska array and the **MUSIC method**

→ Rupture starts subshear, transitions to supershear
Search for independent evidence of supershear rupture using the surface-wave coherence method of Vallée & Dunham (2012)

For a supershear rupture, higher coherence is expected within the Mach cones (green)

The upper figure shows the evidence of a far-field Rayleigh-wave Mach cone. The locations of the broadband stations are indicated by triangles. Their color indicates the correlation coefficients between 15 to 25 s Rayleigh wave displacement seismograms of the Cuba earthquake and its aftershock. White color means higher coherence.
0.5-2 Hz back-projection using the Alaska array and the **MUSIC method**

→ Rupture starts subshear, transitions to supershear

→ Delayed re-nucleation near the hypocenter

Back-projection snapshots showing the simultaneous sources
Comparison of results of Alaska and European arrays, [0.5-2 Hz], MUSIC BP
Confirms supershear
Initial speed and transition point are less clear