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The objective of this series of labs is to have you write a program (i.e. a series of functions) to compute
positions from raw GPS data. To do so, you may use any programing language you master. I strongly
recommend you avoid Fortran. My recommendation is to use either Matlab (preferred) or Python. You
may also need to use sh/csh for file manipulations or GMT to plot your results. In the end it does not
really matter what you use, but that you get the proper results.

At the end of each lab, please provide your source code, executables (as applicable), and resulting plots
with explanations if necessary.
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1 Manipulate GPS orbits from .sp3 file

The purpose of this lab it to start familiarize yourself with GPS satellite orbits. GPS orbits are
distributed in various formats. This was covered during lectures on “Satellite orbits”. The simplest
format, called “sp3”, provides the (X,Y,Z) position of the satellite center of mass in an ECEF frame
every 15 minutes. This is the format used by the International GNSS Service.

#cP2019 10 19 0 0 0.00000000 96 ORBIT IGS14 HLM IGS

## 2075 518400.00000000 900.00000000 58775 0.0000000000000

+ 31 G01G02G03G05G06G07G08G09G10G11G12G13G14G15G16G17G18

+ G19G20G21G22G23G24G25G26G27G28G29G30G31G32 0 0 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

++ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

++ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

%c G cc GPS ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc

%c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc

%f 1.2500000 1.025000000 0.00000000000 0.000000000000000

%f 0.0000000 0.000000000 0.00000000000 0.000000000000000

%i 0 0 0 0 0 0 0 0 0

%i 0 0 0 0 0 0 0 0 0

/* FINAL ORBIT COMBINATION FROM WEIGHTED AVERAGE OF:

/* cod emr esa gfz grg jpl mit ngs sio

/* REFERENCED TO IGS TIME (IGST) AND TO WEIGHTED MEAN POLE:

/* PCV:IGS14_2074 OL/AL:FES2004 NONE Y ORB:CMB CLK:CMB

* 2019 10 19 0 0 0.00000000

PG01 -22162.629144 -13994.496249 5036.402826 -167.355953 8 8 9 109

PG02 10177.755644 20105.263971 14774.888009 -328.741102 6 7 8 77

PG03 -13865.553938 -7286.974790 21402.219550 -24.207059 7 10 4 126

PG05 4424.362154 23882.665511 -10650.872976 -2.471181 7 4 6 85

... etc

Figure 1. Beginning of a sp3 file. The header contains time, sampling interval, reference frame, list of
satellites, etc (+ several unused fields). Then, for every epoch (every 15 minutes in a typical sp3 file),
there is a block of data starting with date and time, followed by one line per satellite with satellite
number, X, Y, Z (in km), satellite clock correction (in microseconds).

Satellite orbits are often visualized either by their “ground track” (= projection of their position on
the Earth’s surface), or as a “sky plot” (= polar representation, valid at a given location).

Assignment:
Produce a ground track and a sky plot, at latitude 40N, longitude -86, for satellites 10 and 30, using
the sp3 orbit file provided:

1. Ground track:

• Extract satellite position information from sp3 file for SV10 and SV30.

• Convert XYZ ECEF satellite coordinates to ellipsoidal coordinates using a function that you
will need to write, please call it xyz2wgs. See class notes for formulas.

• To check your code, verify that:
Lat = 45.8791, Lon = 4.6766, Ele = 432.4222 m

corresponds to:
X = 4433469.9438 m, Y = 362672.7267 m, Z = 4556211.6409 m
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• Plot satellite ground tracks on a world map. For plotting the map, you may use GMT,
Matlab, or any other software you are familiar with.

• Here I suggest you write a function read_sp3 that extracts the XYZ position of a satellite
sv from an sp3 file and returns that position: [Xs,Ys,Zs,Ts] = read_sp3(sp3file,sv).
You will need such a function later.

2. Sky plot:

• Extract satellite position information from sp3 file.

• Compute ground station to satellite unit vector in geocentric XYZ coordinates.

• Convert that vector to a unit vector (i.e. divide by range).

• Rotate the unit vector into a local North, East, Up frame (= local [n, e, u] topocentric frame
at latitude 40N, longitude 86W) using a Matlab function you will need to write. Please call
it xyz2neu. See class notes for formulas.

• Convert [n, e, u] coordinates to azimuth and elevation angle using:
Horizontal length of unit vector hlen =

√
n2 + e2

Angle from zenith to satellite = elev = atan2(hlen, u)
Azimuth from north = azim = atan2(e, n)

• Discard data when azimuth angle is below horizon or some preset cutoff angle.

• Plot data on a polar plot.

Figure 2. Left: Ground track = map of latitude, longitude of satellite. Right: Sky plot = polar
representation of satellite elevation angle (0-90) and azimuth (0, 360) as seen from a static position on
Earth.
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2 From GPS ephemerides to ECEF satellite positions

GPS satellite ephemerides are broadcast to users as part of the GPS signal in the navigation message.
They are calculated by predicting orbits forward on the basis of a curve-fit to 4 to 6 hours of actual
orbit data. GPS broadcast ephemerides are accurate to within a few meters. The IGS (International
GNSS Service) also produces orbits, which are however much more precise (a few centimeters) but are
available with a delay of 2 weeks. Our goal here is to compare satellite positions in a ECEF frame from
broadcast and sp3 orbits.

Figure 3. Satellite orbit in an inertial frame. Right: Keplerian elements in the celestial frame. Right:
orbit description in the orbital plane.

size and shape of orbit
a semi-major axis
e eccentricity

orientation of the orbital plane in the inertial system
Ω right ascension of ascending node
ω argument of perigee
i inclination angle

position of the satellite in the orbital plane To epoch of perigee

One additional parameter defines the position of the satellite along its orbit, the true anomaly v:

v = arctan

(√
1− e2 × sinE

cosE − e

)
(1)

with E = eccentric anomaly given by:
E = µ+ e sinE (2)

and µ = mean anomaly given by:

µ = µ0 +
(√

GM/a3 + ∆n
)
× t (3)

where ∆n is the mean motion (number of revolutions in 24 hours). Note that the true anomaly v is a
function of time t.

The name of the game is to compute the coordinates of the satellite orbit in its 2-dimensional orbital
plane (v, r), then to rotate them into a 3-dimensional, cartesian, geocentric, ECEF frame.

GPS broadcast ephemerides include the following parameters:

1. toe: epoch of reference of the ephemerides in seconds of the current GPS week. It is the center of
the interval over which the ephemeris is valid.

2.
√
a, e,Ω0, ω0, i0: orbital elements (= Keplerian parameters) at toe.

3. µ0,∆n: additional orbital elements (= mean anomaly, mean motion) at toe necessary to compute
the “true anomaly” (position of the satellite on its orbit), see above.

4



February 6, 2020

4. Ω̇, i̇: rate of right ascension and inclination, required to compute the change of orientation of the
orbital plane in the celestial frame as a function of time.

5. Cuc, Cus, Crc, Crs, Cic, Cis are corrections coefficients to the argument of perigee, orbit radius and
inclination for the perturbations caused by variations in the Earth’s gravity field, solar radiation
pressure, and gravitational attraction from the Sun and the Moon.

This is all one needs to compute the satellite position in the orbital plane and, knowing the mean
angular velocity of the Earth (its rotation speed), to compute the satellite position in a geocentric,
cartesian, Earth–fixed frame.

Figure 4. Orbit difference (in range from geocenter) between sp3 and broacast. Left: for satellite 31
only. Right: for all satellites present on that day.

Assignment:

1. Write a program to convert the ephemerides given in a RINEX navigation file into an ECEF
cartesian coordinate system.

• Write a function read_rinexn to read the broadcast ephemeris file. This function should
return a matrix with 22 rows (the parameters needed later on in the calculations) and as
many columns as there are ephemerides. You will need the 17 following parameters, I suggest
you use the variable names of the first column:

svprn satellite PRN number
Mo mean anomaly
roota sqrt(semi-major axis)
deltan variation of mean angular velocity
ecc eccentricity
omega0 argument of perigee
cuc, cus, crc, crs, cic, cis correction coefficients
i0 inclination
idot rate of inclination
Omega0 right ascension
Omegadot rate of right ascension
toe time of ephemeris

The call to that function could look like: eph = read_rinexn(eph_file)

• Write a function to convert the ephemerides matrix (output of previous function) for a given
satellite at a given time (i.e. 3 input arguments). This function should return the correspond-
ing X,Y,Z coordinates in ECEF frame, for instance: [X,Y,Z] = get_satpos(t,sv,eph).
A possible algorithm is given below, together with the formulas that give the values for
Ω, ω, i, E, r, v needed in the equations below:
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(a) Extract needed parameters from the GPS broadcast ephemerides file. Note that the
RINEX navigation files provide information every 2 hours only. Therefore, you first
need to find the correct time of ephemeris (toe) in the navigation file given the time t at
which you need to extrapolate the satellite position.

(b) Compute basic parameters at requested time t:
Time elapsed since toe:

tk = t− toe (4)

Mean anomaly at t (with GM = 3.986004418×1014 m3s−2):

µ = µ0 +
(√

GM/a3 + ∆n
)
× tk (5)

Iterative solution for E (start with E = µ for instance):

E = µ+ e sinE (6)

True anomaly v:

v = arctan

(√
1− e2 × sinE

cosE − e

)
(7)

(c) Correct for orbital perturbations:
Argument of perigee:

ω = ω0 + Cus cos 2(ω0 + v) + Cus sin 2(ω0 + v) (8)

Radial distance:

r = a(1− e cosE) + Crc cos 2(ω0 + v) + Crs sin 2(ω0 + v) (9)

Inclination:
i = i0 + i̇tk + Cic cos 2(ω0 + v) + Cis sin 2(ω0 + v) (10)

(d) Compute the right ascension, accounting for Earth’s rotation (ωe = mean angular ve-
locity of Earth = 7.2921151467×10−5 rad/s) and variations of Ω:

Ω = Ω0 + (Ω̇− ωe) tk − ωe toe (11)

(e) Convert satellite position from coordinates in the plane to coordinates in ECEF frame:
Write the satellite position in the orbital frame:

~r =

r cos v
r sin v

0

 (12)

Build the rotation matrix from orbital frame to ECEF frame:

R =

cos Ω cosω − sin Ω sinω cos i − cos Ω sinω − sin Ω cosω cos i sin Ω sin i
sin Ω cosω + cos Ω sinω cos i − sin Ω sinω + cos Ω cosω cos i − cos Ω sin i

sinω sin i cosω sin i cos i


(13)

Apply the rotation:
~ρe = R ~r (14)

(f) Check your program. You should find, for sv = 31:

at t=0 [X = 0.2775 Y = -1.6576 Z = 2.0444] * 1.0e+07 m

at t=85500 [X = 0.1469 Y = -1.7646 Z = 1.9639] * 1.0e+07 m

2. Compute ECEF coordinates for satellite 31 every 15 minutes and compare with the coordinates
given in the corresponding sp3 file (precise IGS orbits).

• Write (or use form previous lab) a function read_sp3 that extracts the XYZ position of a
satellite ‘sv’ from an sp3 file and returns that position: [Xs,Ys,Zs,Ts] = read_sp3(sp3file,sv).

• Compute the 3-D residual position = vector difference between sp3 and broadcast XYZ
position. Plot the norm of this vector as a function of time for satellite 31.

3. Comment on the differences between the 2 orbits.
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3 GPS data: Multipath and Quality Control

The objective of this lab is to read and manipulate GPS observables. To do so, we shall write a piece
of code to quantify the level of noise in our GPS measurements from the pseudorange and phase data.
We are looking for the main contributors to that noise, the multipath effects and the receiver noise.
The physical principles of this calculation are derived below.

The GPS pseudorange measurements can be modeled as:

P1 = R+ I1 +MP1

P2 = R+ I2 +MP2 (15)

with:
P1 = L1 pseudorange (m)
P2 = L2 pseudorange (m)
R = satellite-receiver geometric range (m)
I1 = L1 ionospheric delay
I2 = L2 ionospheric delay
MP1 = P1 multipath plus receiver noise (m)
MP2 = P2 multipath plus receiver noise (m).

Similarly, the phase measurements can be modeled as:

L1 = R− I1 +mp1 +B1

L2 = R− I2 +mp2 +B2 (16)

with:
L1 = L1 phase measurement (m)
L2 = L2 phase measurement (m)
B1 = L1 phase ambiguity (m)
B2 = L2 phase ambiguity (m)
mp1 = L1 phase multipath plus receiver noise (m)
mp2 = L2 phase multipath plus receiver noise (m).

The sign difference in front of I1 and I2 in the equations above reflect the fact that the ionospheric
delay is a group delay in the case of pseudorange measurements, but a phase delay in the case of phase
measurements.

Phase noise is much smaller than pseudorange noise, therefore mp1 << MP1 and mp2 << MP2. We
shall then assume that mp1 ∼ 0 and mp2 ∼ 0.

Now let’s combine equations 15 and 16 to find MP1:

P1 − L1 = 2 I1 +MP1 −B1

=⇒ MP1 −B1 = P1 − L1 − 2 I1 (17)

We need to solve for I1. Let’s combine L1 and L2 from equation 16:

L1 − L2 = I2 − I1 +B1 −B2 (18)

Now we have to deal with I1 and I2. We know that the ionospheric delay is proportional to the
ionospheric electron content (IEC) and depends on the signal wavelength. It can be written as (see
lecture notes):

I1 =
A

f21
IEC

I2 =
A

f22
IEC

=⇒ I2
I1

=

(
f1
f2

)2

= α (19)
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Substituting 19 into 18 gives:

L1 − L2 = I1(α− 1) +B1 −B2

=⇒ 2I1 =
2

α− 1
(L1 − L2) + 2

B2 −B1

α− 1
(20)

Now we can substitute I1 from the equation above into 18 to find:

MP1 −B1 = P1 − L1 −
2

α− 1
(L1 − L2)− 2

α− 1
(B1 −B2) (21)

We can rearrange this equation by putting all the constant terms on the right hand side:

MP1 − P1 + L1 +
2

α− 1
(L1 − L2) = B1 −

2

α− 1
(B1 −B2)

=⇒ MP1 − P1 +

(
2

α− 1
+ 1

)
L1 −

2

α− 1
L2 = constant (22)

Since MP1 has a zero mean, we are only interested in the structure of MP1 over time, not in the
constant DC bias term (constant for each given orbit arc). We can therefore compute the constant by
averaging MP1 over a given orbit arc, and then subtract this average value from the MP1 values at
each epoch. Consequently, after removing that bias, the pseudorange multipath noise can be written
as (same derivation for MP2):

MP1 = P1 −
(

2

α− 1
+ 1

)
L1 +

(
2

α− 1

)
L2

MP2 = P2 −
(

2

α− 1

)
L1 +

(
2

α− 1
− 1

)
L2 (23)

Assignment:

1. Get rinex file opmt2920.19d.Z from the IGS. This site is located at the Paris Observatory.

2. Convert this compressed rinex file to the human–readable one opmt2920.19o using crz2rnx.

3. Obtain from me (or the internet) a function to read rinex data files. Make sure it works and that
you understand its outputs.

4. Write a Matlab function to compute and plot MP1 and MP2 from the rinex data.

5. Compute and plot MP1 and MP2 for PRN10.

6. Discuss the results.

7. Isn’t there an important additional noise term that is not modeled here and which, consequently,
is present in MP1 and MP2 as derived above?

Values to be used for the calculations:
f1 = 1.57542× 109 Hz
f2 = 1.2276× 109 Hz
c = 0.299792458× 109 m/s
λ1 = c/f1
λ2 = c/f2
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Figure 5. Time series of multipath values for PRN 3 (top) and PRN 10 (bottom).
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4 Position solution from GPS pseudorange data

We start by recalling the observation equation (or measurement model) for GPS pseudorange data in
its simplest form, between satellite j and a given receiver, in a cartesian, geocentric, Earth–fixed frame:

jR(t) = jρ(t) + c
(
jδ(t)− δ(t)

)
+ I(t) + T (t) +MP (t) + ε (24)

where:
t = time of epoch
jR = pseudorange measurement
jρ = satellite-receiver geometric distance
c = speed of light
jδ = satellite clock bias
δ = receiver clock bias
I = ionospheric propagation error (group delay)
T = tropospheric propagation error
MP = multipath error
ε = other errors and receiver noise
(ranges in meters, time in seconds)

The geometric distance between satellite j (coordinates jX, jY, jZ) and a receiver (coordinates X,Y, Z)
at a given epoch is given by:

jρ =

√
(jX −X)

2
+ (jY − Y )

2
+ (jZ − Z)

2
(25)

For now, we shall assume that the tropospheric and ionospheric errors are small enough to be neglected
(though they can reach several meters in range!), so that the observation equation we shall be using is
simply, at a given epoch:

jR = jρ+ c
(
jδ − δ

)
+ ε (26)

One can see from equation 25 that the unknowns [X Y Z] are not linearly related to the observables
jR. This problem can be wroked around by linearizing the square root function in equation 25 using a
Taylor’s series. This implies that one must know the approximate coordinates of the receiver position in
order to write the Taylor’s series with respect to that point. We shall call these appromate coordinates
[X0 Y0 Z0] so that:

X = X0 + ∆X

Y = Y0 + ∆Y

Z = Z0 + ∆Z (27)

The quantities ∆X,∆Y,∆Z are called the “ajustements”, they will be the unknowns we will be solving
for.

Recall that the Taylor’s series approximation of function f(X,Y, Z) at a point of coordinates [X0 Y0 Z0]
writes:

f(X,Y, Z) = f |(X0,Y0,Z0)

+
∂f

∂X

∣∣∣∣
(X0,Y0,Z0)

∆X +
∂f

∂Y

∣∣∣∣
(X0,Y0,Z0)

∆Y +
∂f

∂Z

∣∣∣∣
(X0,Y0,Z0)

∆Z

+
1

2!

∂2f

∂X2

∣∣∣∣
(X0,Y0,Z0)

∆X2 + ... (28)

Function f , in our case, is given by equation 25. Its partial derivative with respect to X is (use chain
rule):

∂f

∂X
= −

iX −X
f

(29)
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which, evaluated at [X0 Y0 Z0], gives:

∂f

∂X

∣∣∣∣
(X0,Y0,Z0)

= −
jX −X0

iρ0
(30)

where
jρ0 =

√
(jX −X0)

2
+ (jY − Y0)

2
+ (jZ − Z0)

2
= f |(X0,Y0,Z0)

(31)

A similar derivation holds for the partial derivatives with respect to Y and Z, evalauted at [X0 Y0 Z0].
These expressions can now be substituted into equation 28, which we shall truncate after the first order
terms:

f(X,Y, Z) = jρ0 −
jX −X0

jρ0
∆X −

jY − Y0
jρ0

∆Y −
jZ − Z0

jρ0
∆Z (32)

We can now substitute this linear approximation of the square root function into the observation
equation 26:

jR = jρ0 −
jX −X0

jρ0
∆X −

jY − Y0
jρ0

∆Y −
jZ − Z0

jρ0
∆Z + cjδ − cδ (33)

and move the known terms to the left side of the equality, leaving only the unknowns ∆X,∆Y,∆Z on
the right side:

jR− jρ0 − cjδ = −
jX −X0

jρ0
∆X −

jY − Y0
jρ0

∆Y −
jZ − Z0

jρ0
∆Z − cδ (34)

Let us write:

jaX = −
jX −X0

jρ0

jaY = −
jY − Y0
jρ0

jaZ = −
jZ − Z0

jρ0
j l = jR− jρ0 − cjδ

(35)

The last quantity j l is the pseudorange observation corrected from known error terms. Note here that
additional error terms could be addded to the observation equation and subtracted from the pseu-
dorange observation, assuming they are known or can be modeled accurately enough (e.g., relativistic
terms, ionospheric and tropospheric delays, etc.). The quantities jaX ,

jaY ,
jaZ can be readily computed

since the satellite position and the a priori site coordinates are known. The linearized observation equa-
tion 34 can now be written as:

j l = jaX∆X + jaY ∆Y + jaZ∆Z − cδ (36)

Let us assume that 4 satellites are visible simultaneously. In that case equation 36 can be written 4
times:

1l = 1aX∆X + 1aY ∆Y + 1aZ∆Z − cδ
2l = 2aX∆X + 2aY ∆Y + 2aZ∆Z − cδ
3l = 3aX∆X + 3aY ∆Y + 3aZ∆Z − cδ
4l = 4aX∆X + 4aY ∆Y + 4aZ∆Z − cδ

(37)

Let us introduce matrix A, which contains the coefficients (= partial derivatives) of the linearized
model:

A =


1aX

1aY
1aZ −c

2aX
2aY

2aZ −c
3aX

3aY
3aZ −c

4aX
4aY

4aZ −c

 (38)
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the vector of unknown parameters ~X:

~X =


∆X
∆Y
∆Z
δ

 (39)

and the vector of observations corrected from known error terms ~L:

~L =


1l
2l
3l
4l

 (40)

Equations 37 above can now be written in matrix form:

~L = A ~X (41)

In the general case, the number of satellites visible at a given epoch is larger that the number of
unknowns, so that the problem becomes overdetermined and the solution is non–exact. In order to
make the system consistent, one much account for residuals associated to each observation and write:

~L− ~r = A ~X (42)

where ~r is the vector of residuals. The equation above can then be solved by find a solution such that
the residuals are minimal. For instance, one can can search the solution that will minimize the sum of
the squares of the residuals:

J( ~X) =

n∑
i=1

r2i = rtr =
(
L−A ~X

)t (
L−A ~X

)
(43)

This functional is also called the “L2 norm”. Minimizing the L2 norm leads to the so–called “least
squares solution” to the problem. It is achieved by searching the condition under which the derivative
δJ of the functional is zero, which writes:

δ

[(
~L−A ~X

)t (
~L−A ~X

)]
= 0

δ
(
~L−A ~X

)t (
~L−A ~X

)
+
(
~L−A ~X

)t
δ
(
~L−A ~X

)
= 0(

−Aδ ~X
)t (

~L−A ~X
)

+
(
~L−A ~X

)t (
−Aδ ~X

)
= 0(

−2Aδ ~X
)t (

~L−A ~X
)

= 0(
δ ~XtAt

)(
~L−A ~X

)
= 0

δ ~Xt
(
At~L−AtA ~X

)
= 0

AtA ~X = At~L

(44)

This last equality is also called the “system of normal equations”, whose solution is:

~X =
(
AtA

)−1
At ~L (45)

One the solution to this equation is obtained, recall that we are getting the adjustements ∆X,∆Y,∆Z
to the a priori coordinates X0, Y0, Z0. Use equation 27 to obtain the ECEF coordinates of the receiver.
The use your script xyz2wgs to convert then into ellipsoidal coordinates.

The associated covariance matrix of the unknowns is:

∑
X

=
(
AtA

)−1
=


σ2
x σxy σxz σxt

σyx σ2
y σyz σyt

σzx σzy σ2
z σzt

σtx σty σtz σ2
t

 (46)
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The variance and covariance elements are expressed in an ECEF frame, but it is more useful to have
them in a local topocentric frame (north, east, up). The conversion from the ECEF to local topocentric
is performed using the rotation matrix R:

R =

− sinφ cosλ − sinφ sinλ cosφ
− sinλ cosλ 0

cosφ cosλ cosφ sinλ sinφ

 (47)

where with φ = geodetic latitude of the site, λ = geodetic longitude of the site, with:

∑
L

= R
∑
X

Rt =

 σ2
n σne σnu

σen σ2
e σeu

σun σue σ2
u

 (48)

For completeness, the Dilution Of Precision (DOP) factors, which quantify the effect of the geometry
of the satellite constellation on the precision of the position estimate, are given by:

V DOP = σu

HDOP =
√
σ2
n + σ2

e

PDOP =
√
σ2
n + σ2

e + σ2
u

TDOP = σt

GDOP =
√
σ2
n + σ2

e + σ2
u + σ2

t

(49)

Assignment:
Write a MATLAB program to compute the position and clock bias of a GPS receiver and the GDOP
using:

• Pseudorange data at epoch 00:15:00.0 from rinex observation file opmt2920.19o. There are 9
satellites observed at that epoch.

• Satellite position and clock bias from orbit file igs20756.sp3 (satellite positions in kilometers in
ECEF frame, clock biases in microseconds).

Compare solutions using C1, P1, and P2.

The a priori position of the receiver in ECEF frame (in meters) is provided in the rinex file header
(APPROX POSITION XYZ).

Possible program structure:

1. Define constants (c) and a priori GPS receiver position (X0, Y0, Z0) and clock bias;

2. Read the pseudorange data jR and its corresponding epoch of observation, which you convert
into seconds of the current day. Again, I would start by hard–coding the pseudorange data from
the rinex file for one epoch. You can later replace this by the output of function read_rinexo;

3. Compute the time of transmission of the data, which is not the same as the time of obser-
vation in the receiver because the signal has traveled a distance of jR× c between the satellite
and the receiver. In other words, pseudorange data tagged time = t in the rinex observation file
were sent a bit earlier, at ttx = t− jRc. That is the time at which you will need to compute the
satellite position.

4. Use your function get_satpos to calculate (from broadcast ephemerides) the satellite positions
and clock biases in ECEF frame at time of transmission ttx. Make sure they are expressed in
meters and seconds.

5. Compute the modeled observables jρ0;
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6. Compute the observation vector by substracting known quantities from the pseudorange obser-
vation: ~L = jR − iρ0 + c jδ. Warning: satellite clock biases must be added to the measured
pseudoranges;

7. Compute the partial derivatives and build the design matrix A. Trick: multiply c by 10−9 in the
design matrix in order to avoid numerical instabilities in the inversion. The receiver clock bias
will be output in nanoseconds.

8. Invert the design matrix and find the vector of unknowns, or solve the least squares problem
directly. In MATLAB this can be done using pinv or lscov;

9. Compute the covariance of the unknowns in ECEF frame;

10. Compute the station position in ECEF using the adjustments you just computed and its a priori
position;

11. Compute the ellipsoidal coordinates of the station;

12. Form the ECEF to topocentric rotation matrix;

13. Compute the covariance in topocentric frame;

14. Compute the DOPs;

15. Go to bed.
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5 Processing a 24-hour RINEX observation file

You are now ready to put everyting together and write a program to process GPS pseudorange data
for entire 24 hour–long rinex file.

Assignment:

Using the RINEX observation file opmt2920.19o and the RINEX navigation file epgga9.292, compute
and plot the following time series:

• Site position, north-south component

• Site position, east-west component

• Site position, up component

• PDOP

Your program should be as modular as possible. It should call the functions that you have written
during previous labs. Here is a possible program structure:

1. Read rinex navigation file (read_rinexn)

2. Read rinex observation file (read_rinexo)

3. For each epoch in the rinex observation file:

• Compute satellite position (get_satpos);

• Compute site position (X,Y,Z) in ECEF coordinates (solve_PR);

• Increment a site position vector;

• Increment a pdop vector.

4. Convert X, Y, Z positions into N,E,U

5. Plot the site position and PDOP vector versus time

6. Save plot as a .ps or .pdf file

That’s all!
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6 Let’s add known corrections

A more complete observation equation than the one given in equation 24 would be:

jR = jρ+ c
(
jδ − δ

)
+ I + T + δρapc + δρrel + tgd + δρgeophy +MP + ε (50)

where: δrel are the relativistic corrections, tgd is the tranmitter group delay, δρapc the satellite phase
centeer offsets, and ρgeophy the geophysical corrections. Any term to the right of jρ that contributes
for tens of centimeters to meters needs to be accounted for.

6.1 Earth’s rotation effect

An important issue to account for is the fact that during the time of signal propagation ∆t from a
satellite to a receiver the Earth has rotated a little bit. During that time interval, in the Earth-centered
non-rotating frame (see figure 4), the receiver has moved by ~vr∆t, where ~vr is the velocity vector of
the receiver. The actual geometric range measured in the receiver is therefore:

c∆t = ‖~rr − ~rs + ~vr∆t‖ (51)

where ~rr and ~rs are the position vectors describing the position of receiver r and satellite s in the
non-rotating, Earth-centered, frame. Hence, there is an extra path length (compared to the situation
where the Earth would not be rotating) which is given by:

δρ = ‖~rr − ~rs + ~vrδt− ‖~rr − ~rs‖ (52)

This effect is called the “Sagnac effect”.

The figure below shows that:

cosα =
∆ρ

‖~vr‖
∆t (53)

One also has:
(~rr − ~rs) · ~vr = ‖~vr‖ ‖~rr − ~rs‖ cosα (54)

Combining the two equations gives:

∆ρ = (~rr − ~rs) · ~vr
∆t

‖~rr − ~rs‖
(55)

The fraction is the above equation is the inverse of the satellite–receiver distance during a time interval
∆t, it is therefore simply 1/c. As a result:

∆ρ =
(~rr − ~rs) · ~vr

c
(56)

The Sagnac effect will be larger for a receiver that is not fixed to the Earth but are moving (on an
airplane or a satellite for instance). The Sagnac effect amount to ∼2 m for a receiver traveling at a
speed of 100 km/h with respect to the Earth’s surface.

In practice, the simplest way to account for this effect is to rotate the satellite coordinates, which are
in ECEF (non-rotating) frame, around the z-axis of the geocentric frame by an angle ωτ = Ω̇E ×∆t
where Ω̇E is the angular rotation speed of the Earth. This will put the satellite at the proper place in
space at the time when the signal actually reaches the receiver. The rotation matrix is:

R =

 cosωτ sinωτ 0
− sinωτ cosωτ 0

0 0 1

 (57)

A satellite with initial ECEF coordinates described by ~Xinit is rotated to its “rotated” coordinates
using:

~Xrot = R ~Xinit (58)

Since this time of signal propagation ∆t is not known one usually uses a iterative solution, for instance:
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Delta_t = 70.0e-3; % first guess at signal travel time = 20000e3/c

for k = 1:2 % 2 iterations are sufficient

tmp = rot_satpos(Delta_t,satpos(1:3)); % rotate satellite position

rho = norm(tmp-apr_pos(1:3)); % compute new sat-rcv distance

Delta_t = rho / c_light; % update signal travel time

end

satpos(1:3) = tmp; % final rotated satellite position

where satpos(1:3) is the satellite position vector in ECEF and rot_satpos is a function that imple-
ments the rotation described above with Ω̇E = 7.2921151467× 10−5 rad/s.

6.2 Relativistic effects

The relativistic (general relativity) corrections are the results of two effects:

1. The non-circularity of the GPS orbit (even though it has a small eccentricity) imply variations
of the satellite speed along its orbit which, in turn, result in variations in satellite clock speed:

δρrel,1 =
2

c

√
GMEa e sinE =

2rs vs
c2

(59)

where e = eccentricity, a = semi-major axis, E = eccentricity anomaly, c = speed of light in
vacuum, G = gravitational constant, ME = mass of the Earth, rs = geocentric range to satellite
s, vs = velocity of satellite s. The order of magnitude of this effect is ∼10 m.

2. The space-time curvature of the Earth’s gravity field causes the slowing of the GPS signal prop-
agation as it crosses the Earth’s gravity field:

δρrel,2 =
2GME

c2
ln

(
rs + rr + ρsr
rs + rr − ρsr

)
(60)

where rr = geocentric range of receiver r, and ρsr is the geometric range between satellite s and
receiver r. The order of magnitude of this effect is ∼2 cm.

One can compute δρrel,1 as one computes the satellite position (i.e., in routine get_satpos). The
second effect is small compared to the precision of pseudorange data, we shall ignore it here.

In practice, the relativistic correction is provided in the ephemerides file. It should then be read in
routine get_satpos.

For sake of completeness, we shall mention here the special relativistic effect caused by the fact that
the receiver clock and satellite clock are located on different equipotentials of the Earth gravity field.
This leads to a frequency difference ∆f at the altitude of the satellite compared to the nominal satellite
clock frequency f0 = 10.23 MHz such that:

∆f

f0
=

v2s
2c2

+
∆U

c2
=

v2s
2c2

+
GME

c2

(
1

rs
− 1

rr

)
(61)

∆U is the difference of the Earth’s gravitional potential between the satellite and the geoid. On finds
∆f = 4.464× 10−10 f0 = 4.57× 10−3 Hz. In order to cope with this effect, the satellite clock frequency
is tuned down by that amount so that they reach the exact nominal frequency f0 once in orbit.

6.3 Tropospheric delay

The tropospheric delay can be computed using a variety of models. Recall that it is the sum of:

1. A hydrostatic delay (or “dry delay”) which only depends on atmospheric pressure at ground level
P0, site latitude φ, and site elevation H. It is commonly modeled as:

∆Lhydrozen =
(
2.2768± 0.0024× 10−7

) P0

f(φ,H)
(62)
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with
f(φ,H) = 1− 0.00266 cos(2φ))− 0/00028H (63)

The standard error this simple model is on the order ot 0.5 mm for a mresure of ground atmo-
spheric pressure P0 with a recision of 0.5 hPa, fairly easy to reach with a good barometer.

The zenith hydrostatic delay is typically on the order of 200 to 230 cm at sea level. It is therefore
important to correct for it, even for pseudorange-derived positions.

2. A “wet delay” which accounts the presence water vapor not in hydrostatic equilibrium. It is
commonly modeled as:

∆Lwetzen =

[(
k2 −

Mw

Md

ˆ
e

T
dz + k3

ˆ
e

T 2
dz

)]
× 10−6 (64)

where Mw and Md are the molar masses of dry air and water vapor, respectively, e is the partial
pressure of water vapor, T is temperature, and k1, k2, k3 are constants that need to be determined
empirically. The integrals are along the vertical (z). The standard error of this type of model is
on the order of 2 cm. An important issue with this model is that one does not know (or rarely)
the variation of e and t with elevation z...

The zenith wet delay is less than ∼40 cm at sea level. It can be neglected for pseudorange
solutions, but not for phase solutions.

The total zenith delay is then simply:

∆Ltotalzen = ∆Ldryzen + ∆Lwetzen (65)

The tropospheric delay models above are given at the zenith of the station: they are so-called “zenith
delays”. They must then be multiplied by a “mapping function” in order to obtain the delay along
the actual receiver to sattelite path, also called “slant delay”. The mapping function depends on the
elevation angle of the satellite ε (or the corresponding zenith angle θ = 90− ε) and can be written:

• For a flat Earth:

m(ε) =
L

Z
=

1

sin ε
=

1

cos θ
(66)

where Z is the thickness of the troposphere and L the path length through the troposphere.

• For a spherical Earth:

m(ε) =
L√

Z2 + L2 − 2ZL cos θst
(67)

The slant delay becomes:
∆Ltotalslant = ∆Ltotalzen ×m(ε) (68)

A popular model to compute directly the total slant tropospheric delay is the one of Saastamoinen
(1972, 1973), which writes:

∆Ltotalslant =
0.002277

cos θ
+

[
P +

(
1255

T
+ 0.05

)
e−B tan2 θ

]
+ δR (69)

where θ is the satellite zenith angle, T is the temperature at the site in Kelvins, P is the atmospheric
pressure at the site in millibars. B and δR are correction terms that depend on the elevation of the
site H and of the satellite zenith angle θ. This equation gives ∆Ltotalslant in units of meters.

The partial pressure of water vapor e can be calculated from measurements of local relative humidity
Rh (in %) and temperature T :

e = Rh exp
(
−37.2465 + 0.213166T − 0.000256908T 2

)
(70)
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If one does not have in situ of Rh, P , or T these quantities can be approximated from standard
pressure P0 = 1013.25 mbar, standard temperature T0 = 291.15 K, and standard humidity Rh0 = 50%
(i.e. mean values at sea level) using:

P = P0 (1− 0.000226H]
5.225

T = T0 − 0.0065H

Rh = Rh0 exp(−0.0006396H)

(71)

All these formulas are empirical and will give approximate results. Many other tropospheric delay
models exists besides Saastamoinen’s but noe of them is precise enough to capture the varibility of the
wet delay. As a result, these models are ok for correcting pseudorange GPS data, but not good enough
for phase data. If one wants to calculate station positions with sub-cm-level precision, then the total
zenith delay is usually estimated (over given time intervals) together with the receiver position.

6.4 Ionospheric delay

The ionospheric delay XXX

6.5 Transmitter group delay

GPS transmitters (satellites) and receiver antennas cause delays as the analogue signal travels through
their hardware (cables, antennas, etc.).

The “transmitter group delay”, or tgd, is the delay due to the satellite hardware. It can reach several
meters, depending on the satellite, but is provided in the broadcast ephemerides (see above) in units
of seconds.

The receiver instrumental delay cannot be separated from the receiver clock bias – it is therefore
included in the receiver clock estimate.

On a technical note, the tgd provided in the broadcast ephemerides should be used with the Klobuchar
ionospheric model only.

6.6 Geophysical corrections
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7 Process the same 24-hours RINEX observation file with “track”
and compare
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