GPS Observables

Pseudorange (code) observables Phase observables GPS data files

E. Calais Purdue University - EAS Department Civil 3273 – ecalais@purdue.edu

GPS Basic Principle

- Principle of GPS positioning:
 - Satellite 1 sends a signal at time t_{e1}
 - Ground receiver receives it signal at time t_r
 - The range measurement ρ_1 to satellite 1 is:
 - $\rho_1 = (t_r t_{e1}) \times \text{speed of light}$
 - We are therefore located on a sphere centered on satellite 1, with radius $\rho 1$
 - 3 satellites => intersection of 3 spheres
- The mathematical model is:

$$\rho_r^s = \sqrt{(X_s - X_r)^2 + (Y_s - Y_r)^2 + (Z_s - Z_r)^2}$$

- If the position of the satellites in an Earthfixed frame (X_s, Y_s, Z_s) is known,
- Then one can solve for (X_r, Y_r, X_r) (if at least 3 simultaneous range measurements)
- GPS receivers:
 - Measure t_r
 - Decode t_e
 - Compute range ρ_r^{s}
- Observable = range measurement.

Satellite-receiver time offset

- Receiver clocks are:
 - Mediocre: stability $\sim 10^{-5}$ - 10^{-6} (\sim crystal wrist watch)
 - Not synchronized with the satellite clocks.
- There is a time difference between the satellite clocks (t_s) and the receiver clock (t_r): $\delta t = t_r t_s$
 - The receivers therefore measures: $t = t + \delta t$
 - In terms of distance: $(t + \delta t) \times c = r + \delta r = \rho$
 - -r = true geometric range
 - Receiver actually measures ρ = pseudorange
- Practical consequences:
 - The time offset between satellite and receiver clocks is an additional unknown
 - We need 4 observations \Rightarrow 4 satellites visible at the same time
 - In order to compute a position, the receiver solves for $\delta t \Rightarrow$ GPS receivers are very precise clocks! (Timing is a very important application of GPS)
 - δt is used by the receiver to synchronize its clock with the satellite clocks.

From the GPS signal to a position

- · What do GPS satellites do?
 - Send a radio signal toward Earth at t_e
 - Radio signal contains:
 - Satellite number
 - Time of emission
 - Satellite position
- What do GPS receivers do?
 - Measure t_r
 - Decode the satellite signal:
 - Read t_e
 - Read satellite position from navigation message
 - Compute satellite receiver distances, or pseudorange ρ_r^s
 - Compute position from at least 4 simultaneous range measurements
- What do users do?
 - Set up the equipment...
 - Download the "GPS data" = range measurements
 - Postprocessing

The GPS signal

- Atomic clocks aboard the GPS satellites produce a fundamental frequency $f_o = 10.23$ Mhz
- Two frequencies are derived from it:
 L1 (fo x 154) = 1.57542 GHz, wavelength 19.0 cm
 - L2 (fo x 120) = 1.22760 GHz, wavelength 24.4 cm
- L1 and L2 are the two carrier frequencies used to transmit timing information by the GPS satellites
- The information transmitted by the satellites is coded as a phase modulation of the carrier frequency

Pseudorandom codes

- Information transmitted in GPS signals:
 - Navigation message (incl. satellite ephemerides)
 - Pseudo random code (PRN for pseudorandom noise):
 - Specific to each satellite
 - Known by receivers
 - Formulated as a series of zeros and ones ("chips", or "bits")
- Pseudorandom codes:
 - 1023 chips long ⇒ if random, then 2^{1023} possibilities
 - Only 37 are suitable = GOLD-codes (mathematician).
 - GOLD-codes = correlation among each other very weak ⇒ unequivocal identification of each satellite.

Phase modulation

- Information transmitted in GPS signals:
 - Navigation message
 - Pseudo random code (PRN)
- Information is coded as a sequence of +1/-1 (binary values 0/1)
- Coding = π shift in carrier phase when code state changes = biphase modulation
- Rate at which the phase shift occurs = chip rate
- One chip ~ one bit

Biphase modulation of the GPS carrier phase

C/A and P codes

- Coarse acquisition code = C/A code
 - 1023 chips long, transmitted at frequency of 1.023 MHz \Rightarrow 293 meters chip length (at 3x10⁸ m/s)
 - Transmitted on L1 only
 - Open to civilians
- Precise code = P code
 - 10.23 Mbps \Rightarrow 29.3 m chip length
 - Transmitted on both L1 and L2
 - Can be transmitted encrypted by a Y-code = "anti-spoofing" (A/S)
 - Y-code = precise (military) position determination
 - A/S continuously on since January 31, 1994.

Decoding in the receiver

- Radio frequency (RF) part of the receiver processes incoming signals:
 - L1 only (single-frequency receivers)
 - L1 and L2 (dual-frequency receivers)
- RF unit:
 - Processes incoming signal from different satellites in different channels (multichannels receivers, 4 to 12 channels)
 - Generates internal replica of the GPS signal:
 - Contains an oscillator (= clock) that generates L1 and L2 frequencies
 - Knows each PRN code
 - Compares internally generated signal with incoming signal

Decoding in the receiver

- Code-correlation:
 - Shift of the internally generated signal in time until it matches the incoming one (receiver "locked" on a satellite)
 - Time shift needed = signal travel time from satellite to receiver
- Other techniques to retrieve phase information, independent of PRN codes:
 - Squaring: autocorrelation of the incoming signal
 - Cross-correlation: correlation between L1 and L2 using Y-code (Y-code is identical on L1 and L2)
 - Z-tracking: correlation on L1 and L2 using the Pcode to obtain W-code
 - All these techniques have a lower SNR than the code-correlation:
 - Squaring: -30 dB
 - Cross correlation: -27 dB
 - Z-tracking: -14 dB

Decoding in the receiver

- GPS signals very weak
- Algorithm:
 - Generate internal replica of PRN code in receiver
 - Multiply bits (0 or 1) with incoming signals
 - Sum resulting sequence to obtain correlation
 - Shift replica forward by one chip and repeat
- Search for the time lag corresponding to maximum correlation

 $\Sigma = 9$

Top: Signal of the satellite

Middle: Signal of the receiver, delayed against the signal of the satellite. Bottom: The two signals multiplied.

Correlation function

- Correlation function normalized between 0 and 1
- In this case, max. correlation for signal shift of 3 chip lengths
- C/A code:
 - One chip = 300 m
 - Measurement = 900 m
- P code:
 - One chip = 30 m
 - Measurement = 90 m

http://www.kowoma.de/en/gps

Correlation function

- Correlation function width: inversely proportional to the frequency of the signal
 - C/A code = 1 MHz frequency ⇒
 correlation produces a peak that is
 1 msec wide = 300 m
 - P code = 10 MHz frequency ⇒
 correlation produces 0.1 msec peak
 = 30 m
- Modern GPS receivers can determine peak of correlation function can to 1% of width (with care):
 - Range accuracy = 3 m for C/A code
 - Range accuracy = 0.3 m for P code

http://www.kowoma.de/en/gps

Navigation message

- Ephemerides for all satellites, ionospheric correction parameters, system status, satellite clock offset and drift
- Chip rate = 50 bps
- 25 frames of 1500 bits each, divided into five 300 bits subframes
- 50 bps ⇒ 300/50 = 6 sec to transmit one subframe, 6x5x25 = 750 sec (=12.5 min) to transmit an entire navigation message

BIT No. subframe 1	0 30 telemetry handove word word	60 .r ¹ 1		t t t t t t t t t t t t t t t t t t t	300 6 sec
subframe 2	300 330 3 telemetry handove word word	360 -1 1	I	I I I I I I I I I I I I I I I I I I I	600 12 sec
subframe 3	600 630 (telemetry handove word word	660 er I	I	t I I I I I I cphemeris of transmitting satellite	900 18 sec
subframe 4	900 930 telemetry handove word word	960 r 25	pages	messages, ionosphere, UTC, etc	1200 24 sec
subframe 5	1200 1230 telemetry handover word word	1260 r 25	pages	almanac, health status, etc	1500 30 sec

Figure 3.11 Structure of navigation message frame.

Receiver start-up

- General procedure:
 - 1. Acquire one satellite to get time and almanach
 - 2. Acquire 2 other satellites to get 2-D position
 - 3. Acquire 4th satellite to get 3-D position
 - 4. Acquire any other visible satellite
- Time needed to get good position:
 - Hot start: few secs (rcv was off for a few secs: almanach ok, time ok, position close to last one)
 - Warm start: few mins (rcv was off for less than a day: clock ~ok)
 - Cold start: 10s of minutes (rvc was off for several days: time off, almanach expired, last position off)

GPS signal propagation

• L1 and L2 frequencies are affected by **atmospheric refraction**:

- Ray bending (negligible)
- Propagation velocity decrease (w.r.t. vacuum) ⇒ propagation delay
- In the troposphere:
 - Delay is a function of (P, T, H), 1 to 5 m
 - Largest effect due to pressure
- In the ionosphere: delay function of the electron density, 0 to 50 m
- The **refractive delay** biases the satellite-receiver range measurements, and, consequently the estimated positions (effect more pronounced in the vertical).

GPS code model

• GPS receivers measure pseudoranges ${}^{j}R_{i}(t)$, that can be modeled as:

$${}^{j}R_{i}(t) = {}^{j}\rho_{i}(t) + c({}^{j}\delta(t) - \delta_{i}(t)) + \Delta I(t) + \Delta T(t) + MP(t) + \varepsilon$$

t = time of epoch

- ${}^{j}R_{i}$ = pseudorange measurement
- ${}^{j}\rho_{i}$ = satellite-receiver geometric distance
- c = speed of light
- $j\delta$ = satellite clock bias
- δ_i = receiver clock bias
- ΔI = ionospheric propagation error
- ΔT = tropospheric propagation error
- MP = multipath
- ε = receiver noise
- (ranges in meters, time in seconds)
- ΔI and ΔT are correction terms because GPS signal propagation is not in a vacuum (more later)
- *MP* = multipath noise, reflection of GPS signal off surfaces near antenna (more later)

Carrier phase measurements

- When a satellite is locked (at t_o), the GPS receiver starts tracking the incoming phase
- It counts the (real) number of phases as a function of time
 = Δφ (t)
- But the initial number of phases *N* at *t_o* is unknown...
- However, if no loss of lock, *N* is constant over an orbit arc.

Carrier phase model

- Geometrical interpretation:
 - $\Delta \Phi$ = phase measurement
 - *R* = pseudorange
 - c = speed of light
 - ρ = geometric range
 - λ = wavelength
 - δt = sat-rcv clock offset
 - N = phase ambiguity

$$\Delta \Phi = \frac{R}{\lambda} - N$$
$$R = \rho + c \,\delta t$$

$$\Rightarrow \Delta \Phi = \frac{\rho}{\lambda} + \frac{c}{\lambda} \delta t - N$$

• The phase equation (units of cycles):

$$\Phi_i^k(t) = \rho_i^k(t) \times \frac{f}{c} + \left(h^k(t) - h_i(t)\right) \times f + ion_i^k(t) + trop_i^k(t) - N_i^k + \varepsilon$$

t = time of epoch i = receiver, k = satellite ρ_i^k = geometric range h^k = satellite clock error, h_i = receiver clock error ion_i^k = ionospheric delay, $trop_i^k$ = tropospheric delay N_i^k = phase ambiguity, ε = phase noise

Carrier phase measurements

- Phase can be converted to distance by multiplying by the wavelength ⇒ phase measurements are another way for measuring the satellite-receiver distance
- Phase can be measured to ~1% of the wavelength ⇒ range accuracy 2 mm for L1, 2.4 mm for L2
- Phase measurements are very precise, but ambiguous
- To fully exploit phase measurements, one <u>must</u> correct for propagation effects (several meters)

GPS observables

- GPS receivers can record up to 5 observables:
 - *φ1* and *φ2*: phase
 measurements on *L1* and
 L2 frequencies, in cycles
 - C/A, P1, P2: pseudorange measurements, in meters
- Plus Doppler phase = $d\varphi/dt$

GPS observables

• Pseudorange measurements (C/A, P1, P2):

- Geometric range + clock offset + noise:

 $\rho = r + \Delta t \times c$

- Accuracy of pseudorange measurements by GPS receivers ~ 1% of correlation peak width:
 - 3 m with C/A code
 - 0.3 m with P code
- Low accuracy but absolute measurements

• Phase measurements (L1, L2):

- Geometric range + clock offset - initial phase ambiguity N:

 $\varphi = r \, \mathbf{x} \, f / c + \Delta t \, \mathbf{x} \, f - N$

- Accuracy of phase measurements in GPS receivers ~ 0.005 cycle (0.005 x 20 cm = 0.2 mm) ⇒ millimeter accuracy theoretically possible
- Very accurate measurements but ambiguous

GPS observables

- GPS observables stored in receivers in binary proprietary format
- Receiver Independent Exchange format (RINEX) = ASCII exchange format
- Format description: ftp://igscb.jpl.nasa.gov/igscb/ data/format/rinex2.txt
- Conversion from binary proprietary to RINEX:
 - Proprietary software
 - Freewares: *e.g.* teqc (www.unavco.ucar.edu)

RINEX observation file

2.00 OBSERVATION DATA G (GPS) RINEX VERSION / TYPE CNRS UMRGA tegc 1999Jul19 20021201 12:04:20UTCPGM / RUN BY / DATE Solaris 2.3|S-Sparc|cc SC3.0|=+|*Sparc COMMENT BIT 2 OF LLI FLAGS DATA COLLECTED UNDER A/S CONDITION COMMENT SJDV MARKER NAME 10090M001 MARKER NUMBER REGAL OBSERVER / AGENCY Header 845 ASHTECH Z-XII3 CD00 REC # / TYPE / VERS 317 ASH700936A M NONE ANT # / TYPE 4433469.9683 362672.6919 4556211.6229 APPROX POSITION XYZ 0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N 1 1 WAVELENGTH FACT L1/2 5 L1 L2 C1 P1 P2 # / TYPES OF OBSERV 30,0000 INTERVAL Forced Modulo Decimation to 30 seconds COMMENT SNR is mapped to RINEX snr flag value [1-9] COMMENT L1: 1 -> 1; 90 -> 5; 210 -> 9 COMMENT L2: 1 -> 1; 150 -> 5; 250 -> 9 COMMENT 2002 11 30 0 0 30.000000 GPS TIME OF FIRST OBS END OF HEADER 02 11 30 0 0 30.000000 0 8G14G 7G31G20G28G 1G25G11 -7096034.24049 -5509904.97345 23971309.103 23971309.038 23971310.842 -12570276.74149 -9768618.40046 23379169.469 23379168.448 23379172.496 -4157689.84249 -3201324.38045 24195891.298 24195890.733 24195894.168 -25480193.34249 -19826614.77248 20670858.774 20670857.983 20670861.191 Data blocks: -5589280.20049 -4319738.39345 24553697.713 24553697.259 24553700.349 -10252537.24449 -7918950.15946 23060092.127 23060091.841 23060095.687 -4143445.15949 -2509987.53445 24581180.488 24581179.713 24581183.992 -29659606.34049 -23089397.33548 20312382.965 20312382.530 20312384.719 Range in meters 02 11 30 0 1 0.000000 0 8G14G 7G31G20G28G 1G25G11 -7004806.32949 -5438818.30145 23988669.195 23988668.970 23988671.466 Phase in cycles -12645245.09249 -9827035.30846 23364903.590 23364902.944 23364907.274 -4043324.79449 -3112208.77545 24217654.165 24217653.747 24217658.209 -25518762.53849 -19856668.69248 20663519.280 20663518.524 20663521.550 -5521754.77149 -4267121.22845 24566547.413 24566547.593 24566550.660 -10357839.61649 -8001003.94446 23040053.767 23040053.443 23040058.358 -4207531.87749 -2559925.21345 24568984.944 24568985.325 24568989.371 -29640011.07349 -23074128.30548 20316111.836 20316111.559 20316113.648

Observation models

Code (meters):

 $R_{i}^{k}(t) = \rho_{i}^{k}(t) + c(h^{k}(t) - h_{i}(t)) + I_{i}^{k}(t) + T_{i}^{k}(t) + MP_{i}^{k}(t) + \varepsilon$

Carrier phase (cycles):

$$\Phi_{i}^{k}(t) = \rho_{i}^{k}(t) \times \frac{f}{c} + \left(h^{k}(t) - h_{i}(t)\right) \times f + I_{i}^{k}(t) + T_{i}^{k}(t) + MP_{i}^{k}(t) - N_{i}^{k} + \varepsilon$$

t = time of epoch R = pseudorange measurement $\Phi = carrier phase measurement$ $\rho = satellite-receiver geometric distance$ c = speed of light f = carrier frequency $h^{k} = satellite clock bias, h_{i} = receiver clock bias$

With:

$$\rho_i^k = \sqrt{(X^k - X_i)^2 + (Y^k - Y_i)^2 + (Z^k - Z_i)^2}$$

I = ionospheric propagation error T = tropospheric propagation error MP = multipath N = phase ambiguity $\varepsilon = \text{other small errors, including receiver noise}$ (ranges in meters, time in seconds, phase in cycles)

> X^k , Y^k , Z^k = satellite position X_i , Z_i , Z_i = site position

GPS modernization

- Add new signals for:
 - Military users: increase signal power (L1 and L2 very low power).
 - Civilian users: improve accuracy, availability and signal redundancy.
 - Higher chip rate, longer codes, more power
- L2C
 - Civilian code on L2
 - IIR-M satellite series (8 svs as of 9/28/09, cf. ftp:// tycho.usno.navy.mil/pub/gps/ gpsb2.txt)
 - More powerful L2
- L5
 - Third civil signal at 1,176 MHz (L5)
 - "Safety of life" signal
 - IIF satellite series (currently being tested as of 09/2009)

