GPS Signal Propagation

Tropospheric refraction Ionospheric refraction Clock errors Antenna phase center biases

E. Calais

Purdue University - EAS Department Civil 3273 – ecalais@purdue.edu

GPS signal propagation

- GPS signal (= carrier phase modulated by satellite PRN code) sent by satellite.
- About 66 msec (20,000 km) later signal arrives at GPS receiver, which:
 - Decodes propagation time by correlating incoming signal with internal replica of the code.
 - Counts carrier phases.
- Resulting observables:
 - Propagation $\times c$ = pseudorange.
 - Carrier phase count.
- During propagation, signal passes through:
 - lonosphere (10-100 m of delay)
 - Neutral atmosphere (2.3-30 m delay, depending on elevation angle).
- To estimate an accurate position from range data, one needs to account for all these propagation effects and time offsets.

GPS signal propagation

- L1 and L2 frequencies are affected by atmospheric refraction:
 - \Rightarrow Ray bending (negligible)
 - ⇒ Propagation velocity decrease (w.r.t. vacuum) ⇒ propagation delay
- In the troposphere:
 - Delay is a function of (P, T, H), 1 to 5 m
 - Largest effect due to pressure
- In the **ionosphere**: delay function of the electronic density, 0 to 50 m
- This **refractive delay** biases the satellite-receiver range measurements, and, consequently the estimated positions: essentially in the vertical.

GPS signal propagation

- Velocity of electromagnetic waves:
 - In a vacuum = c
 - In the atmosphere = v (with v < c)
 - Dimensionless ratio n = c/v = refractive index
- Consequently, GPS signals in the atmosphere experience a delay compared to propagation in a vacuum.
- This delay is the difference between the actual path of the carrier S and the straightline path L in a vacuum:

$$dt = \int_{S} \frac{dS}{v} - \int_{L} \frac{dL}{c}$$

In terms of distance, after multiplying by c:

$$cdt = \int_{S} ndS - \int_{L} dL = \int_{L} (n-1)dL + \left(\int_{S} ndS - \int_{L} ndL\right)$$

Change of refractive delay along path length Change of path length

• Total tropospheric delay ΔL in terms of the equivalent increase in path length (n(l) = index of refraction, Fermat's principle):

$$\Delta L = \int_{pathL} \left[n(l) - 1 \right] dl$$

• Refractivity *N* used instead of refraction *n*:

 $N = (n-1) \times 10^6$

• Refractivity *N* is a function of temperature *T*, partial pressure of dry air *P*_d, and partial pressure of water vapor *e* (k_1 , k_2 , and k_3 are constants determined experimentally):

$$N = k_1 \frac{P_d}{T} + k_2 \frac{e}{T} + k_3 \frac{e}{T^2}$$

• The delay for a <u>zenith</u> path is the integral of the refractivity over altitude in the atmosphere: $M^{zen} = 10^{-6} \int M dz$

$$\Delta L^{zen} = 10^{-6} \int N dz$$

$$\Delta L^{zen} = 10^{-6} \left[\int k_1 \frac{P_d}{T} + k_2 \frac{e}{T} + k_3 \frac{e}{T^2} dz \right]$$

It is convenient to consider separately the hydrostatic delay and the wet delay:

$$\Delta L^{zen} = \Delta L^{zen}_{hydro} + \Delta L^{zen}_{wet}$$

- Hydrostatic or "dry" delay:
 - Molecular constituents of the atmosphere in hydrostatic equilibrium.
 - **Can be modeled** with a simple dependence on surface pressure (P_0 = surface pressure in mbar, λ = latitude, H = height above the ellipsoid)

$$\Delta L_{hydro}^{zen} = \left(2.2768 \pm 0.0024 \times 10^{-7}\right) \frac{P_0}{f(\lambda, H)} \qquad f(\lambda, H) = 1 - 0.00266 \cos(2\lambda) - 0.00028H$$

- Standard deviation of current modeled estimates of this delay ~0.5 mm.
- Non-hydrostatic or "wet" delay:
 - Associated with water vapor that is not in hydrostatic equilibrium.
 - Very difficult to model because the quantity of atmospheric water vapor is highly variable in space and time:

$$\Delta L_{wet}^{zen} = 10^{-6} \left[\left(k_2 - \frac{M_w}{M_d} k_1 \right) \int \frac{e}{T} dz + k_3 \int \frac{e}{T^2} dz \right]$$

 $(M_w \text{ and } M_d = \text{ molar masses of dry air and water vapor})$

- Standard deviation of current modeled estimates of this delay ~2 cm.

Range error:

- Hydrostatic delay ~ 200 to
 230 cm at zenith at sea level
- Wet delay typically 30 cm at zenith at sea level
- Tropospheric delays increase with decreasing satellite elevation angle
- This increase in delay as a function of elevation angle must be accounted for: mapping functions

- For a flat homogeneous atmosphere:
 - Measurement includes for slant delay
 - Many slant delays at a given time => many unknowns
 - To reduce number of unknowns: project all slant delays onto zenith => one single zenith delay
- From diagram to the right: $\sin \varepsilon = \frac{H_z}{R}$
- Proportionnality factor between slant and zenith delay is:

$$\frac{R}{H_z} = \frac{1}{\sin\varepsilon} = m(\varepsilon)$$

• $m(\varepsilon)$ = mapping function, one for dry and one for wet delays

$$\Delta L_{tropo} = m_h(\varepsilon) \Delta L_{hydro}^{zen} + m_w(\varepsilon) \Delta L_{wet}^{zen}$$

 For a spherically symmetric atmosphere, the 1/sin(ε) term is "tempered" by curvature effects:

$$m(\varepsilon) = 1$$
 when $\varepsilon = 90$

- Several different parameterizations have been proposed:
 - Marini (original one): *a*, *b*, *c* constant
 - Niell mapping function uses *a*, *b*, *c* that are latitude, height and time of year dependent.

- Tropospheric delay is not homogeneous vertically: constantly varies with latitude, longitude, time
- Niell mapping functions (NMF; Niell, 1996): latitude and time-of-year dependence
- Isobaric mapping functions (IMF; Niell, 2001): derived from numerical weather model.
- Vienna mapping functions (VMF1; Boehm et al., 2006): derived at 6-hour intervals by ray-tracing across numerical weather models, highest accuracy
- Global mapping functions (GMF; Boehm et al., 2006): average VMF using spherical harmonics (degree 9 order 9)

Hydrostatic mapping function at 5° elevation at O'Higgins in 2005

Difference between GPS height estimates using VMF1 and NMF mapping functions

Scatter in GPS height estimates as a function of the hydrostatic mapping function used

ftp://igscb.jpl.nasa.gov/pub/resource/pubs/06_darmstadt/IGS%20Presentations%20PDF/11_8_Boehm.pdf

- How to handle the range error introduced by tropospheric refraction?
 - <u>Correct</u>: using a priori knowledge of the zenith delay (total or wet) from met. model, WVR, radiosonde (not from surface met data...)
 - <u>Filter</u>:...?
 - <u>Model</u>: ok for dry delay, not for wet...
 - Estimate:
 - \rightarrow Introduce an additional unknown = zenith total delay
 - \rightarrow Solve for it together with station position and time offset
 - → Even better: also estimate lateral gradients because of deviations from spherical symmetry
- If tropospheric delay is estimated, then GPS is also an atmospheric remote sensing tool!

"GPS meteorology"

- GPS data can be used to estimate Zenith Total Delay (ZTD)
- ZTD can be converted to ZWD by removing hydrostatic component if ground pressure is known
- ZWD is related to (integrated) Precipitable Water Vapor (PWV) by:

$$PWV = \Pi(T_m) \Delta L_{wet}^{zen}$$

- *P* is a function of the mean surface temperature, ~0.15.
- Trade-off between (vertical) position and ZTD

Tropospheric refraction – summary

- Atmospheric delays are one of the limiting error sources in GPS positioning
- Delays are nearly always estimated:
 - Using accurate mapping functions is key
 - At low elevation angles there can be problems with mapping functions...
 - ... therefore cutoff angle has impact on position.
 - Lateral inhomogeneity of atmospheric delays still unsolved problem even with gradient estimates.
 - Estimated delays used for weather forecast (if latency <2 hrs).

The ionospheric index of refraction is a function of the wave frequency *f* and of the plasma resonant frequency *f_p* of the ionosphere. It is slightly different from unity and can be approximated (neglecting higher order terms in *f*) by:

$$n_{ion} = 1 - f_p^2 / 2f^2$$

- The plasma frequency f_p has typical values between 10-20 MHz and represents the characteristic vibration frequency between the ionosphere and electromagnetic signals.
- The GPS carrier frequencies have been chosen to minimize attenuation by taking f_1 and $f_2 >> fp$. Since:

$$f_p^2 = N(z)q_e^2/\pi m_e$$

where N(z) is the electron density (a function of the altitude *z*), and and m_e are the electron charge and mass respectively, n_{ion} can be written as:

$$n(z) = 1 - \frac{N(z)q_{e}^{2}}{2\pi m_{e}f^{2}}$$

• The total propagation time at velocity v(z)=c/n(z), where *c* is the speed of light in vacuum, is:

$$T(f,z) = \int_{rec}^{sat} \frac{dz}{v(f,z)} = \int_{rec}^{sat} \frac{n(z)}{c} dz = \int_{rec}^{sat} \frac{dz}{c} - \int_{rec}^{sat} \frac{N(z)q_e^2}{2\pi m_e f^2 c} dz$$

• Substituting in previous equations and replacing q_e and m_e by their numerical values, we obtain, for a given frequency *f*:

$$\Delta t(f,z) = \int_{rec}^{sat} \frac{N(z)q_e^2}{2\pi m_e f^2 c} dz = \frac{A}{cf^2} \int_{rec}^{sat} N(z) dz = \frac{A}{cf^2} IEC$$

with the constant $A = 40.3 m^3 \cdot s^{-2}$. *IEC* is the Integrated Electron Content along the line-of-sight between the satellite and the receiver.

• In other words, the ionospheric delay is proportional to the electron density along the GPS ray path.

• The ionospheric delay is given by:

$$I_1 = \frac{A}{cf_1^2} IEC$$
$$I_2 = \frac{A}{cf_2^2} IEC$$

• Note that:
$$I_2 - I_1 = \frac{A(f_1^2 - f_2^2)}{f_1^2 f_2^2} IEC$$

• And:
$$\frac{I_1}{I_2} = \frac{f_2^2}{f_1^2}$$

• The phase equations can be written as:

$$\begin{split} \varphi_1 &= \frac{f_1}{c} \rho + f_1 \Delta t + f_1 I_1 + f_1 T + N_1 \\ \varphi_2 &= \frac{f_2}{c} \rho + f_2 \Delta t + f_2 I_2 + f_2 T + N_2 \end{split}$$

• Let us write the following linear combination:

$$\begin{split} \varphi_{LC} &= \frac{f_1^2}{f_1^2 - f_2^2} \varphi_1 - \frac{f_1 f_2}{f_1^2 - f_2^2} \varphi_2 \Rightarrow \varphi_{LC} = \frac{f_1^2 f_1}{f_1^2 - f_2^2} I_1 - \frac{f_1 f_2 f_2}{f_1^2 - f_2^2} I_2 + \dots \\ \Leftrightarrow \varphi_{LC} &= \frac{f_1^2 f_1}{f_1^2 - f_2^2} \frac{f_2^2}{f_1^2} I_2 - \frac{f_1 f_2 f_2}{f_1^2 - f_2^2} I_2 + \dots \\ \Leftrightarrow \varphi_{LC} &= \frac{f_1 f_2^2}{f_1^2 - f_2^2} I_2 - \frac{f_1 f_2^2}{f_1^2 - f_2^2} I_2 + \dots \\ &= 0 \end{split}$$
 Recall that: $\frac{I_1}{I_2} = \frac{f_2^2}{f_1^2} I_2 - \frac{f_1 f_2^2}{f_1^2 - f_2^2} I_2 + \dots \\ &= 0 \end{split}$

- Therefore ionospheric delay cancels out in φ_{LC} ...
- We have a new observable φ_{LC} :

$$\varphi_{LC} = \frac{f_1^2}{f_1^2 - f_2^2} \varphi_1 - \frac{f_1 f_2}{f_1^2 - f_2^2} \varphi_2$$

$$\Rightarrow \varphi_{LC} = 2.546 \times \varphi_1 - 1.984 \times \varphi_2$$

- Linear combination of L1 and L2 phase observables
- Independent of the ionospheric delay
- Unfortunately φ_{LC} is ~3 times noisier than L1 or L2

- Dual-frequency receivers:
 - lonosphere-free observable φ_{LC} can be formed
 - Ionospheric propagation delays cancel
 - Note that ambiguities are not integers anymore
 - Note that model corrects for first-order only
- Single-frequency receivers:
 - Broadcast message:
 - Contains ionospheric model data: 8 coefficients for computing the group (pseudorange) delay
 - Efficiency: 50-60% of the delay is corrected
 - Differential corrections.

• From the phase equations, one can write:

$$\varphi_2 - \frac{f_2}{f_1} \varphi_1 = \frac{f_2}{c} (I_{2,\varphi} - I_{1,\varphi})$$
 (+N)

• We can plug this in the relationship between differential ionospheric delay and IEC and get:

$$\varphi_{2} - \frac{f_{2}}{f_{1}}\varphi_{1} = \frac{f_{2}}{c} \frac{A(f_{1}^{2} - f_{2}^{2})}{f_{1}^{2}f_{2}^{2}} IEC$$

$$\Rightarrow IEC = \left(\varphi_{2} - \frac{f_{2}}{f_{1}}\varphi_{1}\right) \times \frac{cf_{1}^{2}f_{2}}{A(f_{1}^{2} - f_{2}^{2})}$$

• We can solve for IEC using GPS data (note *N*...).

GPS clock errors

- GPS satellites move at about 1 km/sec => 1 msec time error results in 1 m range error :
 - For pseudo-range positioning, 1 msec errors OK.
 - For phase positioning (1 mm), time accuracy needed to 1 msec.
- 1 msec ~ 300 m of range => pseudorange accuracy of a few meters is sufficient for a time accuracy of 1 msec.

Satellite clock errors

- Under selective availability (S/A) => ~200 ns (60 m)
- Currently ~5 ns = 1.5 m
- IGS orbits contains precise satellite clock corrections

Receiver clock errors

- Can reach kilometers...
- Sometimes well-behaved ⇒ can be modeled using linear polynomials.
- Usually not the case...
- Estimate receiver clocks at every measurement epoch (can be tricky with bad clocks)
- Cancelled clock errors using a "trick": double differencing

Double differences

• Combination of phase observables between 2 sats (k,l) and 2 rcvs (i,j):

$$\begin{split} \Phi_{ij}^{kl} &= (\Phi_i^{k} - \Phi_i^{l}) - (\Phi_j^{k} - \Phi_j^{l}) \\ \Rightarrow \Phi_{ij}^{kl} &= (\rho_i^{k} - \rho_i^{l} + \rho_j^{k} - \rho_j^{l}) * f/c - (h^{k} - h_i^{-} h^{l} + h_i^{-} h^{k} + h_j^{+} h^{l} - h_j) - (N_i^{k} - N_i^{l} + N_j^{k} - N_j^{l}) \\ \Rightarrow \Phi_{ij}^{kl} &= (\rho_i^{k} - \rho_i^{l} + \rho_j^{k} - \rho_j^{l}) * f/c - N_{ij}^{kl} \end{split}$$

- ⇒ Clock errors $h_s(t)$ et $h_r(t)$ eliminated (but number of observations has decreased)
- ⇒ Any error common to receivers *i* and *j* will also cancel...!
 - Atmospheric propagation errors cancel if receivers close enough to each other.
 - Therefore, short baselines provide greater precision than long ones.

Antenna phase center

Ashtech 700936 mit Radom

Dorne Margolin T (JPL)

Leica SR399

Trimble 22020 (Compact L1/L2)

GPS antennas are very diverse: shapes, radomes, etc.

Antenna phase center

- Antenna phase center:
 - Point where the radio signal measurement is referred to.
 - Does not coincide with geometric antenna center.
 - Varies with direction and elevation of incoming signal.
- No direct access to the antenna phase center:
 - We setup the antenna using its Antenna Reference Point = ARP.
 - Need to correct for offset between ARP and phase center (1-2 cm).
- · Corrections must accounted for:
 - Mean phase center offset to
 - Elevation- and azimuth-dependent variations of the phase center
- Provided by IGS:

ftp://igscb.jpl.nasa.gov/igscb/station/general/igs_01.pcv

Antenna phase center

Example of two different Leica antennas

(from Rotacher)

Satellite phase center

Multipath

- GPS signal may be reflected by surfaces near the receiver => superposition of direct and reflected signals
- Multipath errors:
 - Code measurements: up to 50 m
 - Phase measurements: up to 5 cm
- Multipath repeats daily because of repeat time of GPS constellation: can be used to filter it out.
- Most critical at low elecation and for short observation sessions
- Mitigation:
 - Antenna design (choke ring)
 - Site selection (free horizon)
 - Long observation sessions (averaging)

Error budget

- SV clock ~ 1 m
- SV ephemeris ~ 1 m
- S/A ~ 100 m
- Troposphere ~ 1 m
- Ionosphere ~ 5 m
- Phase center variations ~ 1 cm
- Multipath ~ 0.5 m
- Pseudorange noise ~ 1 m

GPS receiver

• Phase noise < 1 mm

GPS

antenna

- Satellite:
 - Clocks
 - Orbits
- Signal propagation:
 - Ionospheric refraction
 - Tropospheric refraction

Receiver/antenna:

- Ant. phase center variations
- Multipath
- Clock
- Electronic noise
- Operator errors: up to several km...

User Equivalent Range Error:

- UERE ~ 11 m if SA on
- UERE ~ 5 m if SA off
- In terms of position:
 - Standard deviation = UERE x DOP
 - SA on: HDOP = 5 => $\sigma_{e,n}$ = 55 m
 - SA off: HDOP = 5 => $\sigma_{e,n}$ = 25 m
- Dominant error sources:
 - S/A
 - Ionospheric refraction