Other Space Geodetic Techniques

E. Calais Purdue University - EAS Department Civil 3273 – ecalais@purdue.edu

Satellite Laser Ranging = SLR

- Measurement of distance (=range) between a ground station and a satellite
- Ground station transmits a very short laser pulse from a telescope to a satellite
- The laser pulse is retro-reflected by corner cube reflectors on the satellite back to the ground telescope
- Very precise clock at the ground station measures the round trip time $t_{\rm emission}-t_{\rm reception}$
- Time measurement accuracy < 50 picoseconds, or < 1 centimeter in range
- 3 stations, 1 satellite => position of the satellite (if station position known)
- 3 satellites, 1 station => position of the station (if satellite orbit known)

Tracking a satellite with a network of SLR stations

Satellite Laser Ranging

ERS corner cube array

Starlette, a geodetic satellite launched in 1975 48 cm diameter, 47 kg

Geodetic satellites commonly used in SLR:

- Starlette (France, 1975)
- Lageos-1 (US, 1976)
- Etalon-1,2 (USSR, 1989)
- Topex/Poseidon (US/France, 1992)
- Lageos-2 (US/Italy, 1992)
- Stella (France, 1993)
- GPS-35,36 (US, 1993/94)
- Glonass-63,67 (Russia, 1994)
- ERS-2 (ESA, 1995)
- GFZ-1 (1996)
- MIDORI/ADEOS (Japan, 1996)
- TiPS (US, 1996)

Lunar Laser Ranging

= SLR to the moon (first achieved in 1969)

LLR station distribution

Location of laser reflectors in the Moon

Lunar corner cube array (Apollo XIV)

Lunar laser station at Calern, France

Satellite Laser Ranging

- Pros:
 - Absolute and direct measurement of satellitereceiver distance
- Cons:
 - Expensive
 - Heavy operation
 - Difficult to automate
 - => global coverage poor
- Applications:
 - Orbit determination
 - Earth's gravity field
 - Ocean altimetry
 - Precise positioning of ground stations
 - Geophysics
 - Geodesy

Very Long Baseline Interferometry = VLBI

- Radio-astronomy technique, used to locate and map stars, quasars (=quasi-stellar radio source = very energetic and distant galaxy), etc = "sources"
- Measures the time difference between the arrival at two Earth-based antennas of a radio wavefront emitted by a distant quasar
- Signal = noise, wavelength = 1-20 cm
- If the source positions are known ⇒ ground baseline ⇒ "geodetic" VLBI
- Time measurements precise to a few picoseconds ⇒ relative positions of the antennas to a few millimeters

VLBI antenna at Algonquin, Canada

Cryogenic receiver

Hydrogen maser

Mark III correlator

- The astronomic sources of geodetic VLBI (e.g. quasars) are located billions of light years away from Earth:
 - They appear point-like, with no motion
 - No need for modeling their motions (cf. satellite orbits) ⇒ less errors
- Only technique capable of establishing a direct link between the inertial frame (radio sources) and the terrestrial reference frame
- Only technique capable of measuring all components of the Earth's rotation directly:
 - Variations of the Earth's spin axis in space (precession, nutation)
 - Variations of the Earth's spin axis relative to the Earth's crust (polar motion)
 - Rotational velocity and phase (Universal Time, UT).

VLBI site distribution

- Pros:
 - The most precise and accurate space geodetic technique
 - Direct link between inertial and terrestrial frames
- Cons:
 - Expensive
 - Heavy operation
 - Difficult to automate
 - \Rightarrow global coverage poor
- Applications:
 - Reference frames
 - Geophysics
 - Provides precession, nutation, polar motion, UT1

LOD Determined from VLBI Data (NASA/GSFC)

Doppler Orbitography

DORIS (France), PRARE (Germany):

- Doppler orbitography,
- Receiver in the satellite, emitter on the ground
- Satellite records data and downloads it to a data center (centralized system)
- DORIS on Spot 2, 3, 4, on ERS1 and 2, on Topex-Poseidon, on EnVISAT, on Jason
- Excellent geographic coverage

GLONASS

- "Russian GPS"
- First satellite launched in 1982
- As of December 2009 = 16 satellites operational
- Several manufacturers sell GPS/GLONASS receivers
- http://www.glonassianc.rsa.ru/

	GPS	GLONASS	
Orbital planes	6	6	
Orbit inclination	55	64.8	
Orbit height	20200 km	19100 km	
Carrier frequency	L ₁ : 1575.42 MHz L ₂ : 1227.60 MHz	$\begin{array}{c} L_1: 1602 + k & 0.5625 \text{ MHz} \\ L_2: 1246 + k & 0.4375 \text{ MHz} \\ k=1,,24 \end{array}$	
Codes	CA-Code for L_1 P-Code for L_1 and L_2	CA-Code for L_1 P-Code for L_1 and L_2	
System time	GPS-Time	UTC(SU)	
Repeat time	Sidereal day	8 days	

A GLONASS satellite

GALILEO

	Open Service (OS)		Commercial Public Regulated Service (CS) Service (PRS)			Safety of Life Service (SoL)
Coverage	Global	Global	Local	Global	Local	Global
Accuracy - horizontal (h) - vertical (v)	$\begin{array}{l} h=4m\\ v=8m\\ (dual\\ frequency)\\ h=15m\\ v=35m\\ (mono\\ frequency)\end{array}$	<1m (dual frequency)	< 10cm (locally augmented signals)	h = 6,5m v = 12m	1m (locally augmented signals)	4-6m (dual frequency)
Availability	99.8%	99.8%		99-99.9%		99.8%
Integrity	No	Value-added service Yes		es	Yes	

Signal		Central Frequency	Chip	Ranging Code	Data rate symbol/s	Data encyption	Reference Service	
Id	Name		MHz	Mchip/s	Encryption	(bit/s)	onoyphon	
1	E5a-I	data	1176.45	10	None	50 (25)	None	OS/SoL
2	E5a-Q	pilot	1176.45	10	None	No data	2	OS/SoL
3	E5b-I	data	1207.14	10	None	250 (125)	some	OS/SoL/CS
4	E5b-Q	pilot	1207.14	10	None	No data	~	OS/SoL/CS
5	E6-A	data	1278.75	5	Government	tbd	Yes	PRS
6	E6-B	data	1278.75	5	Commercial	1000 (500)	Yes	CS
7	E6-C	pilot	1278.75	5	Commercial	No data	~	CS
8	E2-L1-E1-A	data	1575.42	Μ	Government	tbd	Yes	PRS
9	E2-L1-E1-B	data	1575.42	2	None	250 (125)	Some	OS/SoL/CS
10	E2-L1-E1-C	pilot	1575.42	2	None	No data	~	OS/SoL/CS
11	L6 downlink	data	1544.10	2	2	~	~	SAR

- "European GPS", + China, + Israel
- Commercially-oriented system, (GPS was originally military)
- Original plan: ~30 launches 2006-2008, operational 2008: 27 operational + 3 spares
- 3 circular orbits at 23,616 km, inclination 56 degrees
- L-band, dual-frequency
- Key difference with GPS: integrity monitoring
- Commercial services
- <u>http://europa.eu.int/comm/dgs/</u> energy_transport/galileo/index_en.htm
- GNSS