Map projections

- 3-dimensional Earth's surface represented in 2-dimensions \rightarrow distorsion of directions, distances, areas.
- Scale: ratio of a distance on a map and that same distance on Earth.
- Projections attemps to minimize distorsions:
- Conformal: scale is the same in all directions \rightarrow meridians and parallel intersect at right angles.
- Equidistant: distances from the center of the projection to points at equal distancea appear equal on the map.
- Equi-direction: azimuths are correctly portrayed on the map in all directions.
- Equal-area: proportional relationship between areas is preserved on the map.

Map projections

- Cylindrical: projection of a spherical surface on a cylinder
- Conic: projection of a spherical surface on a cone
- Planar or Azimuthal: projection of a spherical surface on a plane

Cylindrical Projection Surface

Peter H. Dana SVOM94

Conical Projection Surface

Peter H. Dana SROME $_{4}$

Planar Projection Surface

A cylindrical projection: Mercator

- Straight meridians and parallels that intersect at right angles.
- Scale is true at the equator or at two standard parallels equidistant from the equator.
- Often used for marine navigation because all straight lines are lines of constant azimuth.
- In GMT:
-Jmscale or -JMwidth
Give scale along equator (1:xxxx or UNIT/degree)
-Jmlon0/lat0/scale or -JMlon0/lat0/width
Give central meridian, standard latitude and scale along parallel (1:xxxx or UNIT/degree)

A cylindrical projection: Mercator

```
pscoast -R-180/180/-70/70 -JM6i -B30g30 -W1/0
-G240 -Dc -P > mercator.ps
```


A conic projection: Lambert

- Lambert Conformal Conic
- Area and shape are distorted away from standard parallels.
- Directions are true in limited areas.
- Used for maps of North America.
-Jblon0/lat0/lat1/lat2/scale
-JBlon0/lat0/lat1/lat2/width
Give projection center,two standard parallels, and scale (1:xxxx or UNIT/degree).

A conic projection: Lambert

$$
\text { pscoast }-R-20 / 90 / 15 / 65-J L 35 / 40 / 32 / 45 / 6 i-B 10 g 10
$$

$$
-\mathrm{W} 1 / 0-\mathrm{G} 240-\mathrm{Dc}-\mathrm{P}>\text { lambertc.ps }
$$

An azimuthal projection: Stereographic

- Used for navigation in polar regions.
- Directions are true from the center point and scale increases away from the center point as does distortion in area and shape.
-Jslon0/lat0/scale or -JSlon0/lat0/width
lon0/lat0 specifies the projection center.
Give scale as 1:xxxx (true at pole) or
slat/1:xxxx
(true at standard parallel slat) or radius/lat (radius in UNIT from origin to the oblique latitude lat).

An azimuthal projection: Stereographic

pscoast -R-180/180/-90/-60 -Js0/-90/3i/-60 -B10g5
-W1/0 -G240 -Dc -P > stereo.ps

An azimuthal projection: Lambert

pscoast $-\mathrm{R}-140 /-50 / 20 / 65-J A-95 / 44 / 6 i-W 1 / O-G 240$
-Bg10 -Di -A5000 -P > lamberta.ps

Choosing a projection

- Rule of thumb:
- A country in the tropics asks for a cylindrical projection.
- A country in the temperate zone asks for a conical projection.
- A polar area asks for an azimuthal projection.
- Goal = minimize distortion:
- Cylindricals are true at the equator and distortion increases toward the poles.
- Conics are true along some parallel somewhere between the equator and a pole and distortion increases away from this standard.
- Azimuthals are true only at their center point, but generally distortion is worst at the edge of the map.

Choosing a projection

gmtset BASEMAP_TYPE plain
pscoast -R-140/-50/20/65 -JM6i -W1/255/0/0 -Bg10 -Di -A5000 -K >! noam_proj.ps
pscoast -R-140/-50/20/65 -JL-95/44/20/65/6i -W1/0/255/0 -Bg10 -Di -A5000 -o >> noam_prфj.ps

