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Introduction

The following additional Figures (S1 to S14) provide a graphical appreciation of the

effect of parametrization on the behavior of the Kalman filter. Hence, most Figures are

variants of Figures in the main text. Figures S1 to S9 are the results of the Kalman

filter applied to the synthetic case (Section 3.1), whereas Figures S10 to S14 refer to the

application on ENVISAT data over Mt Etna. The effect of ‘wrong’ parametrization is

highlighted by deliberately imposing unrealistic values with respect to recommendations

given in Section 3.1.3 and 4.1. We chose to detail the example on Mt Etna rather than on

the Chaman fault as it forms a finite length dataset (while Sentinel data are continuously

acquired) and it includes fewer pixels.

Corresponding author: M. Dalaison, Laboratoire de Géologie, École Normale Supérieure, 24

rue Lhomond, 75005 Paris, France. (dalaison@geologie.ens.fr)
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1. Figures S1.

Synthetic case covariance.

2. Figures S2 and S3.

Effect of chosen parametric description of deformation on synthetic cases.

3. Figures S4 to S7.

Effect of ‘wrong’ misclosure and mismodeling error on synthetic cases.

4. Figures S8 and S9.

Impact of a priori error on synthetic cases.

5. Figures S10.

Number of available data points per pixel for the example of Mt Etna.

6. Figures S11.

Final parameters of the deformation model for the example on Mt Etna.

7. Figures S12 and S13.

Effect of a priori and mismodeling errors for the example of Mt Etna.

8. Figures S14.

Instance of covariance matrices for the example of Mt Etna.
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Figure S1. Graphical representation of the final Covariance matrix (P91) in the reference

synthetic test (Section 3.1.2) for the same selected pixel than in Figure 3 and 5. Elements

characterizing the variance-covariance of model parameters, an, (left) are represented separately

from the variance-covariance of phase estimates, φk, (right). A striking feature on the left subplot,

is how well the velocity a1 is constrained with this optimally parametrized inversion. For other

parameters, inter-dependency is strong, especially with the initial offset a0. This is why we

recommend to store out of the state vector parameters that have already converged (i.e. those

for which new data is not informative). Notice the very small uncertainty and significant temporal

correlation of phase estimates.
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Figure S2. Same as Figure 3B for a parametrized model with missing step and spline

components (i.e. a4 and a5 are excluded from the inverse problem). We can see that phase

values are well retrieved even though model parameters are wrong with respect to the true value.

Providing the same functional form is used, the match with least-squares solution is still true.

Note that the correct retrieval of phases in the case of a ‘wrong’ model is possible providing the

network of interferograms connects all dates to the initial and reference date.
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Figure S3. Median (B,D) and standard deviation (C,E ) per pixel of the time series of mean

innovation in the case of optimal parametrization (presented in Section 3.1.2) (B,C ) and in the

case of missing step and spline components in the description of deformation (D,E ) (like in

Figure S2). In real cases, the statistical distribution of innovation per pixel allows to clearly

identify areas with ‘wrong’ model description, here those next to the simulated active fault. In

this region, innovation is not normally distributed and the center of the distribution it not zero,

which literally means that the forecast based on the parametrized model does not appropriately

describe the phase evolution. In such case the model should be updated, and this can be done

in between assimilation steps.
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Figure S4. Same as Figure 6 with four additional crosses locating the (σγ, σε) configuration

of the cases presented in the 3 subsequent Supplementary Figures (S5-S7). Those examples are

representative of the overall effect of reducing or increasing σγ or σε.
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Figure S5. Same as Figure 3B and 5 for a large a priori standard deviation of the mismodeling

error (σγ of 80 mm). This implies that we have little trust in the ability of the functional

model to describe the phase evolution. Thus, model parameter uncertainties are very large. and

more assimilation steps (and thus data over time) are needed for convergence of the functional

description. Consequently, small seasonal oscillations are hardly adjusted for and the state vector

remains close to its a priori value, m0, until enough data is assimilated.

May 5, 2020, 10:47pm



DALAISON & JOLIVET: KALMAN FILTER FOR INSAR TSA X - 7

0 200 400 600 800 1000
Time (days)

0

25

50

75

100

125

150
Di

sp
la

ce
m

en
t (

m
m

)
true phases
true model
reconstituted phases

0

200

400

600

800

1000

Da
y 

of
 a

cq
ui

sit
io

n 
of

 a
 S

AR
 im

ag
e

10

0

10

pa
ra

m
et

er
s

Offset
 a0 (mm)

0.05

0.00

0.05

0.10

Velocity
 a1 (mm/day)

5

0

5

10

Amplitude of sine
 (a2)2 + (a3)2  (mm)

0 365 730 1095
time (days)

10

0

10

pa
ra

m
et

er
s

Phase shift
 tan 1(a3/a2) (rad)

0 365 730 1095
time (days)

50

0

50

100

Amplitude of slow slip
 a4 (mm)

0 365 730 1095
time (days)

0

25

50

75
Amplitude of quake

 a5 (mm)

Figure S6. Same as Figure 3B and 5 for a low a priori standard deviation of the mismodeling

error (σγ of 1 mm). This implies that we trust too much the ability of the functional model

to describe the phase evolution. Thus, model parameter uncertainties drop quickly and the

model is very sensitive to new data and tries to adjust at each new assimilation step. This is

particularly marked when little data has been assimilated. The final estimation is not too biased

but parameter uncertainties σan are clearly underestimated.
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Figure S7. Same as Figure 3B for a very low (top) and high (bottom) a priori standard

deviation of the misclosure error (σε of 2×10−4 mm and 5 mm). Lowering σε induces a subtle shift

in phase estimate with respect to true value. This bias increases over time. On the other hand,

increasing σε lowers the confidence in the phase estimate. However, we have to underestimate

σε by 3 orders of magnitudes, or multiply the value by 50 (and, thus, get close to σγ) to notice

a change in the graphical representation of the time series, which is consistent with the small

sensitivity to this parameter.
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Figure S8. Same as Figure 3B and 5 for a very low a priori error on model parameters (all

reference standard deviation σan , 0 ≤ n < L in Section 3.1.2 have been divided by 5). As a

consequence, there is great confidence in the initial null model and smoother solution is found.

The role of σan as a regulation term is clearly outlined.
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Figure S9. Same as Figure 3B and 5 for a very high a priori error on model parameters

(all reference standard deviation σan , 0 ≤ n < L in Section 3.1.2 have been multiplied by 5).

As a consequence, the model parameters computed in the first assimilation steps is a lot more

uncertain and is very sensitive to the new data assimilated. From Figures S6 and S7, it seems

that the diagonal of P0 has the inverse effect than σγ on model parameter value (Figures S3, S4).

However, the effect on parameters uncertainty differs (already outlined by Figure S0). Notice

that the model progressively recovers, as data is assimilated, from ‘bad’ a priori.
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Figure S10. Number of interferograms available per pixel, which directly affects the phases

(and parameters) variances (Figure 7B and S11).

Figure S11. Model parameters, an, reconstructed for Mt Etna (top) and their standard

deviation (bottom).
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Figure S12. Same as Figure S11 for a Kalman filter for which P0 was changed. The standard

deviation of a priori model parameters was either divided by 2 or multiplied by 2 with respect to

reference case. Colorbars are bounded using the reference case in Figure S11 for easy comparison.

Row by row from top to bottom: parameters for low P0, parameters for high P0, standard

deviations associated with each parameter for low P0 and, below, for high P0. Notice the

persistence of the dominant patterns on the volcanic edifice. Most of the differences concentrate

in the plains surrounding the volcano with fewer data, hence a greater influence of the forecast.
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Figure S13. Same as Figure S11 for a Kalman filter for which σγ was changed to 1 mm or to

30 mm. Colorbars are bounded using the reference case in Figure S11 for easy comparison. Row

by row from top to bottom: parameters for low σγ, parameters for high σγ, standard deviations

associated with each parameter for low σγ and, below, for high σγ.
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Figure S14. Same as Figure S1 for the application of the KF on Mt Etna (Section 3.2). We

see the final Covariance matrix (P62) for the pixels in the KF solution at the location of GPS

stations ESLN (top) and MMME (bottom).
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