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Abstract We study radiation and energy balance for an antiplane fault containing a
kink. A semi-infinite crack with a sharp rupture front propagates along the flat portion
of a kinked crack. At time t � 0, the crack reaches the kink located at the origin of
coordinates and continues propagating beyond the kink at a different speed. We com-
pute the exact solution for this problem using a Chaplygin transformation, a variation
of the well-known Cagniard–de Hoop method. We first establish an integral equation
for the computation of stress intensity factor after the kink and then we solve numeri-
cally for the velocity and stress field around the crack. We find that the propagation of
the crack across the kink produces a sharp change in energy balance that in turn pro-
duces a circular SH wave centered at the kink that we call the kink wave. Across the
wavefront of this wave there is a sudden jump in particle velocity and radial stress. At
the same time, a local stress concentration appears on the external side of the kink. We
establish an exact energy balance for this problem in terms of energy rates per unit
crack advance. Radiated energy is shown to maintain the balance between elastic en-
ergy released by the bulk and energy used to make the crack advance. The kink wave-
front is the boundary between a field dominated by the initial flat portion of the crack
and a region dominated by radiation from the kink.

Introduction

Modeling and inversion of seismic radiation from earth-
quakes has made substantial progress in recent years (see,
e.g., Ide and Takeo [1997], Olsen et al. [1997], and Peyrat
et al. [2001]). Most of these inversions use flat source mod-
els both for lack of more detailed geometrical details of
the faults and in order to simplify numerical computations.
Actual earthquake faults are segmented and present offsets,
kinks, and bifurcations that affect seismic rupture propaga-
tion. Many authors have reported efforts to model the effect
of fault geometry using different kinds of numerical meth-
ods. Some of them have studied fault kinks for mode II us-
ing numerical techniques like boundary integral equations
(Kame and Yamashita, 1999, 2003; Aochi et al., 2000).
Three-dimensional (3D) effects were discussed by Harris
and Day (1999) and Harris et al. (2002) using finite differ-
ences, Aochi et al. (2000), Aochi and Fukuyama (2002), and
Aochi and Madariaga (2003) using boundary integral equa-
tions and Oglesby and Archuleta (2003), Oglesby et al.
(2003), and Duan and Oglesby (2005) using finite elements.
In an effort to understand how ruptures interact with fault
kinks of arbitrary angles, Polyakov et al. (2002) and Kame
et al. (2003) studied in detail the effects of kinks of different
angles on in-plane (mode II) faults. In a series of experi-
ments, Rosakis et al. (1999) and Rousseau and Rosakis
(2003) studied ruptures propagating along flat and kinked
interfaces at sub-Rayleigh and intersonic speeds. In many
of these previous studies, seismic waves were computed

at particular seismic stations but, for the moment, we are
not aware of any detailed study of the seismic waves radiated
by a kink nor of a detailed study of energy balance when
rupture interacts with the kink. In their simulation of the Iz-
mit earthquake, Aochi and Madariaga (2003) computed the
seismic-wave field radiated by several models of the fault
geometry for this event. In particular, they found that geo-
metrical discontinuities have a profound effect on rupture
propagation, decreasing rupture speed and generating strong
seismic-wave radiation. This has prompted us to look into
more details about radiation from simple fault kinks and
the waves they emit. The present model is the simplest pos-
sible example of the effect of a kink on seismic rupture. It
is unlikely that the corresponding problem for mode II may
be solved in such detail. Our computations may be used to
guide the numerical solution of such problems and their
3D extensions.

In two previous papers, Adda-Bedia and Arias (2003)
and Adda-Bedia (2004) proposed a method for determining
the elastodynamic stress fields associated with the propaga-
tion of antiplane kinked or branched cracks. These authors
solved the problem of a semi-infinite antiplane straight crack,
initially propagating at a fixed velocity, that changes instan-
taneously both its direction and its rupture speed when it
meets a kink on the fault. They found the explicit dependence
of the stress intensity factor just after kinking as a function of
the stress intensity factor before kinking, the angle of the
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kink, and the instantaneous velocity of the crack tip. In the
present article, we briefly present their results and then pro-
pose a solution for the velocity field around the fault with a
kink. We develop a numerical method to compute the veloc-
ity and stress field radiated by the kink. These waves have a
complex radiation pattern, quite different from that of dislo-
cations, and they have a typical ω�2 behavior at high fre-
quency. We derive the energy balance of the kinking process,
showing that the main effect of the kink is to change the rate
of energy radiation from the rupture front. Finally, an impor-
tant feature of kinks is that they create weak stress concen-
tration around the kink that reduces the available rupture
energy, slowing rupture and generating wavefronts when
the rupture turns the kink.

The Dynamic Kinking of an Antiplane Crack

We study the problem described in Figure 1: at time
t � 0, a crack that has been running at constant speed v0
along the �x axis suddenly hits a kink on the fault and then
continues along the kink of angle λπ at a different speed vr.
As the crack runs along the horizontal axis, it has a classical

dynamic stress concentration Kd. When the crack moves
beyond the kink, the dynamic stress intensity factor at the
rupture front changes as well as its rupture speed and, simul-
taneously, a circular wavefront is emitted due to the change
in rupture speed. Thanks to the well-known lack of inertia
of cracks (Eshelby, 1969), it is possible to decompose this
problem into two simpler ones (see Fig. 1): first, a crack that
runs at constant speed along the negative x axis and suddenly
stops at x � 0, t � 0. When the crack stops, the stress con-
centration ahead of x � 0 increases suddenly to K0 and a
strong stopping phase is emitted (see, e.g., Eshelby [1969]
and Madariaga [1977]). At time t � 0, another crack sud-
denly starts running from x � 0 along the kinked path of
the fault (see Fig. 1). This crack is loaded by the stress field
of the previous crack and runs at a different constant speed
vr. As it starts, the second crack emits a strong starting phase
with the same wavefront as the stopping phase from the first
crack. The total radiation is actually the difference between
the starting and stopping phases.

Propagation and Radiation by the
Crack before the Kink

The radiation from the crack propagating along the first
part of the fault of Figure 1b can be computed using classical
crack methods. We separate the computation into two parts:
the radiated field emitted by the crack propagating at con-
stant speed and the stopping phase emitted when it suddenly
stops at x � 0.

Let us consider the dynamic field of an antiplane crack
moving at constant speed v0 in an elastic medium of elastic
rigidity μ and shear-wave speed β. The solution of this
problem is very well known (see, e.g., Aki and Richards
[2002]). The solution for particle velocity in moving coordi-
nates (�x � v0t; y�) is

_w�x; y; t�

� Kd

μγ
������
2π

p v0
�

�������������������������������������
�x � v0t�2 � γ2y2

p
� �x � v0t��1=2���

2
p �������������������������������������

�x � v0t�2 � γ2y2
p ;

(1)

where γ �
���������������������
1 � v20=β

2
p

is the Lorenz contraction factor.

Kd � K0

�������������������
1 � v0=β

p
(2)

is the dynamic stress intensity factor (Freund, 1990). K0 is
the stress intensity factor that would appear at the crack tip if
rupture speed v0 suddenly dropped to zero. The velocity field
(1) applies until the stopping phase from the cusp of the kink
at the origin arrives to the observation point. The steady state
solution (1) is like a background velocity field on top of we
superpose the radiation from the kink.

Let us now study the stopping phase radiated when the
crack suddenly stops at the origin. We measure time from
the instant t � 0 when the fault stops. As shown by Eshelby
(1969) and Madariaga (1977), the stopping phase produces a

Kinked crack

before the kink
straight crackstraight crack

Decomposition of the kinked crack into 2 simpler problems

kink phase

shear (SH) wavefront

stopping phase

after the kink

straight crack
starting phase

Figure 1. Geometry of the kink crack. We decompose the solu-
tion of the kinked crack problem into two simpler problems: (1) a
straight crack with constant rupture speed v0 along the negative x
axis and (2) a straight crack propagating at constant speed vr along
the kink. The total radiation is the sum of the two problems. Both
ruptures produce circular shear wavefronts of radius r � βt.
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sudden jump in particle velocity that drops to zero behind the
SH wavefront. Immediately behind the stopping phase wave-
front, stress and displacements take their static values. It is
easier to write them in cylindrical coordinates �r; θ� centered
about the origin. Defining the azimuthal and radial shear
stresses,

σθz �
μ
r

∂w
∂θ ; σrz � μ

∂w
∂r ;

we find that for r < t=β,

_w�r; θ� � 0; w�r; θ� � 2K0

μ

������
r

2π

r
sin

θ
2
;

σθz�r; θ� �
K0��������
2πr

p cos
θ
2
; σrz�r; θ� �

K0��������
2πr

p sin
θ
2
:

(3)

Thus, the passage of the shear wavefront leaves behind it
the static stress and displacement fields of a crack of stress
intensity K0 extending along the negative x axis. This very
interesting result was found by Eshelby (1969).

Propagation of the Dynamic Crack after the Kink

The process of rupture propagation beyond the kink
(Fig. 1c) can be viewed as follows. For t < 0, it is assumed
that the crack is at rest and that the material is subjected to the
shear-stress field σθz�r; θ�, σrz�r; θ� defined in equation (3).

As the crack advances for t > 0, displacement w�r; θ; t�
satisfies the cylindrical wave equation

1

r

∂
∂r

�
r
∂w
∂r

�
� 1

r2
∂2w

∂θ2 � 1

β2

∂2w

∂t2 ; (4)

with the following boundary conditions for r ≤ βt:

σθz�r;�π; t� � 0; (5)

σθz�r < vrt;λπ� ϵ; t� � 0; (6)

w�βt; θ; t� � 2K0

μ

������
βt
2π

r
sin

θ
2
: (7)

Here (and elsewhere), ϵ is a vanishingly small positive
constant. Boundary condition (5) states that the crack along
x < 0 is stress free, equation (6) states that the crack along
the kinked path is stress free, and the last condition (equa-
tion 7) is a consequence of the continuity of the displacement
field w�r; θ; t� at the wavefront r � βt, where the following
dynamic jump condition must be satisfied (see Dempsey
et al. [1982]):

�σrz�r�βt �
μ
β

�∂w
∂t

�
r�βt

� 0: (8)

To these boundary conditions, we add the regularity
condition that the asymptotic behavior of the stress field near
the propagating crack tip is of the form (Freund, 1990)

σθz�r;λπ; t� �
�

K0������������������������
2π�r � vrt�

p �O� ���������������
r � vrt

p �
�

×H�r � vrt� as r

→ vrt; (9)

where H is the Heaviside function and K0 is the dynamic
stress intensity factor when the crack is propagating along
the kink.

Self-Similar Analysis

Except for the stress intensity factor scale introduced by
the boundary condition (7), there is neither a characteristic
length nor a characteristic time against the independent vari-
ables r and t can be scaled. Therefore, the displacement field
takes the following self-similar form

w�r; θ; t� � K0

μ

������
r

2π

r �
2 sin

θ
2
�W�s; θ�

�
; (10)

(Adda-Bedia and Arias, 2003) where

s≡ cosh�1
�
βt
r

�
; s ≥ 0; (11)

and W is a dimensionless function of its arguments
(Miles, 1960; Achenbach, 1970; Dempsey et al., 1982;
Broberg, 1999).

Similarly, the stress field takes the following form

σθz�r; θ; t� �
K0��������
2πr

p
�
cos

θ
2
� S�s; θ�

�
; (12)

with S � ∂W=∂θ, and

σrz�r; θ; t� �
K0��������
2πr

p
�
sin

θ
2
� cosh s

sinh s
∂W
∂s �s; θ�

�
: (13)

Finally, taking the time derivative of equation (10), we
get the particle velocity in the form

_w�r; θ; t� � K0

μ
��������
2πr

p vr
cosh b
sinh s

∂W
∂s �s; θ�; (14)

with b≡ cosh�1�β=vr�. We notice that the expressions for _w
and σzr are very similar except for the factor cosh s. This term
is related to the singularity of stress near the origin.

In Figure 2, the transformation from the coordinate sys-
tem �r; θ; t� to the �s; θ� plane is shown. Taking into account
the explicit dependence of s on r and t (11) and inserting
equation (10) into the wave equation (4), we find that W
satisfies the partial differential equation
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∂2W

∂s2 � coth s
∂W
∂s � ∂2W

∂θ2 � 1

4
W � 0: (15)

This equation has to be solved subject to boundary condi-
tions (5), (6), and (7), can be easily transformed into con-
ditions on W and S. They become, respectively,

S�s;�π� � 0; (16)

S�s > b; λπ� ϵ� � � cos
λπ
2
; (17)

and

W�0; θ� � 0: (18)

Once the displacement field w�r; θ; t� is written under the
form (10), the jump condition (8) across the cylindrical
wavefront s � 0, corresponding to r � ct, is automatically
satisfied.

The asymptotic behavior near the crack tip (9) imposes
the following asymptotic behavior in the �s; θ� plane:

S�s;λπ� ϵ� � � cos
λπ
2

�
�
K0

K0

�������������
coth b

p �����������
b � s

p �O�
�����������
b � s

p
�
�

×H�b � s� as s → b: (19)

Solution of the Dynamic Crack Kinking Problem

According to Adda-Bedia and Arias (2003), equa-
tion (15) admits solutions of the form

W�s; θ� � 2

π

Z
s

0

��������������������������������
cosh s � cosh s0

p
Φ�s0; θ�d s0; (20)

where Φ�s; θ� is an unknown function that satisfies the
Laplace equation in coordinates �s; θ�

� ∂2

∂s2 �
∂2

∂θ2
�
Φ�s; θ� � 0: (21)

We can now use standard complex analysis techniques
to write the solution of equation (21) as the real part of a
complex function F�γ � s� iθ�, is holomorphic inside of
the contour DCBAED (see Fig. 2):

Φ�s; θ� � Re �F�γ��≡ 1

2
�F�γ� � F�γ��; γ � s� iθ:

(22)

The stress function S that is needed to compute tangen-
tial stress (12) can be computed from equation (20) using the
Cauchy–Riemann relations. As shown by Adda-Bedia and
Arias (2003),

S�s; θ� � 1

π

Z
s

0

sinh s0��������������������������������
cosh s � cosh s0

p Im �F�s0; θ�� d s0: (23)

The transformation of the boundary conditions (16) and
(20) onto conditions satisfied by F leads to

Im �F�s� iπ�� � 0; (24)

Re �F�iθ�� � 0; (25)

and the boundary condition (17) leads to

��������������������������������
cosh s � cosh b

p
Im �F�s� iλπ��

� cos
λπ
2

� 1

π

Z
b

0

���������������������������������
cosh b � cosh s0

p

cosh s � cosh s0

× sinh s0Im �F�s0 � iλπ��d s0; s > b (26)

(see Adda-Bedia and Arias [2003] for more details).
To these boundary conditions, we add the regularity

conditions near the kink

Im �F�γ�� →
���
2

p
exp

�
� s

2

�
cos

θ
2

as γ → ∞ (27)

and near the rupture front

λπΕ

Α B

D

C
F

θ

−π

π

s

Α B

Ε D

CFλπ

0

θ

r

SH wave front

Figure 2. Geometry of the kink crack and the Chaplygin trans-
formation from cylindrical coordinates to s and θ.
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F�γ� → ia

γ � γC
as γ → γC ≡ b� iλπ; (28)

where a is a real constant, derived from equation (9), that is
related to the dynamic stress intensity factor by

a �
�������������
cosh b

p

sinh b
K0�λ; vr�

K0

: (29)

The holomorphic function F�γ� is uniquely determined
by the conditions (24), (25), (26), (27), and (28). In the fol-
lowing, the dynamic crack kinking problem will be solved
using a different method than the one used in Adda-Bedia
and Arias (2003). For the present case, it is possible to get
a suitable representation of the function F�γ� without map-
ping it into a complex half-plane. As shown by Adda-Bedia
(2004), F�γ� can be written in a general form that satisfies
the boundary conditions (24), (25), and (28),

F�γ� � a�F1�γ� � F2�γ��; (30)

where F1�γ� and F2�γ� are holomorphic functions inside the
contour DCBAED, given by

F1�γ� �
i

2

�
sinh�γ � iλπ�=2

cosh�γ � iλπ�=2 � cosh b=2

� sinh�γ � iλπ�=2
cosh�γ � iλπ�=2� cosh b=2

�
; (31)

F2�γ� �
i

2

Z ∞
b

�
sinh�γ � iλπ�=2

cosh�γ � iλπ�=2 � cosh t=2

� sinh�γ � iλπ�=2
cosh�γ � iλπ�=2� cosh t=2

�
f�t� d t; (32)

with f�t� a real continuous function defined for t > b. Writ-
ten in the forms (31) and (32), the functions F1�γ� and
F2�γ�, and, consequently, F�γ�, automatically satisfy the
conditions (24) and (25). Also, the condition (28) is automat-
ically satisfied by F�γ�, through F1�γ�. Therefore, the com-
plete determination of the function F�γ� is now reduced to
finding the real function f�s� and the real constant a. They
are determined by the integral equation (26) satisfied by F
(or f), combined with the additional condition (28). These
can be rewritten as

���
2

p
a cos�λπ=2�

�
cosh b=2�

Z ∞
b

f�t� cosh t=2 d t
�
� 1:

(33)

The function f must satisfy the integral equation (26),
as shown in the Appendix can be modified into the following
real-valued integral equation:

f�s� � A�s; b� �
Z ∞
b

A�s; u�f�u� d u; s > b; (34)

where the kernel A�s; u� is

A�s; u� � 1

2π2

�
s sinh s � u sinh u
cosh s � cosh u

� Re
�
s sinh s � �u� 2iλπ� sinh�u� 2iλπ�

cosh s � cosh�u� 2iλπ�

��
:

(35)

Let us remark that equations (34) and (35) do not involve the
real constant a. Therefore, the latter integral equation can be
solved independently of the value of the constant a, which
can be computed from equation (33).

A complete analytical solution of the integral equa-
tion (34) cannot be derived in the general case. However,
for the special case λ � 0, A�s; u� � 0, and f�s� � 0. For
the general case, when λ ≠ 0, the numerical resolution of
the integral equation (34) can be obtained by numerical com-
putation. In Figure 3, examples of solutions are shown for
some values of λ and vr.

Crack Front Dynamics after the Kink

The stress intensity factor just after kinking, K0, defined
in equation (9), can be determined from equation (29) once
the real constant a has been evaluated. Using equations (29)
and (33), we find that the dynamic stress intensity factor K0 is
given by

K0�λ; vr� � K0H33�λ; vr�k�vr�; (36)

where k�vr� �
�������������������
1 � vr=β

p
, and

H33�λ; vr�

� 1

cos λπ=2f1� �R∞
b f�t� cosh t=2 d t�=�cosh b=2�g :

(37)

K0H33 is the residual or zero-rupture velocity stress intensity
factor. This is the stress intensity that would appear at the

s -b

f(s
)

λ = 0.2

λ = 0.4

λ = 0.6

0 2 4 6 8 10
0.00

0.04

0.08

0.12

Figure 3. Plot of the function f�s�, solution of equation (34),
for some values of the kinking angle λ and for vr=β � 0:6.
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crack tip if it were to suddenly stop. We remark that K0H33

is larger than K0 because the velocity dependent factor
k�vr� ≤ 1. For λ � 0, the fault is straight and there is no
change in intensity factor when the crack runs trough the ori-
gin H33�0; vr� � 1. For angles λ > 0, we can compare H33

with the corresponding static results reported by Sih (1965),

H33�λ; v → 0� �
�
1 � λ
1� λ

�
λ=2

: (38)

We have computed H33 numerically for several values
of λ and rupture velocity vr after the kink. The correspond-
ing results are summarized in Figure 4, where we plot
H33�λ; v=c� divided by the static value (38). We observe that
for small kink angles when λ < 0:2, the effect of rupture
velocity is very small At those angles we can neglect the
effect of rupture speed and equation (38) becomes an excel-
lent approximation to H33.

Energy flow into the crack tip per unit crack advance,
energy release rate Gc, can be computed from H33; it is

Gc�vr� �
K2

0

2μ
H2

33�λ; vr�A�vr�; (39)

where A�vr� is the universal function (Freund, 1990)

A�v� �
�������������������
1 � vr=β
1� vr=β

s
: (40)

Thus, as the rupture propagates along the kink, the energy
release rate depends both on the intrinsic factor H33 and

the rupture velocity factor A�vr�, which decreases from 1
at vr � 0 to 0 when vr � β.

Seismic Waves Radiated by the Kink

We may compute full wave field produced by the rup-
ture once we solve for the coefficient a from equation (33).
Let us consider the case when the kink angle is 22.5°, that is,
λ � 1=8, and the rupture speed before the kink is v0=β �
0:964 corresponding to b � 1:5. We compute F�s; θ� in
equation (30) numerically as a function of s and θ. Then
we compute the following convolutions numerically:

W�s; θ� � 2

π

Z
s

0

��������������������������������
cosh s � cosh s0

p
Re �F�s0; θ��d s0;

S�s; θ� � � 1

π

Z
s

0

sinh s0��������������������������������
cosh s � cosh s0

p Im �F�s0; θ�� d s0;

∂W
∂s �s; θ� � 1

π

Z
s

0

sinh s��������������������������������
cosh s � cosh s0

p Im �F�s0; θ�� d s0: (41)

Finally, we convert then to r, θ and use equations (10), (12),
(13), and (14) to compute the displacement, stresses, and
velocities.

Figure 5 shows the displacement, particle velocity, and
stress field σθz around the origin for nondimensional time
βt=r � 1, that is, the radius of the kink wavefront is 1. The
slip discontinuity across the fault is materialized by the con-
trasting colors. The displacement field is continuous at the
rupture front but is discontinuous across the kinked fault.
The particle velocity field is not only discontinuous across
the fault, but it presents a singularity right behind the rupture
front figured by the white spot produced by the saturation of
the amplitude scale.

The stress field is very interesting. We see the stress
concentration at the crack tip, slightly saturated because
the color scale cannot render the full range of stress values.
We also observe, something that is less well known, a re-
sidual stress concentration near the origin that has the form
of a horseshoe joining the kink to the rupture front. This
stress concentration is positive on both sides of the fault,
so that even if the fault relaxed stresses along its axis, resid-
ual stresses appear on both sides of it, preventing a complete
relaxation of the stress field. This explains why speed re-
duces after the kink: part of the energy stored in the media
cannot be completely released and it is transferred from the
elastic medium surrounding the crack to the vicinity of
the tip.

High Frequency Wave Radiation from the Kink

Just like the basic problem of rupture propagation across
the kink was separated into two problems in Figure 1, we
split high frequency waves in two parts:

0.0 0.2 0.4 0.6 0.8
λ

0.9

1.0

1.1

1.2

1.3

H
33

(λ
,v

r/β
)/

H
33

(λ
,0

)

v
r
=0.5β

v
r
=0.9β

v
r
=0.1β

Figure 4. Plot of the function H33�λ; vr=β�=H33�λ; 0� as
a function of the kinking angle and for some values of the
crack tip speed just after kinking. Note that K0�λ=vr�=K0 ��������������������
1� vr=β

p
H33�λ; vr=β�, where K0 is the dynamic stress intensity

factor just after kinking, and K0 is the equilibrium stress intensity
factor just before kinking. Note that for λ → 0, H33 coincides ex-
actly with the corresponding elastostatic result given by equa-
tion (38).
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Seismic Radiation before Rupture Arrives at the Kink

When the crack propagating along the negative x axis
stops at the origin, it emits a strong stopping phase that
can be computed using the techniques proposed by Eshelby
(1969) or Madariaga (1977). Across the wavefront r � βt,
particle velocity experiences a sudden jump of amplitude:

_w�r; θ; t� � � K0

μ
��������
2πr

p v0
sin θ=2

1 � �v0=β� cos θ
H�t � r=β�:

(42)

Seismic Radiation after the Rupture Leaves the Kink

When rupture starts moving along the kink it also emits
a strong wave that we can compute once we find F�γ�. In-
serting equation (20) into the particle velocity function (14),
we get

_w�r; θ; t� � K0

μ
��������
2πr

p vr cosh b
Z

s

0

Re �F�s0; θ����������������������������������
cosh s � cosh s0

p d s0

π
:

(43)

We are interested in the particle velocity when approaching
the wavefront r � βt, or equivalently s � 0. In this limit it is
seen that the contribution to the integral in equation (43) is
nonzero for s0 ≈ s≈ 0 only. Using cosh s≈ 1� s2=2 and
performing the variable change s0 � sx, we can integrate
equation (43) exactly to

_w�r; θ; t� � K0

μ
��������
2πr

p vr
cosh b���

2
p Re �F�0; θ��H�t � r=β�:

(44)

Once the analytic function F is determined, we can calculate
this quantity. It can be easily verified that for λ � 0 one re-
covers the exact known result (Eshelby, 1969):

_w�r; θ; t� � K0

μ
��������
2πr

p vr
sin θ=2

1 � �vr=β� cos θ
H�t � r=β�; (45)

which, as expected, has the same form as the stopping phase
when the initial crack stops at the origin. If there is no rupture
speed jump, that is, if vr � v0, then the starting phase (45)
exactly cancels the stopping phase (42).

We observe from equation (44) that radiated waves
decay like r�1=2 in the far field, just like the velocity field
behind the rupture front. The similarity of the behavior of
velocity concentration and far-field radiation is a unique
property of the 2D crack radiation.

It is not difficult to show that, as expected, displacement
w and the tangential stress σzθ are continuous at the rupture
front. Radial stress σzr, on the other hand, is discontinuous at
the kink wavefront, just like _w. Actually the jump in stress is
just σrz � ρβ _w, where ρβ is the impedance of the bulk.

Figure 5. Plot of (a) displacement around a fault containing a
kink. The displacement discontinuity is clearly shown by the color
contrast across the kinked fault line. (b) Slip rate across the fault.
(c) Stress σzθ on azimuthal planes through the origin. The computa-
tion was done for a kink angle of π=8 radians and a rupture speed
parameter b � 1:5.

Seismic Radiation from a Kink on an Antiplane Fault 2297



In Figure 6, we compute radiation pattern for different
angles λ. We observe that the nodal line of the radiation pat-
tern is not aligned with the kink direction but is intermediate
between the x � 0 line and the direction of the kink.

We can now compute the high frequency asymptote of
spectral amplitude of the displacement field associated with
the particle velocity jump described by equation (44). Taking
Fourier transform, we find

~w�r; θ;ω� � K0

μ
��������
2πr

p vr
cosh b���

2
p Re �F�0; θ�� 1

ω2
e�iωr=β:

(46)

We observe that the kink wave has a typical ω�2 high fre-
quency behavior. Thus, radiation from a kink behaves just
like the stopping phases from flat cracks studied by Ma-
dariaga (1977).

Stress Concentration near the Kink

We have already mentioned that stress near the tip of the
kink has a particular decay with distance from the kink r and
with the angle θ. The residual stresses around the kink, once
the crack has moved far enough from it, is controlled by the
state of stress of a wedge with free boundary conditions
(Achenbach, 1970). We study this state of stress because
it plays an important role in the energy balance of the kink.
Following Achenbach, we introduce a general solution of the
Laplace equation in polar coordinates:

w�r; θ� � Arp cos�pθ� ϕ�; (47)

where A and ϕ are the phase and amplitude to be determined.
The tangential shear stress associated with this solution is

σθz�r; θ� � �Aprp�1 sin�pθ� ϕ� (48)

Once the crack has propagated away from the kink, the
two sides of the kink are free to slip so that

σθz�r;�π� � 0; (49)

σθz�r; �1� λ�π� � 0; (50)

where the angle of the kink is �1� λ�π on the external side
of the kink and �1 � λ�π on the internal one.

The first condition in equation (49) is satisfied if ϕ � π;
the second one requires that

sin�p�1� λ�π� π� � 0: (51)

This defines a many-valued eigenvalue problem for p. In
our problem, we are interested in the most singular eigen-
values, p � 1=�1� λ�.

Inserting these values of p into equations (47) and
(48), we get the full solution compatible with free boundary
conditions on the fault. We observe, however, that the stress
fields on the two sides of the kink behave differently. Let us
consider the external side first. On this side, �π < θ < λπ,
we get

w�r; θ� � Ar1=�1�λ� cos
π� θ
1� λ

; (52)

σθz�r; θ� � �Apr�λ=�1�λ� sin
π� θ
1� λ

; (53)

and stresses increase like r�λ=�1�λ� near r � 0. For 0 <
λ < 1=2, the power decreases from 0 to�1=3. This is a weak
singularity of lower order than typical crack singularities,
which have a power of �1=2.

On the internal side, π < θ < λπ, we get

w�r; θ� � Ar1=�1�λ� cos
π � θ
1 � λ

; (54)

σθz�r; θ� � �Aprλ=�1�λ� sin π � θ
1 � λ

; (55)

so that stresses behave like rλ=�1�λ�, which increases from
0 at λ � 0 to 1 for λ � 1=2. Stresses in the internal side
of the kink behave regularly; actually, they increase away
from it as observed in Figure 5c. These results fully agree
with those presented by Achenbach (1970). We observe from
the solution (52) that displacement at the corner of the kink
is continuous and presents weak discontinuities of order
1=�1� λ�. Because we are interested in kinks with small
angles, such that λ < 1=2, p > 1, w is continuous at the ori-
gin and has a weak first order discontinuity with a power
larger than 2=3.

λπ
θ kink

Figure 6. Radiation pattern of the kink wave, the velocity dis-
continuity emitted by the kink when ruptures cross the origin. This
wave has a jump in particle velocity whose amplitude is shown in
the figure. We notice that the nodal line does not coincide with the
direction of the kink.
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Energy Balance

Seismic energy has been the subject of much recent dis-
cussion because it is widely used to determine the overall
energy balance of earthquakes (see Ide and Takeo [1997],
Madariaga and Olsen [2000], Favreau and Archuleta [2003],
and Rivera and Kanamori [2005]). Energy balance can be
completely solved for the present model, which we hope will
help in understanding the detailed energy balance for this
particular example. Energy balance for earthquake sources
was studied by Kostrov (1974) and Husseini et al. (1975),
producing several equivalent expressions that have created
some confusion. In the present problem by construction
stress falls to zero (or a residual but uniform level everywhere
on the fault behind the rupture front). Thus, in this case the
energy balance is much simpler than that derived by Kostrov.

Because our fault model is actually infinite, the energy
balance can only be written in the form of energy flow per
unit crack advance. Let us first compute the energy per unit
crack advance emitted by a crack running at constant rupture
speed vr along the flat part of the fault. Let us consider a
point on the fault. The velocity field produced by the passage
of the rupture front through this point is (see Madariaga
[1983])

_w�r; θ; t� � Kd

μ
��������
2πr

p vr
sin θ=2

1 � �vr=β� cos θ
H�t � r=β�; (56)

where r, θ refer to cylindrical coordinates drawn around the
reference point. We consider the energy flow across a circle
of fixed radius r around this point. The energy per unit time
and unit solid angle that flows across this circle is

∂Es

∂t rdθ � σrz _wzrdθ: (57)

In the far field, σrz � ρβ _w, and because we are interested in
the amount of energy radiated per unit crack advance,

∂Es

∂x �
Z

2π

0

ρβ _w2
dt

dx
r d θ

� K2
d

μ
vr
β
1

π

Z
2π

0

sin2 θ=2
1 � �vr=β� cos θ

d θ;

where we used the derivative dt=dx � 1=vr�1 � �vr=β�×
cos θ� that relates travel-time change dt to rupture front
advance dx, as shown in Figure 7. We can now do the
integration over θ exactly. Using integration tables:

es �
∂Es

∂x � K2
0

2μ

�
1 �

�������������������
1 � vr=β
1� vr=β

s �
; (58)

where we used the classical notation that energy density is
represented by a lower case letter. In equation (58), we have
split Kd into the product of the static stress intensity factor

K0 and the universal velocity factor k�vr� �
�������������������
1 � vr=β

p
(see

equation 2).
Equation (58) can be compared now to that proposed by

Husseini et al. (1975) and Freund (1990). In our notation,

es�x� � Δew�x� �Gc�vr; x�; (59)

where Δew is the elastic energy released by the bulk for unit
crack advance and Gc is the energy release rate, the energy
used to advance the crack front a unit distance. When the
crack advances quasistatically at speed vr → 0, there is
no energy radiation, so that

Δew�x� � Gc�0; x�: (60)

Now, we use the property that Gc�vr� � A�vr�Gc�0�, where
A�vr� is the universal function defined in equation (40) that
relates energy release rate at different rupture speeds and
Gc�0� � K2

0=2μ. Thus, the seismic energy density radiated
from point x along the crack is

es�x� � �1 � A�vr��
K2

0

2μ
� �1 � A�vr��Gc�0�: (61)

This result is valid whatever the rupture speed is along the
crack. It simply says that the local seismic efficiency, that is,
the ratio of elastic energy radiated to the amount of energy
released, is just

η � es
Δew

� 1 � A�vr� (62)

and that the rupture control parameter κ is

κ � Δew
Gc�vr�

� 1

A�vr�
: (63)

As expected, rupture velocity is determined by κ (see Ma-
dariaga and Olsen [2000] for a more extensive discussion).

Figure 7. Computation of the radiated energy flow per unit ad-
vance of a crack front. The energy radiated when the crack advances
by a distance dx is contained in the shaded area of the figure, be-
tween the circular wavefront emitted from the beginning of the seg-
ment dx and the wavefront emitted from the end of the segment. The
time difference between the arrival of the two fronts is a function of
the radiation angle; it has the same form as the well-known direc-
tivity effects of rupture propagation.
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The energy balance (59) was established for a crack run-
ning along the flat part of the kink. Once the crack has moved
beyond the kink, a similar calculation could be used to de-
termine energy balance. It is much simpler here to use the
relations from Husseini et al. (1975) to do this calculation.

We can now apply the energy balance to our model of
the kink. Before the crack reaches the kink, it emits seismic-
wave energy at a rate given by

e0s � �1 � A�v0��
K2

0

2μ
; (64)

and once it moves into the kink, the radiated energy per unit
crack advance changes to

e1s � �1 � A�vr��
K2

0H
2
33�λ; vr�
2μ

; (65)

where H33 was computed earlier (39). It is important to real-
ize that the radiated energy after the kink is not determined
only by the factor �1 � A�vr�� as in flat cracks but also by a
factor H33 that depends on rupture and angle. It is only for
small rupture speeds that we expect that H33 becomes inde-
pendent of rupture speed.

The process of energy radiation from a kinked fault is
illustrated in Figure 8. As the crack propagates at constant
speed, before and after the kink, it emits a constant amount
of seismic energy per unit crack advance defined by equa-
tion (64) before the kink and equation (65) after the kink.
The kink wave produced when the rupture front hits the cor-
ner of the kink does not carry a finite amount of energy. It
actually represents a sudden jump in the amount of seismic
energy radiated by the fault. It is interesting to remark that
contrary to more complex models of faulting our model per-
mits a detailed local energy flow balance. We can clearly
identify how the strain energy released from the medium

can be split into energy release rate and radiated seismic en-
ergy. In our simple model, where rupture speed is completely
determined, the ratio of radiated energy to energy release rate
is entirely determined by the local rupture velocity. This is an
apparent violation of Rivera and Kanamori (2005), but their
statement concerned total radiated energy, not energy flow as
we show here.

Discussion and Conclusions

Using a method developed by Adda-Bedia and Arias
(2003) and Adda-Bedia (2004), the stress and particle veloc-
ity fields generated by the propagation of an antiplane kinked
crack have been determined. In the earlier paper, the complex
function F�γ� in equation (30) was found by mapping of the
function F to a certain complex plane that was difficult to
find and prone to error. In the present article, F�γ� was found
using symmetry properties of the solution and the boundary
conditions in the complex plane γ. With this approach, we
found a complete solution of the problem that can be com-
puted numerically. From the solution, we computed the dy-
namic stress intensity factor right after kinking as a function
of the stress intensity factor just before kinking, the angle of
the kink, and the instantaneous velocity of the crack tip.

From a seismological point of view, the seismic wave ra-
diated when the rupture front turns at the kink could be com-
puted numerically. This generates a strong seismic wave that
we have called the kink wave. Across the wavefront, the kink
wave produces a jump in particle velocity that can be com-
puted exactly. This jump in particle velocity corresponds in
the spectral domain to a high frequency decay of type ω�2 as
in most earthquakes. This model can thus be used to build
more general models of velocity change phases for nonplanar
faults.

Studying the far-field radiation from a moving crack, we
could compute the seismic energy radiation per unit crack
advance and we could establish a complete energy balance
per unit crack propagation distance. This balance states that
the amount of potential energy released from the bulk per
unit crack advance is equal to the sum of the energy radiated
and the energy released to the rupture front. Rupture propa-
gation is thus controlled by the balance between energy
release and energy radiated by seismic waves. This simple
balance equation can be derived from earlier work by Hus-
seini et al. (1975), but in most seismological applications,
authors have looked for global rather than a local energy bal-
ance as we do here.

Finally, we showed that weak stress concentrations are
generated near the kinks that play an interesting role in the
redistribution of energy during seismic ruptures. These stress
concentrations may be the sites of possible aftershocks lo-
cated close to a broken fault as suggested by J. Dieterich
(personal comm., 2005). In this sense, the rupture of a kinked
fault is mechanically much more interesting than a flat fault
where all of the energy released from the bulk is used to
propagate the rupture and produce seismic waves. In the pre-

Figure 8. Variation of radiated energy flux as a function of po-
sition along the fault. Before and after the kink, the fault generates a
constant amount of energy flux, noted e0s and e1s . High frequency
radiation occurs at the kink because energy flow changes abruptly in
response to the sudden change of direction of the fault.
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sence of kinks, a fraction of the energy that flows into the
fault is used to produce residual stress concentrations located
close to the kink points. These weak stress concentrations
may be the sites of aftershocks,

The results presented here were for the antiplane mode
of faulting; in this mode, slip occurs in the direction perpen-
dicular to the fault section so that there are no incompatibil-
ities at the corner of the kink. It is very unlikely that similar
closed form solutions may be found for the in-plane mode,
because in this case the behavior of the corner point must be
explicitly defined because the normal to the fault plane is
ambiguous at this point. In spite of this difference, we antici-
pate that several properties of our solution will prevail. The
main feature we expect to remain valid is that the stress in-
tensity factor will suddenly change when the rupture starts to
propagate into the kink; this will generate seismic body
waves characterized by jumps in particle velocity. A feature
that will be quite different is that surface waves will be gen-
erated along the fault and the kink. Numerical results have
been published for mode II kinks, but they are difficult to
interpret because the boundary conditions at the corner of
the kink were not always explicitly posed. As we mentioned
previously, the normal to the fault is not defined at the corner,
so the mechanical problem of the kink in mode II or I is ill
posed. It needs additional assumptions about the geometry of
the corner of the kink, as discussed by Tada and Yamashita
(1996). For 3D problems, the wavefronts can be computed
using ray methods as discussed by Madariaga (1977) and
Bernard and Madariaga (1984). Unfortunately, the ampli-
tudes of the kink waves and their radiation patterns cannot
be computed unless the mode II problem can be solved, be-
cause these solutions are needed as canonical problems.

Data and Resources

No data were used in this article. Some plots were pre-
pared using the gnuplot program available from http://www
.gnuplot.info/.
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Appendix

In the following, we focus on the transformation of the
integral equation (26) into equation (34). Using the represen-
tations (31) and (32), it is shown that

Im �F�s� iλπ�� � a

2

�
I�s; b� �

Z ∞
b

I�s; t�f�t� d t
�
; (A1)

I�s; t� � Re
�

sinh�s=2�
cosh�s=2� � cosh�t=2�

� sinh��s� 2iλπ�=2�
cosh��s� 2iλπ�=2� � cosh�t=2�

�
: (A2)

Equation (A2) can be easily transformed into

I�s; t� � I1�s; t� � I2�s; t�; (A3)

where

I1�s; t� �
4 cosh�t=2� sinh�s=2�
cosh�s� � cosh�t� ; (A4)

I2�s; t� �
sinh�s=2�

cosh�s=2� � cosh�t=2�

� Re
�

sinh�s=2�
cosh�s=2� � cosh��t� 2iλπ�=2�

�
: (A5)

Using equations (A1), (A4), and (A5), the integration over s0

in equation (26) can be computed analytically. For this, we
need to analytically calculate integrals of the following types

J1�z� �
Z

b

1

������������������������������
�b � x��x � 1�

p
x � z

d x

π

�
������������������������������
�z � b��z � 1�

p
� z� �b� 1�=2: (A6)

After some algebraic manipulation and using equation (33),
an integral equation satisfied by the real function f is de-
duced. It is given by

Z ∞
b

�������������������������������������
cosh�t� � cosh�b�

p
cosh�t� � cosh�s� f�t� sinh�t�d t

� sin2�λπ=2�
a cos�λπ=2� �H�s; b� �

Z ∞
b

H�s; t�f�t�d t; (A7)

H�s; t� � 1

2

�������������������������������������
cosh�s� � cosh�b�

p
I2�s; t�

�
Z

b

0

���������������������������������������
cosh�b� � cosh�s0�

p
cosh�s0� � cosh�s� I2�s0; t� sinh�s0�

d s0

2π
;

(A8)

where the integral in the left-hand side of equation (A7) must
be taken in the sense of Cauchy principal value. One can
write equation (A7) differently by noticing that it is in the
form of a Hilbert singular integral equation. Thus, one can
invert it to obtain (Muskhelishvili, 2003)

f�s� � A�s; b� �
Z ∞
b

A�s; u�f�u�d u; s > b; (A9)

A�s; u� � �
Z ∞
b

H�t; u� sinh�t��������������������������������������
cosh�t� � cosh�b�

p
�cosh�t� � cosh�s��

×
d t

π2
: (A10)

Using equation (A8), one can simplify equation (A10) into

A�s; u� � � 1

2π2

Z ∞
0

I2�t; u� sinh�t�
cosh�t� � cosh�s� d t: (A11)

One can analytically compute the integration over the vari-
able t in equation (A11). The result leads to equation (35).
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