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Summary. We propose a simplified method for the calculation of  near field 
accelerogranis. It is based upon the hypothesis that, in the course of  dynamic 
faulting, tlie dominating part of the seismic radiation is emitted by the 
rupture front. As tlie rupture moves smoothly it radiates continuously, 
generating the low-frequency part of the field. High-frequency waves are 
produced by jumps in the rupture velocity and abrupt changes in the stress 
intensity factor. The wave-front discontinuities created in this fashion are 
evaluated by asymptotic methods and may be propagated away from the 
source by ray theoretical methods. We apply our technique t o  the evaluation 
of asymptotic near field accelerograms for a circular fault buried in a half- 
space. The agreement with numerical accelerograms calculated by full-wave 
theory is very satisfactory. Two problems are given particular emphasis: 
(1) the phase shifts introduced by focusing and (2) a simpler method, based 
on  dislocation theory, is proposed for the calculation of tlie radiation 
coefficients from a discontinuously moving rupture front. 

1 Introduction 

The modelling of  synthetic accelerograms in the near field of a seismic source is of major 
importance for the prediction of strong ground motion and the evaluation of  seismic risk. 
Synthetic records also provide a method t o  invert observed accelerograms t o  seismic source 
parameters, in particular to  slip velocity on  the fault. Several rather complex numerical 
methods have been proposed in the literature to calculate near field synthetics (Bouchon 
1979, Heaton & Helmberger 1979, Hartzell & Helmberger 1982 among others). 

All of these methods require laborious numerical integrations over a distribution of 
point double couple sources covering the whole fault plane. If one is interested only in 
high frequencies - wavelengths shorter than the distance t o  the observer and shorter than 
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the  overall dimensions of  the fault plane - -  i t  is possible to  develop very efficient asymptotic 
metliods for  the simulation of  accelerograms. These methods, proposed by Madariaga (1 977) 
and  Achenbach & Harris (1978), make use of a number of well-known results of the 
geometrical theory of diffraction to  generalize the results obtained for siniple 2-D fault 
models into three dimensions. Altl~ough the original papers dealt only with the simultaneous 
arrest of rupture around the periphery of the rupture front, we have recently extended these 
results t o  more general models of fracture arrest (Bernard 81 Madariaga 1984). 

In  this paper. we study the problem of focusing of  stopping phases by the curvature ot. 
the  rupture front. Focusing was considered by Aclienbacli & Harris (1978) although they 
did not include the phase shifts introduced into the stopping phase when it crosses the 
focal line. ‘The ~ / 2  phase shift (Hilbert transformation) introduced by focusing appears 
clearly in the time domain synthetic accelerograms calculated by Arcliuleta & Hartzell 
(1981) and Campillo (1983). It was when trying to  interpret the different phases appearing 
in these synthetics that the Hilbert transformed waveforms were identified in the second 
stopping phases. We will demonstrate how to correct for these effects and show a number of  
calculations made for a simple model of a circular fault in a half-space. The calculations may 
be  easily extended to  more complex fault geometries including barriers and asperities 
(Madariaga 1983); and to  more realistic geometries of the rupture front and asperity shape 
(Bernard & Madariaga 1984). We shall also present a simplified method for the approximate 
calculation of I-adiation coefficients from a crack edge. This method makes use of a moving 
dislocation approximation t o  the rupture front. 

P. Ir’ernarti arid R. Muderiaga 

2 Geometrical and kinematic effects of fault curvature 

The seismic radiation of high-frequency waves from a curved rupture front was studied 
by Madariaga (1977)  and Achenbach & Harris (1 978). These authors used Keller’s ( I  962) 
geometrical theory of diffraction t o  extend their 2-D models of radiation t o  smoothly 
curved rupture fronts. Their results permit the calculation of the wavefront discontinuities 
or  stopping phases radiated from a sudden change of velocity of a rupture front. They did 
not, however, consider the phase shift suffered by  the stopping phases when they cross the 
focal line which appears when the radiation is observed from the concave side of a curved 
rupture front. This effect is very important in practical applications to  the calculation of  
near field high-frequency accelerograms, since focusing by the rupture front may be a very 
common occurrence. 

In order t o  illustrate the effect of focusing we will study a simple problem which contains 
all the geometrical effects we are interested in. We consider a circular ring source C, of radius 
a, embedded in an infinite, homogeneous medium of wave propagation velocity c. Each 
point on  t h e  circle C emits a simple spherical wave: 

where K is the distance from the observation point P t o  the source and 6 ( t )  is Dirac’s delta 
function. Using Huyghen’s principle we calculate the radiation from the circular ring 
integrating over all the  point sources on  the ring. The field a t  P i s  then: 

where R 1  and R z  are the minimum and maximum distances froin P to the ring C, respec- 
tively (see Fig. la). The points A ] ,  A 2  and P are all on  a plane perpendicular t o  the source 
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Seismic radiation f r o m  a buried fault 3 
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Figurc 1. Geometry of the circular crack model used in the text. liupturc starts from the origin and 
spreads along tlie horizontal plane until t he  final radius a.  At  tile observation P the main contributions 
to the accclerograrns conic from the stopping phases radiated by A ,  and A > .  

ring. The field C(t) presents two singularities: tlie first a t  t = R1/C when motion at  P starts. 
and the second at  t - R 2 / C  when motion stops. 

Near the starting front t = R1/C we may approximate (2) by: 

and R: - -  R: = 4 ar, where r is the radial distance from P to  the axis of the ring. Referring 
t o  Fig. 1 we may express r as: 

r = a  + R ,  cosOl (4) 

so that (3) yields: 

where : 

is the radiation from a line source tangent to  the ring C at the point A l .  This expression 
shows that the field near the first arrival from the circular source is equal t o  that of  a local 
line source (6) corrected by the spreading factor dl -t R 1  cos 81/a .  This is t he  S a m  results 
obtained by Achenbach & Harris (1978) for a similar problem. Let us note, however. that 
on tlie concave side of the ring (cos 0, < 0 ) ,  the solution (5) is not valid for: 

R ,  c 0 s 8 ~  < -a 
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4 
i.e. when the observer is on tlie other side of  the normal to tlie plane of tlie ring through 
its centre. This is a focal line for the ring source. 

In order to  clarify what happens when a ray crosses tlie focal line let us consider the 
stopping phase for f - R 2 / c .  I n  this case ( 2 )  is given, approximately. by: 

P. Uerriurtl atid K .  Muduriugu 

and using (see Fig. 1 ) 

K i  R: = 4ur = 4 u 2 ( R z  cos Q 2  I  ) t X )  

where #(L) denotes the Hilbert transform of the radiation from a line source (6). 
Equation (9) is only valid for: 

R z  cos Q2 > a, 

i.e. C o t -  waves radiated towards the coiivex side (cosOz > 0)  o t ' t he  circular source and which 
have crossed the focal line. 

Thus, the radiation towards the convex side of the ring is of the form Cl(t) before i t  
crosses the focal line and is of the t i p e  C2(t)  once it crosses the focal line at F in Fig. 1 :  
i.e. the waveform is Hilbert transformed by the focusing. In the vicinity of  the focal line the 
solutions Cl(r) and  C z ( t )  are not valid since tlie term ( R i  

Tlic tern1 in the square root i n  front of (5) and (9) is due t o  geometrical spreading 
measured from the focal line. In the vicinity of the ring source, Rl or R 2  are very small 
and the  correction factor is close to  one, i.e. near the ring the waves are essentially 
cylindrical and given by /,(Rl, I ) .  In tlie far field, on the other hand, R1, R z  B u and the 
correction factors are of  the form [u /K cos 0]1/2 with R = li, for the first arrival and R = K z  
i;ir the  stopping phase. Tlie last one is of course tile Hilbert transform of  thc first. 

Neither Madariaga (1 977)  nor Achenbach & Harris (1978) included Hilbert transfor- 
mation at  the focal line in their analysis of high-frequency radiation, although the latter 
authors studied the focusing problem. I n  the frequency domain the absolute spectra of 
both phases (5) and (9) are the same, but their phases differ by n/2.  The most important 
effect of  the  f'ocal line crossing is to be  observed in tlie time doniain synthetic accelerograms 
as will be shown in the next section and is easily seen in the numerical accelerograms 
calculated by Archuleta & Hartzell (1981) and Campillo (1983) for a buried circular source. 

R:)-'/' becomes singular. 

3 Dyiiamical and quasi-dynainical models of a circular crack 

We will apply the  geometrical diffraction theory, exposed in the previous section, to the 
evaluation of the stopping phases from a circular shear fault model. We consider a vertical 
strike-slip circular fault buried in a homogeneous isotropic elastic half-space. This model 
was studied by Archuleta & Hartzell (I 981) and Carnpillo ( 1983) with numerical techniques. 
Tlic circular fault niodel was studied also by Madariaga ( 1  976), however his numerical 
solutions are not  very practical for the calculation of near field motions. For this reason, 
instead of the fully dynaniical solution we shall use an approximation t o  the slip function 
at the source which retains most of its main characteristics. We follow Boatwright (1 980) 
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k- 3 .  
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Figure 2. Source time function as a function of radius used in the generation of synthetic accelerograms 
by Archulcta & Ilartzell (1981) ,  Campillo (1984) and in this paper. Thc rupture front tiioves at velocity 
LJ and the stopping phasc propagates at vclocity 0. 

who called such approximations quasi-dynamical. Similar approximations were used by 
Arcliuleta & I-Iartzell (1 981) and Campillo (1983) in tlie numerical calculations whicli will 
be uscd t o  test our asymptotic results. 

The quasi-dynamic slip function we shall use is shown in Fig. 2 ;  it is a truncated version 
of Kostrov's (1964) solution for a self-similar shear crack that grows with a constant radial 
velocity u, i.e. 

where Av, is the slip velocity which is taken parallel t o  the x-axis, u, is the dynamic stress 
drop, p the shear modulus, v the rupture velocity, 0 the shear wave velocity, r is time 
measured from the onset of rupture, r is the radius measured from the nucleation point and 
H ( t )  denotes the Heaviside function. The rise time t f  is given by: 

t f = ( l / v + l / c ) ( u - - r )  

where u is the final radius of the fault when the rupture suddenly stops. t f i s  the time lapse 
between the beginning of slip a t  a point with radius r anti tlie arrival o f  the healing pliasc 
radiated by the edge of the fault when it suddenly stops at  a circle of radius a. After the 
arrival of the stopping phase or healing wave (see Fig. 2), slip ceases completely and it stays 
frozen at this final value. The stopping phase moves inward from the fault edge with a 
healing velocity c. This model of healing is not exactly what is observed in the numerical 
solutions of Madariaga (1976) in which P, S and Raylcigh stopping phases are emitted by tlie 
edge, but is a close approximation to  it if the healing velocity is taken as the shear wave 
velocity. 

The slip velocity ( l o ) ,  although simplified, is still difficult to use t o  calculate near 
field accelerograins so that it may only be used in numerical procedures. Let us note, 
however, that it is strongly concentrated near the rupture front a t  r = v t  where it may be 
approximately written as: 
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Thus the inverse square root singularity in slip velocity near the rupture front that is typical 
of all crack models (Freund 1979). In (12) we have kept the healing phase given by 
H ( t f -  t +r/u) because, when r is close to a ,  the healing phase comes immediately behind 
the start of slip, i t .  tf -t 0 and it makes an important contribution to the radiation as we 
shall see below. The slip velocity (12) inay be considered as produced by a dislocation of 
time dependence moving with the rupture front. It differs, however, from a classical 
dislocation model because of the presence of the stopping phase. 

P. Bernard and R. Madariaga 

4 High-frequency radiation from the circular crack model 

In order to approximate the dominating radiation from the circular crack we notice that 
high frequencies are controlled by the most singular part of the source. This is clearly the 
abrupt stopping of the rupture at r = a .  Thus, we make the following hypothesis that we 
shall verify with the numerical results obtained for the full slip function (10): high- 
frequency waves are dominated by the stopping phases and these waves may be evaluated 
by simple asymptotic methods. By high frequencies we mean waves whose wavelength are 
shorter than the distance to the edge of the fault and than the radius of the source. 

From a high-frequency point of view the circular source reduces to a ring that coincides 
with the final edge of the crack at r = a. The radiation from this ring may be calculated by 
the geometrical methods presented in the previous sections. Referring to Fig. 1, the high- 
frequency waves come from A l  ~ the first stopping phase - and from A2 the second 
one. In order to  calculate their amplitude and wave form we proceed in the standard manner 
of geometrical diffraction theory. We solve first the canonical problem of radiation from a 
2-D crack whose edge coincides with the local tangent to the ring r = a at Al  or A z .  Next, 
we propagate these canonical waves introducing the geometrical correction included in ( 5 )  
and for the stopping phase from A 2  thc Hilbert transform that appears in (9). 

In order to solve the canonical problem we notice that at A l  and Az the slip velocity 
Au, has both an antiplane (screw) and an inplane (edge) component. Radiation from either 
component may be calculated independently since an antiplane crack generates only 
SH-waves, while P- and SV-waves are produced by an inplane crack. 

Decomposing Au, into radial and tangential components we find, respectively: 

H(t  -- r/u) H(tf - r + r/u) 
A & =  Vcos9  dFqi7 

Jt-y/v 
H(t -- r/u) H( t f  - t + r/u) 

AV= V s i n 8  ~ ~~~ - 

where: 

is the velocity intensity factor and $is the azimuth on the plane measured from the x-axis. 
The solution of the canonical problems for the radiation from the vicinity of A2 and A l  

in the antiplane and plane modes is presented in the Appendix, where it is found by a 
superposition of dislocations. This method of solution is substantially simpler than the 
exact solutions for the canonical crack problems developed by Madariaga (1977) and 
Achenbach & Harris (1978). 

For a healing velocity c = 0, one finds for the acceleration pulse radiated by a suddenly 
stopping antiplane crack with velocity intensity V sin 4, the following result. 
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Seismic radiation from a buried fault 7 
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Figure 3. Geometry of the vertical circular fault model used in the calculation of rynthctics. TlIc obser- 
vation point P is on the surface. l h c  radial, transverse and vertical components of acceleration are 
indicated by the axes drawn at  point P. 

V U s1n 6 
i isH(R1, 79, @) = - sin @ D(u, P )  - 

2 
- - ~ - .- 6(t alu - Rl/P). 

1 - U / P  cos 7942R1P 

Similarly for the P-wave radiated by  the stopping of a plane crack of  velocity intensity 
V cos q5 we find: 

and for the SV-wave: 

where the factor: 

m+= 
d m -  D(u,c)= ___--- 

is due t o  the effect of the healing phases. These results are proven in the Appendix. 
We may now apply the geometrical theory of diffraction to the radiation from the 

abruptly stopping circular crack. Referring t o  Fig. 3, at a point P arrive two stopping 
phases from A1 and A?,. For the first stopping phase from A l  the amplitude is modified 
by the factor (1 + R,/a cos 79J1” in all cases. For the second stopping phase the ray 
crosses the axial focal line at  F (Fig. 1). In this case the second stopping phase suffers 
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a Hilbert transformation as indicated by (9) and its amplitude has t o  be modified by: 
( R ~  /a  cos s2 - I )-I”. 

P. Bernard arid R. Madariagu 

For a whole space then the ground acceleration at a point P may be written as: 

where ti is the  time of  propagation for the appropriate wave type from the points A l  o r  A2 
to the  observation point. The vector aniplitudcs are given by: 

D(u,  4 
2 

and similar expressions for usvl, asv. . . . derived from (18) and ( I  6). 

4.1 A C C E L E K O G R A M S  F O R  A V E K T I C A L  C l K C U L A K  C K A C K  I N  A H A L F - S P A C E  

The accelerations (20) are calculated in a homogeneous medium. They may be used, 
however, as initial conditions for a ray propagation method. In the application we have in 
mind here we shall simply assume that the source is buried in a half-space so that the only 
propagation effect we shall consider is the free surface response. This may be quite coinpli- 
cated because of the S to P conversion a t  incidence angles greater than critical. The method 
t o  calculate the free surface response for incident P-, SV- or SH-waves is well known 
(Helmberger 1974; Harris & Achenbach 1981) and need not be reproduced here. Let us note 
that  the free surface response t o  incident SV-waves beyond the critical angle contains a pulse 
that  reproduces that of the incident waves plus its Hilbert transfomi. Thus on the free 
surface both the first and the second S V  stopping phases will produce a combination of 
delta-like and 1 it-like pulses. 

5 Comparison with numerical models 

In order t o  test the applicability of the results obtained in the previous section, we will 
compare our  asymptotic solutions with results obtained by numerical integration of a 
network of  point sources distributed o n  the fault plane. Synthetic accelerograiiis of this kind 
have been calculated by Archuleta & Hartzell (1981) and Campillo (1983). It is not possible 
directly to compare the numerical results with the asymptotic ones because of the finite 
bandwidth produced by the discretization o f  the source in the numerical simulations. For 
this reason, we tried to simulate the synthetic accelerogranis convolving our asymptotic 
results with a low-pass filter. 

We will compare our asymptotic accelerograms with those of Campillo (1983) who 
provided us with a set of synthetics. He used a fully numerical method: the circular source 
was divided into a network of elementary point sources with an appropriate source time 
function defined by (10). For each of the point sources, complete accelerograms were 
calculated by  the discrete wavenumber integration method of Bouchon (1 979). Finally, the 
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Seismic radiation jrom a buried jault 9 

synthetic records were obtained by superposition of the accclcrograms calculated for each 
point source. Because of  the discrete grid path and the discrete integration step of  the 
inverse Fourier t ransform there is an upper frequency limit to  Canipillo's results. He 
estimates that his results arc low pass filtered with a maximum frcquency jb = 5 Hz. This 
value is also the corner frequency u f t h c  two-pole low pass Butterworth filter that Archuleta 
& Harzcll (1 981) applied twice t o  their accelerogranis in order t o  reduce numerical noise. 

We also filtered our solutions with a low pass box-car filter with a cut-off frequency of 
5 Hz. In this case the delta function in (20)  becomes: 

with a peak value at t = 0 of  2f0 = 10. Siniilarly the (rt)-' pulse in (20)  IS modified into 

nt 'I ( 2 2 )  

with a peak value of 1.45 f o  = 7.25 at f = * o.375/f0. These low-pass filters were designed 
in order t o  approximate the nominal cut-off frequencies of the synthetics calculated by 
Canipillo (1983). In fact, the effective low-frequency cut-off of his numerical scheme is 
probably lower than 5 Hz;  this iiiakcs it difficult to  compare thesc amplitudes and those 
calculated by us. 

The geometry of the source model is shown in Fig. 3. For the comparison we use 
Campillo's (1983) values: radius a = 5 km, hypocentral depth at 7 km,  rupture velocity 
u = 0.9 0. The velocity intensity V in ( I  5 )  was calculated using Archuleta & Hartzell's (1 98 1) 
parameters: 0, = 100 bar, p = 3 x lo5 bar and C(u/fl) = 1. These wcrc also used by Canipillo 
(1983). Thc homogeneous clastic half-spacc has a shear wave velocity P =  3 kin s - l  and a 
P-wave veiocity 01 = 5.2 km s-'. For the synthetic and asymptotic results compared in Fig. 4 
we took the observer a t  a distance D = 6 k m  from the origin and at  angles of 30" and 60" 
with respect t o  the x-axis. 

In Fig. 4 (upper) wc plot the three components of accelerations at  30" and (lower) those 
for 60". The numerical calculations are shown at the bot tom of each row with the asymptotic 
ones above them. On the record at  the bot tom right hand corner we indicate the dominating 
phases. Po, So are the P and S initial phases radiated from the hypocentre. 8,  S1 and Pz, S, 
are the P- and S-wave stopping phases from the nearest (1 )  and furthest (2) points on  
the source edge. In our synthetics wc did not include the initial phases Po, So; only stopping 
phases were calculated. The coincidence of the arrival tinic and the similarity of the 
numerical and asymptotic waveforms is striking. This demonstrates our main contention 
that  a t  high frequencies the radiation from most of the fault interferes destructively, only 
the radiation from the fault edge contributes significantly to the accelerograms. The 
delta-like and [-*-like pulses are clearly identified in most of the records. Nevertheless, 
some differences appear. In part they are due t o  the neglect of  the starting phases in our 
asymptotics, and also to  the clear difference in frequency content between our asymptotics 
and the numerical scheme used by Carnpillo is probably lower than 5 Hz. This affects the 
amplitudes and we observe that the synthetics have almost twice the amplitude of the 
numerical results. A better compromise would be to assume that Campillo's results are 
cffectively filtered by the numerical method at  2.5 3 Hz. This is not  of much geophysical 
interest since the acceleration amplitudes are clearly controlled by the artificial cut-off 
frequency. A more physical approach would be to limit the high frequencies with an 
attenuation filter; this will be done in the next section. 
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Figure 4. Comparison between the numerical simulations by Canipillo (1  984) and the asymptotic 
accelerograms calculated by our method. Two sets of accelerograms were calculated at a distance of 
6 km and angles of 30" (top) and 60" (bottom) from the origin. The asymptotics are shown immediately 
above the synthetics. The numbers next to the vertical axis indicate the amplitude of the traces. 

6 Asymptotic accelerograms in a dissipative medium 

The theoretical results (20) predict infinite amplitudes for the acceleration pulses associated 
with the stopping phases. This corresponds to a flat (white) acceleration spectrum at high 
frequencies. In the Earth the high frequencies will be attenuated and filtered by a number 
of source and propagation processes that are collectively described by f,,,, the high 
frequency acceleration cut-off frequency discussed by Hanks (1 982). The physical origin 
off,,, is the subject of much current discussion (Papageorgiou & Aki 1983; Hanks 1982). 
As noted by these authors the f,,,, cut-off is very sharp so that in the following examples 
we shall simulate its effect by an effective attenuation (Q-value) along the ray trajectory. 
The delta-like impulse is replaced by the attenuation operator whose Fourier transform 
is given by: 

1 WT 
- wT/2Q + i- log (w /wo)  . 

re  

T is the travel time, Q the quality factor and wo = 2nfo is the reference frequency (Carpenter 
1967). The Hilbert transform of this pulse was calculated also in the frequency domain. 
The synthetic accelerograms were finally calculated by inversion of the transform to the 
time domain. 

We calculated synthetic accelerograms for the same source geometry as described in 
Fig. 3 with parameters R = 5 km, H = 7 km, u = 0.9p, u, = 100 bar. The elastic velocities 
were a = 5.2 km s-', 0 = 3 km s-l and the equivalent quality factor was taken as Q = 50. 
Three profiles were calculated so that the variety of waveforms associated with this overly 
simplified source model may be appreciated. The position of the profiles with respect to 
the source is described in Fig. 5 where the dots indicate the points where the asymptotic 
accelerograms were generated. 

Fig. 6 shows the accelerograms calculated at a radial distance of 6 km from the origin 
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Seismic radiatiori from a buried fault 

.of i le  2 

profile 3 

Figure 5. Position of the profiles calculated in Figs 6-8. Profile 1 is a t  a radius of 6 km from the 
origin. Prcfilc 2 is a straight linc a t  an angle of 45" with respect to x. Profile 3 is perpendicular to the 
x-axis at x = 7 k m .  

II 1 

I 1 u 4 8 n  

V t H T I C I I  

Figure 6. Profile 1 : three component accelerograins calculated at  angles of 5" (bottom), 30°, 60" and 
90" (top) with respect to the x-axis. Values next to  vertical axes indicate the maximum acceleration 
in cm s2. 
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1 2  P. Bernard and R. Madariagu 

Acceleration icm s-') on Proflle 2 
Radial Ver t ica l  

3 

3 

I km 

Figure 7. Profile 2: linear profile at an angle of 45" with respect to the x-axis. Numbers at the end of each 
record indicate the maximum acceleration in cm s-' .  Only radial and vertical components arc shown. 

Acceleration ( c m  s-'ion Profde 3 

Radial 1 Verticai 
I 

- 7  

I13 

I I 

Figure 8. Profile 3:  linear profile along a line pcrpendicular to the x-asis. The numbers at the end of each 
trace indicate the inaxitnuin accelerations in cm s-:. Only radial and vertical acceleration arc shown. 

and at  azimuths of 5", 30", 60" and 90". The asymptotic results at 30" and 60" may be 
compared with those shown in Fig. 4 and which were calculated at the same places and 
filtered in order to  simulate Campillo's (1983) results. At the azimuth f3 = 90" both P- and 
SV-waves arc on a nodal plane while SH is at a maximum of its radiation pattern: this 
explains why the radial and vertical components are zero for this angle. The very large 
amplitude at 0 = 5" are due to the directivity effects of the high rupture velocity (90 per 
cent of the shear wave velocity). It is clearly seen in these asymptotic accelerograms that 
the first S-stopping phase (S1) dominates the records. 
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Seismic radiation from a buried fault 13 

In Fig. 7 we show the asymptotic accelerograms along profile 2 in  Fig. 5. The calculation 
points are situated along a line perpendicular to the x-axis 7 kin from the origin. The 
maximum acceleration decreases very rapidly with distance from the fault plane this 
decrease is faster than one over the distance to the fault because of the effect of  attenuation 
on  the accelerograms. Between 5 and 7 km the second P stopping phase crosses over the 
first S stopping phase .~ this produces most of  the complexity in those asymptotic accelero- 
grams. Finally in Fig. 8 we show the results along profile 3 where most o f  its characteristics 
are similar to those observed on profile 2. 

7 Conclusions 

This paper is part of a project to develop asymptotic methods for the calculation of near 
field accelerograms. It is based upon the observation that the main source of radiation during 
shear fracture is the stress and slip velocity concentrations near the rupture front. These 
concentrations arc characteristic of  all crack and dislocation solutions. The strongest racija- 
tion occurs when the rupture front rapidly decelerates or enters a zone of  rapidly varying 
stress or strength conditions. In the particular case studied in this paper we reconsider the 
simple circular crack model that grows a t  a constant rupture velocity until it abruptly stops. 
This model was solved by Madariaga (1 976) for the slip velocity on the crack and for the 
radiation in thc near field. Using an approximation to  the slip function. Archuleta & Hartzell 
(1981) studied its near field. In this paper wc showed that the strong motion rccords will be 
dominated by the stopping phases and wc proposed a simple way to  calculate them asymp- 
totically. Two important changes with respect to  Achenbach & Harris (1978) and Madariaga 
(1975) were introduced. First, the effect of  focusing is re-evaluated showing that a phase 
shift (Hilbert transformation) is produced when the rays cross the axis of the circular fault. 
Second, a simpler approximation is proposed for the calculation of the radiation pattern due 
to a rupture front that suddenly accelerates or decelerates. This is obtained by means of 
dislocation approximations to the crack solutions. The advantage of  this formulation is that 
it may be  easily extended to  the more realistic problem where fracture arrest does not occur 
simultaneously around the fault edge. Once this problem is solved, it will be possible to  
tackle realistic problems where the high-frequency radiation is due t o  the interaction o f  an 
arbitrarily shaped rupture front with barriers and asperities of general geometry. The 
complete solution of this problem by means of asymptotic methods requires that the 
canonical solutions for the interaction of  a rupture front and stress and strength hetero- 
geneities be solved. Some of the results of this work will be reported in the future (Bernard 
& Madariaga 1984). 
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Appendix 

The canonical problems for the radiation of stopping phases from a sudden change in the 
rupture velocity of a plane or antiplane crack were solved exactly b y  Madariaga (1977) using 
the techniques developed by Kostrov ( 1  975);  and, independently, by  Achenbach & Harris 
(1 978)  using Freund's (1972) method. Although their results were expressed in closed form, 
they are quite complicated t o  calculate because of  the presence of a function derived from 
Rayleigh's denominator. An examination of these solutions shows that the  complications 
arise because of the presence of  healing waves that are radiated into the crack when the 
rupture front accelerates or decelerates. These stopping phases include Rayleigh waves 
which are the source of  the complexity. Rose (1976) showed that one could get a very good 
approximation if Rayleigh's quotient was replaced by a simpler expression. We have found 
that this is equivalent t o  assuming that once the crack stops a simple healing wave of velocity 
c close to 0 propagates inside the crack. After the passage of this healing wave slip ceases 
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completely. This is actually thc approximation (1 0) adopted by Soatwright ( I  98 I ), 
Archuleta & Hartzell (1 98 1 ) and Campillo ( 1983) in their quasi-dynamic approximations 
of the circular shear crack. Thus the approximation (10) has the double interest that it 
simplifies the canonical problem, and that it corresponds to  the approximate models used t o  
calculate numerical accclcrograms by the above mentioned authors. 

Let us consider the antiplane problem. An infinite screw dislocation line parallel t o  4,. 
appears on the z = 0 plane at  x = t .  The slip velocity produced by this dislocation is: 

AU(x, z ,  t )  = F(t) F(x - () 6 , .  ('41) 

The displacement field radiated by it is: 

where r ,  0 are radial coordinates of (x, z )  with respect to ( t ,  0) a n d  fi  is the shear wavc 
velocity . 

If the slip velocity for this dislocation line is changed from 6 ( t )  into: 

where 

If =(' +L) (a ~~. t )  
u c  

we obtain the slip function ( 1  3 -  14) at  one point on the fault. The displacement a t  (r,  0 )  
is simply the convolution of (A3) with (A2). Consider now a continuous distribution of 
dislocations of time function (A3) distributed on O <  E<a.  In this case the slip velocity 
on  the  fault plane becomes: 

which is identical to  the approximations (13) and (14) for the slip velocity on a crack. 
The displacement field generated by  the dislocation distribution (A5) is: 

where the asterisk indicates convolution in time. The lower limit is left undefined on 
purpose since we are interested here in the radiation from the vicinity of a .  The convolution 
(A6) may be easily calculated in the frequency domain. Let U be the Fourier transform of  
(A6), then 
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For Go we use the high-frequency approximation to  the transform of (A?):  

P. Bernard arid R .  Madariaga 

Eo(x, 2,  w ;  t ; )  = ~ __ sin exp ( -iwr/p). 
2IrJ2rQ 

Reinserting (A8) and (A9) into (A7) we find: 

This integral may l x  evaluated at  higli frequencies noting that the dominant part of tlie 
radiation conies from the vicinity of t; = a. We then make tlie following approximations: 

(1) sin Or-”’ is evaluated a t  
where ro is the radial distance t o  the observer from tlie edge of the crack at  t; = a. Then 

= a, otherwise it is independent of  t;. (2) r = ro + (a -~ E)cos 6 

where: 

has to be evaluated as w + m. Integrating by parts we find. 

I =  _______-  
iw[ 1 - u /p  cos  61 

and,  finally, this integral is dominated by the singularity near $ = a .  Then (Copson 1967, 
p .  23). 

~- ~ 

U K  J i l v + j i  1 
I -  - -- - - - ~  ~ 

iw& J l / c  + 1/p cos 6 [ 1 - u/p  cos 61 

Inserting in (A1 1) we finally find: 

where: 

(A13) 

is a correction factor due t o  the finite healing velocity c. Inverting t o  the time domain we 
obtain the acceleration pulses: 

V U sin 6 
u(r, 9, t )  = --D(u, c) 6 (t  -- ro /@ - a/u). 

2 1 - u / ~ c o s 6 J 2 v p  
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Seismic radiatiori from a buried fault 17 

Note that when cos 19 > -. P/c tlie coefficient I1 becomes imaginary and tlie delta pulse 
in (A16) has to be Hilbert transformed. In this paper we take c = p  so that this situation 
does not arise. 

Using the same procedure for a plane crack one finds that SV-waves are given also by 
(A16) but with the radiation pattern sin 0 replaced by cos 26. For P-waves the time 
dependence is the same but the amplitude changes to: 

u sin 2 0  
S ( t  ~ ro/a-o/u) -__ v P2 

2 Cy2 
a(r, 19, t )  = - - D(u. c) 

I -~ u l a  cos I9 * 
In D (r, c) given by (A1 5) has to be teplaced by 01 

 at E
N

S B
IO

L
O

G
IE

 on M
ay 19, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/

