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S U M M A R Y  
Reflection tomography, the determination of velocity distribution and reflector position from 
reflection travel-time data, is a very non-linear inverse problem. Unlike in transmission 
tomography, ray paths have to be iteratively updated, because travel-time variations cannot 
be computed by integration of slowness along the original unperturbed ray paths. From a 
study of parameter sensitivity we conclude that in seismic reflection experiments the vertical 
variation of slowness inside layers is poorly resolved from travel-time data. For this reason, in 
each layer the slowness was modelled with functions varying only in the horizontal direction. 
A B-spline representation is adopted for lateral velocity heterogeneity and interfaces. These 
splines are local and well adapted for tomography because the spline parameters have a 
geometrical interpretation and they may be explicitly used as unknowns in the inverse 
problem. For each iteration, and for every source-receiver pair, two-point ray tracing was 
performed by paraxial ray tracing, and the inverse problem was solved by iterative 
least-squares. A priori data, necessary to stabilize the inverse problem, were introduced by a 
penalty function approach. This method is equivalent to using a priori convariance matrices, 
but it has a simpler physical interpretation and is faster to use. Damping was used to improve 
the convergence. The method was first tested in the inversion of synthetic data. These 
synthetic examples illustrate the limitations of reflection tomography: non-linearity effects, 
poor vertical resolution of the velocity, and decrease of the resolution with the ratio of 
maximum offset to interface depth. Finally, we inverted a data set from the Paris Basin. The 
inversion method reduces the residual norm to 6 ms, which is less than the expected error on 
the data. 
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1 INTRODUCTION 

Kinematical transmission tomography or travel-time inver- 
sion is commonly used by seismologists to study the 3-D 
heterogeneity of the lithosphere. The original method for 
modelling lateral velocity variations was proposed by Aki, 
Christofferson & Husebye (1977) who divided a horizontally 
layered medium into rectangular blocks, and then estimated 
a constant slowness perturbation for each block by inverting 
teleseismic travel times. This method has been refined and 
applied to many different data sets by a variety of authors 
(e.g. Thomson & Gubbins 1982; Nercessian, Hirn & 
Tarantola 1984). Another related seismological technique is 
the simultaneous inversion of earthquake location and 
crustal velocity structure from arrival-time data (Aki & Lee 
1976; Pavlis & Booker 1980; Spencer & Gubbins 1980; 
Thurber 1983). 

Recently, the kinematical tomography method of Aki et 
al. (1977) was adapted to reflection data by Bishop et al. 

* Present address: Laboratoire de Sismologie, Institut de Physique 
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(1985). The basic idea of reflection tomography is to use a 
large number of travel times for different reflected waves 
and source-receiver locations in order to determine the 
sub-surface velocity structure and reflector locations. 
Several authors have studied linearized reflection tomog- 
raphy even in 3-D. Most of the work done thus far in 3-D 
media assumes, however, constant velocity between 
interfaces (Chiu et al. 1986; Chiu & Stewart 1987), a 
hypothesis that simplifies ray tracing substantially. The 
assumption of lateral homogeneity of model layers is not 
very appropriate in areas with complex geological 
structures. In order to obtain these variations, Stork & 
Clayton (1985) and Bording et al. (1987) proposed to use 
tomography to obtain the velocity model and depth- 
migration in order to position the reflectors. This method 
can resolve small-scale velocity variations, but large-scale 
variations are strongly coupled with reflector position (Stork 
& Clayton 1986). The alternative approach is, of course, to 
use tomography to invert reflector positions as well as 
velocity distribution simultaneously (Bishop et al. 1985; 
Stork & Clayton 1986). 

There are three major difficulties with reflection tomo- 
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graphy. First, inversion is very non-linear because small 
changes on the interface position produce large changes 
in ray trajectories. Thus, all source-receiver rays have to be 
retraced at each iteration of the inverse problem. Second, 
the model parameterization is crucial in order to obtain 
analytical expressions for the FrCchet differentials needed at 
each step in the inversion. Using boxes, for instance, 
requires smoothing the model between iterations in order to 
perform ray tracing in the updated model. It is better to 
describe velocity perturbations using splines that are 
sufficiently smooth and continuous so that ray tracing may 
be updated without smoothing. The last critical problem is 
the introduction of a priori information in the inverse 
problem. This additional information is needed because 
reflection tomography is intrinsically unstable due to poor 
resolution of velocity and interfaces near the borders of the 
model. Any tomographic inversion method has to make sure 
that error propagation from the borders of the model into 
the well-resolved areas is kept at a minimum level. 

In this article we propose a method that takes into 
account the difficulties mentioned above and yet requires a 
reasonable computer time. A synthetic example is presented 
showing some of the problems that can be encountered in 
tomographic inversion: poor resolution, edge effects, 
non-linearity, etc. In order to stabilize the inverse problem, 
we include a priori information by a penalty function 
approach, and use a damping factor to accelerate 
convergence. 

V .  Farra and R.  Madariaga 

2 TRAVEL TIMES 

The travel time along a ray path is expressed as the line 
integral : 

where s is the arc length along the ray and u is the slowness 

(reciprocal of velocity). This relation is non-linear because 
the ray path x(s) depends on the slowness. To obtain an 
improved model of the medium we have to perturb the 
reference medium in order to minimize the difference 
between measured and computed travel times. The 
reference model is specified by giving the slowness uo within 
each layer and the reflector depths zh. Let us perturb this 
reference medium, 
u(x )  = uo(x) + 6u(x)  

z'(x) = z&) + 6z'(x), 

where 6u(x) is the slowness perturbation and 6zi(x) is the 
perturbation of the interface i. The corresponding first-order 
perturbation of the travel time is: 

&(x) ds + Ap: 6z i (x i ) ,  
interfaces 

(3) 

where xi is the horizontal coordinate of the incidence point 
of the ray on the interface i ,  and Ap: = ( p i  -a,) ,  where pi 
and pi are the slowness vectors of the incident and the 
reflected/transmitted ray, respectively. 

3 R A Y  TRACING 

In order to use relations (1) and (3), the rays between every 
source-receiver pair have to be traced before computing the 
travel time and its partial derivatives. Paraxial ray theory 
(CBrvenq 1985; Farra & Madariaga 1987) can be used to 
solve this problem. However, this theory supposes that the 
wavefront has continuous second-order derivatives, so that 
it is necessary to find all the ray branches before doing 
two-point ray tracing. 

Let us assume that we have already traced a ray in the 
medium and solved the paraxial ray equations in the 
ray-centered coordinates system introduced by Popov (1969) 
and described by CBrvenq (1985). 'The correction A 4  to the 
initial ray angle @ (Fig. 1) is estimated using the element 

z 
Figure 1. Geometry of the two-point ray-tracing problem. A ray leaving the source S with the angle $I is traced in the medium. The correction 
of the take-off angle A@ can be estimated to first order from the distance Ax from the receptor R to the endpoint of the ray Me. 
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Non-linear reflection tomography 137 

Q, of the dynamic ray-tracing matrix (Cervenf 1985). This 
matrix element is defined as: 

where uo is the slowness at the source location and q is one 
of the ray-centred coordinates (s, 4 ) .  

Let us denote Ax, the horizontal distance between the 
receiver and the endpoint of the ray M,,se the arc length 
between the source and Me, and Ge the emergence angle of 
the ray (Fig. 1). To first order, 

(4) 

where Aq(s,) is the perturbation in position between the 
reference ray and the paraxial ray connecting the source and 
the receiver (Fig. 1). Moreover, from the definition of Q, 

These two relations allow us to estimate A @ :  

which can be used to trace a new ray. Sophisticated 
numerical techniques (Fletcher 1980) may be used to 
improve the convergence towards the solution. For typical 
seismic reflection distances (2 km), fewer than five iterations 
are necessary to reach a receiver with an accuracy of 1 m. 

4 PARAMETERIZATION OF THE MODEL 

The slowness and reflector depth model must have 
continuous first- and second-order derivatives for the 
ray-tracing procedure to work. For this reason, cubic 
B-splines (de Boor 1978) were used to expand slowness and 
reflector depths. The use of B-splines accelerates the 
computation of the travel-time partial derivatives, because 
most of the splines are equal to zero except for those that 
have knots in the neighbourhood of the ray. 

In order to obtain the B-spline interpolation of a function 
f ( x ) ,  we first choose a sequence of m appropriate knot 
points G = (tl, t2, . . . , tm). The density of knot points in a 
given segment of x should reflect the desired amount of 
smoothness of the function f ( x )  (de Boor 1978). The knots 
should be closer where the function varies rapidly, and more 
sparse where it is smoother. 

Let us introduce the interpolated function: 
n 

/ = I  
g(x) = c P,B,(x) with n = rn - 4, (7) 

where P, are the spline coefficients. If we take a point x in 
some interval [ti, ti+l], the sum in (7) contains only four 
terms (i - 3 ) s j s i  because of the locality properties of 
B-splines. 

Once the knot sequence I is defined, the coefficients Pi 
have to be calculated so that g ( x )  is a ‘good’ interpolation of 
the function f ( x ) .  In our computations we adopted the 
following values for P, (de Boor 1978, Chap. IX): 

with xi = (ti+l + ti+, + ~ ~ + ~ ) / 3 .  With the coefficients P, 
chosen in this form, the interpolating function g ( x )  does not 
agree with the function f ( x )  at the abscissa x i ,  but is it is 
very close to it if the sampling is adequate. This 
interpolation does not produce the oscillations, which 
appear when one tries to force the interpolating function to 
fit the model function at the data points. 

B-spline representation of the slowness 

We use a 2-0 B-spline expansion of the slowness within 
each layer. 

u(x, 2) = c. CjBi(X)B,(Z) (9) 

The slowness function is assumed to be sampled at 
regularly spaced points. The corresponding B-splines, which 
are called cardinal splines (de Boor 1978), are identical 
under translation. They have the interesting property that 
only four cubic polynomials, whose coefficients are 
computed once the ray is in the layer, are required to 
interpolate velocity and its derivatives. 

B-spline representation of the interfaces 

Paraxial ray theory requires the explicit representation of all 
the interfaces where the velocity or its first derivative are 
discontinuous. Consequently, we use a B-spline repre- 
sentation for the reflector depths: 

n 

2 ( x )  = c p,B,(x) 
j =  1 

Because we want to model complicated structures, general 
non-cardinal B-splines with unevenly distributed knots on 
the interfaces were used. One of the most important 
properties of B-splines is that 

min P, I z ’ (x )  s m a x  4, j E {i - 3, i}, for x E [t,, T~+~]. 

That is, the interface depth is bounded by the value of the 
four nearmost coefficients P,. Thus, the interfaces are 
bounded by the spline coefficients. This property suggests a 
very useful technique for the computation of the intersection 
of rays with interfaces: around every interface segment we 
can construct a box whose vertical edges are along the 
straight lines x = ti, x = ti+l, and whose horizontal edges 
are along the straight lines z =minP, and z =maxP,, with 
j E {i - 3 ,  i } .  It is also possible to construct a hierarchy of 
boxes which includes several basis boxes and even a global 
box which includes the whole interface and whose edges are 
z = m i n C ,  z =maxP,, j E  (1, n}, and the vertical sides of 
the model. Testing the intersection of the ray with these 
edges is much faster than testing the intersection with the 
true interface, because it does not require computation of 
B-spline values at each step of integration of the ray 
equations. 

5 INVERSE PROBLEM 
Classical inverse approach 
The problem to be solved is to find the set of parameters m 
that minimizes the function: 

s(m) = IITobs - T(m)112, (11) 
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138 V. Farra and R. Madariaga 

where Tobs are the observed travel times and m is the set of 
spline coefficients e, of the velocity distribution (9), and 4. 
of the interfaces (10). This non-linear least-squares problem 
is solved iteratively by the Gauss-Newton method, which 
linearizes expression (11) about the current model m, to 
obtain the linear least-squares problem: 

= IlY - WI2, (12) 
where y is an n-vector containing the time residuals 
A T  = Tabs - T(m,), x is an m-vector containing the 
parameters perturbations m - m,, and A is an n X m matrix 
containing the partial derivatives of travel time with respect 
to parameters. 

The least-squares solution of the linearized problem (12) 
is: 

x = ( A ~ A ) - ' A ~ ~ .  (13) 
Because of the poor resolution of the velocity distribution 
with depth in the tomographic method, the matrix ATA is 
ill-conditioned and the inversion is unstable. In order to 
study the properties of the linearized inverse problem (12), 
we use the singular-value decomposition approach (Jackson 
1972). Following Lanczos (1961), an (n x m) matrix A with 
rank p < min (n, m )  can be factored as: 

A = UAVT, (14) 

where U contains the n eigenvectors of (AAT) and V 
contains the rn eigenvectors of (ATA). A is an (n x m )  
semi-diagonal matrix partitioned as: 

where /& is a (p x p )  diagonal matrix that contains the 
non-zero singular values li of A arranged in order of 
decreasing size. The decomposition of A is then: 

A = U,/&Vz (15) 
where Up and V, consist of the p columns of U and V, 
respectively. Introducing the partition V = [V,, Vo], the 
general solution of the linearized inverse problem can be 
written (Menke 1984): 

x = A-gy + Voa,, (16) 
where A-B = V,A;'U; is the generalized inverse of A. 
Vector a,, can be chosen arbitrarily to fit some preconceived 
properties of the solution. 

In order to use A-g, one must be able to identify the 
number p of non-zero singular values. If some of the 
eigenvalues are small, errors in the data could cause strong 
fluctuations in the solution. One way of suppressing these 
undesirable effects is to use the damped least-squares 
approach (Levenberg 1944), which consists in adding a 
positive constant 0; to the main diagonal of the matrix ATA, 
so that the solution (13) is modified to: 

x = (ATA + O:I)-'ATy. (17) 
Writing A in terms of U, A and V, we find: 

x = V(A2 + 8~l)p'AUTy. 

Thus, the damping factor restricts the solution to the vector 
space generated by the singular values greater than (3,. This 

projection can be unphysical if the 'null space' corresponds 
to parameter combinations without clear physical meaning. 
Tarantola & Valette (1982) proposed a stochastic inverse 
that explicitly includes a priori information in the inverse 
problem through covariance matrices C, and CM of the data 
and parameters. The corresponding least-squares solution is: 

where x, is the a priori solution of the problem. The 
damped least-squares solution (17) corresponds to choosing 
q = O ,  C,=l  and C i 1  = O i l .  

Penalty function approach 

A priori covariance matrices are not always easy to define; 
for this reason we preferred to use another technique to 
introduce a priori information. Generally, one wants the 
model parameters to approximately verify a set of 
non-linear functional relations of the form &(m) = 4. For 
example, f ,  may represent the slope of an interface, and d,, 
the value that we would like this slope to take. Let us 
redefine the cost function (11) as: 

(19) s(m) = 0,' I I T ~ ~ ~  - T(~ ) I I '  + o2 1 1 %  - f,(m)I12, 
where a, is the estimated uncertainty of the data and 0 is 
the weight of the a priori information compared with that 
brought by the data. In finite-element practice, 0 is called a 
penalty parameter. Linearizing the function T(m) and fo(m) 
around the current model m,, we obtain: 

E ( x )  = OD2 IIY - Axil2 + e2 llY0 - Adrl12? 

Yo = a, - &(mJ 

(20) 

where 

and A, is a matrix containing the partial derivatives of the 
function fo with respect to the model parameters. E ( x )  may 
be written as: 

E(x)  = llYt - Atx1I2, (21) 

where 

The solution of the corresponding least-squares problem is 

x = (A;rAt)-'&TYt, 

x = (u,'ATA + 02&T&)-'(~,2ATy + 0'bTy0). 

which can be written explicitly as: 

(23) 
Comparing this expression with (18), it is easy to see that 
the penalty-function approach is equivalent to using an a 
priori model covariance matrix given by its inverse 
CG1 = 02bT&. The a priori solution is replaced by the 
vector x, = (A,TA,)-g\oTyo which acts as an attractor for the 
solution x. A further refinement of the penalty-function 
method would be to assign separate weights 0, to each 
constraint; this may be done replacing 0 in (22) by a 
diagonal matrix. In (19) we also assumed that the standard 
deviations of the observations were uniform; this restriction 
may be relaxed replacing U, in (22) by a diagonal matrix. 
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Non-linear reflection tomography 139 

The penalty-function approach is very economical because 
the vector x, and the matrix CM do not have to be explicitly 
computed. All that is needed is to construct matrix A, as 
shown in (21) by adding rows to the Jacobian matrix A, and 
to solve the corresponding least-squares problem by (23). 

Iterations 
The solution x in (23) is obtained by linearization of the 
problem. Because of the strong non-linearity of reflection 
.tomography, this procedure has to be used iteratively. First, 
rays are traced through the current model m,; then, the 
mismatch between the computed travel times and the data is 
used to update the model. Between two iterations, the cost 
function S should decrease. If this is not the case, a damping 
factor can be used to improve the convergence towards the 
solution. The introduction of a damping coefficient 8, 
changes (23) to 

x =  (aL2ATA + 02hT& + O ~ l ) - ' ( c ~ ~ ~ A ~ y  + 02A;fyo). (24) 

In the limit when 8, is very large, (24) reduces to 

1 -- 

where y = -(oG2ATy + 02pbTyo) is the gradient of the cost 
function calculated at m,. By increasing the damping factor, 
one forces the search direction to be closer to the 
cost-function gradient so that the cost function decreases 
Iteration is stopped when the cost function does not 
decrease significantly any more. 

i posteriori covariance matrix 

The statistical formalism implied in the least-squares 
tpproach (Tarantola & Valette 1982) yields an estimate of 
he model confidence interval. This estimate may be 
>btained by calculating the covariance C, of (rn -A),  
where m and A are the unknown solution and its estimation, 
respectively. Following Tarantola (1987), 

c,= (A~CG'A + c;l)-l. 
The corresponding expression in terms of matrix A, is 

C, = (AFA,)-', (26) 

or in terms of its singular-value decomposition: 

C, = WFAC2W,. 

6 ANALYSIS OF THE RESOLUTION OF 
THE INVERS,E PROBLEM 

Because of the complexity of geological media, we need a 
large number of parameters to obtain a good representation 
of the seismic velocity distribution. Some of these 
parameters may have little or no influence on the given set 
of observed travel-time data; keeping them as unknowns in 
the inverse problem destabilizes the solution. The 
knowledge of the number and the nature of the degrees of 
freedom which can be attributed to a geological medium is 
very important if one does not want to be confronted with 
an intractable numerical problem. Before presenting 

inversion results, we will study the sensitivity of travel times 
to parameter perturbation by analysing the singular values 
and the associated eigenvectors of matrix A for a simple 
model. 

The velocity model used as the reference medium to 
invert travel times of reflection data consists of two 
homogeneous layers with velocities of 2 and 3 km s-', 
respectively. The reflector is horizontal and is at 2 km depth. 
The experimental set up is as follows. Over a distance of 
5 km, 25 sources were regularly spaced at 200 m intervals. 
For each source, 10 receivers were regularly distributed 
every 200 m, the first one being located 200 m to the right of 
the source. 

The slowness perturbation is defined by the 2-D B-spline 
series: 

6u(x, z )  = c~~~U,iB,(x)B~(z) 

with nodes distributed evenly at every 1 km in x and every 
0.67km along the vertical axis. Thus, we have 48 
parameters to represent the slowness perturbation. 

The reflector depth perturbation is defined by the 
B-spline interpolation: 

with knot points distributed every kilometre. Thus, we have 
eight parameters to represent the perturbation of the 
reflector position. 

For each source-receiver pair, we computed the partial 
derivatives of the travel time with respect to the parameters 
ai, and 4, whose units are s km-' and km, respectively. 
Because the parameter perturbations are expected to be of 
the same order of magnitude, it was not useful to do a 
normalization (normalization would have been necessary 
had we used other units, such as m and s m-'). The singular 
values Aj of the Jacobian matrix and the corresponding 
eigenvectors v, of the parameter space define the parameter 
combinations which are well determined or not by the data. 
A perturbation proportional to v, will be well determined if 
the corresponding Aj  is large. The computed singular values 
spread over a large interval between 20 and the minimum 
resolution of the computer. The computational errors on 
travel times and partial derivatives are of the order of lop3. 
For this reason, the eigenvectors associated with singular 
values whose ratio with the largest singular value is less than 

will be poorly determined. Four eigenvectors, which 
are representative of this poorly determined space, are 
shown in Fig. 2. For each singular value, the upper figure 
represents the perturbed interface, and the lower figure 
represents the level lines of the slowness perturbation. The 
deviation Au between two level lines is indicated in the 
figure in units of skm-'. These parameter combinations, 
which cannot be obtained by inversion, correspond to 
slowness perturbation varying with depth. When the 
reference medium has homogeneous layers, these vectors 
have no component along the interface parameters and the 
vertical average of the slowness perturbation is zero. 

The parameter combinations which are well determined 
are the lateral variations of slowness and the shape of the 
interfaces. The largest singular values correspond to 
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0 .  x ( k m )  5 .  0 .  x ( k m )  ti. 

3. L 
- 5 .  

0 .  
VP = 0 . 8 7  10 

3 .- 
VP = 0 . 8 7  lo-'' 

o * ~ F q  
E 
1 

N 
d 

3. 

DU = 0 . 0 0 4  

VP = 0 4 2 1 0 - 4  

0"F-I 

3. 
DU = 0 . 0 4 0  

Figure 2. Study of resolution on a test example: geometry of eigenvectors corresponding to the four small singular values of the Jacobian 
matrix of linearized tomography. For each eigenvalue we present two figures: the upper one represents the shape of the interface perturbation 
of the associated eigenvector; the lower one shows the level lines of the slowness perturbation. DU gives the difference between two level 
lines. These poorly resolved eigenvectors consists mainly of vertical oscillations of velocity perturbation in the layer. 

parameter combinations (Fig. 3) which produce constructive 
effects on travel-time perturbations, as Stork & Clayton 
(1986) observed. The parameter combinations whose 
travel-time effects interfere destructively correspond to 
smaller singular values (Fig. 4). These remarks lead us to 
replace the slowness parameterization by another one that 
depends only on x: 

Su(x) = c cYjUip,(X). (27) 

In this way, we introduce the a priori information that 
vertical velocity variations within a layer cannot be resolved 
from travel times of a reflection profile. 

7 A SYNTHETIC EXAMPLE 

From a large number of synthetic examples we chose the 
three-layer model shown in Fig. 5(a), because it illustrates 

most of the problems that appear in non-linear tomography. 
In the first layer, the velocity has the following form: 

~ ( x ,  z) = 1.8 + 0.72 - 0.2 exp - [ ( x  - 2)*/2]. 

The two other layers have constant velocities of 4.5 and 
5 km s-l, respectively. The second layer is pinched out to 
the right. 

The distance between successive sources is 200m. For 
each source, 10 receivers were regularly distributed along a 
2km line, the source being located at the left end of the 
cable. The arrival times of the three primary reflections are 
shown in Fig. 6. Each line connects travel times computed 
for one source. The lateral velocity variation of the first 
layer and the presence of the pinch out in layer 2 are clearly 
seen in the data. 

We inverted these synthetic data, starting from the plane 
layered model shown in Fig. 5(b). In each layer, the 
slowness and the interface depth perturbations were 
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0 .  x(km)  8 .  

0 .  
VP = 8 - 2 0  10"' 

3 .- 
DU = 0.100 

0. 5 *  

O * - I  3. VP = 1 . 6 7  10'. 

O ' P  3. DU = 0 . 1 0 0  

Figure 3. Study of resolution on a test example: geometry of eigenvectors corresponding to the four largest singular values of the Jacobian 
matrix. The representation is the same as that in Fig. 2. These eigenvectors correspond to lateral variations of velocity and interface geometry 
which have constructive effects on the travel times. These are the best resolved features in the inversion. 

interpolated by B-splines with nodes regularly distributed 
every kilometre. Two sorts of a priori information were 
added to stabilize the inverse problem. Because travel-time 
data are scarce near the edges of the model, we limited the 
size of second derivatives of slowness and reflector depth by 
means of the penalty-function approach proposed in Section 
5. The lack of data on the right-hand side of the model 
requires that we force the first and second interfaces to be 
sealed along a certain distance: 

z'(x) + 6 Z Z ( X )  2 z ' ( x )  + 6z'(x), 

where z ' (x ) ,  z2(x) ,  Szl(x) and 6z2(x) are the interface 
depths and their perturbations, respectively. This constraint 
can be written in the linearized form: 

k = Yo, 

where yo contains the terms (z2(x) - z ' ( x ) )  calculated at 
several abscissae and A, contains the corresponding B-spline 

values. The matrix A, is sparse because of the local B-spline 
representation and is very easily computed. The penalty 
coefficient 8 was chosen so that the condition number of the 
matrix that needs to be inverted in (23) was smaller than 

The following procedure was used for the inversion. We 
began by inverting the first layer with the first reflection data 
set. When the corresponding norm of the residues was 
smaller than the expected data error, we began to invert the 
second layer and so on, so that the inversion gradually 
became global. At each iteration, the parameters of the 
upper layers were reconsidered in the inversion, as well as 
the corresponding travel-time data set. During the inversion 
of the third layer, coupled oscillations appeared because the 
offsets were not large enough to separate slowness and 
interface effects. In order to decrease the condition number, 
we used a smaller set of nodes to represent the last 
interface. Four intermediate stages of the iterative inversion 
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Figure 4. Study of resolution on a test example: geometry of eigenvectors corresponding to lateral variations with destructive travel-time 
effects. The corresponding singular values are much smaller than those in Fig. 3, and the features are less well resolved. 

are shown in Fig. 7. In the last iteration the norm of the 
residues was reduced to 0.45 ms, which is smaller than the 
numerical error in the computation of travel times. The 
reflector depths obtained by inversion are systematically 
deeper than in the true model because of the neglect of the 
vertical-velocity gradient. The travel-time residuals are 
smaller in the right-hand side of the model because the rays 
are closer to the vertical axis, so that they are less sensitive 
to the vertical gradient. For the same reason, we recovered 
the correct value of the,velocity in the right-hand side of the 
medium. On the left-hand side, the neglect of the velocity 
gradient leads to poor velocity resolution in the deeper 
layers. 

8 A FIELD EXAMPLE FROM THE PARIS 
BASIN 

The section under study contains Mesozoic terrains and 
mostly Cretaceous chalk above 700m depth. The arrival 

times of the reflections on four interfaces were picked on 
partially stacked sections for offsets 160, 480, 880, 1280 and 
1680 m. For the first two interfaces, only the first two offsets 
were available. Sources were spaced at 160 m intervals. The 
uncertainties on the arrival times were considered to be 
uncorrelated with a 10ms standard deviation. The 
travel-time data set is shown in Fig. 8. Each line connects 
the travel times corresponding to a common shot. Lateral 
variations are evident in the first layer and their effects are 
clearly seen on all the reflections. These velocity anomalies 
come from the shallower tertiary cover or from local 
dolomitization of the chalk. The exploration target is the 
fourth interface. 

We performed a travel-time inversion using a reference 
model consisting of four horizontal layers with constant 
velocities, equal to 2.8, 2, 4 and 5 km s-', respectively. The 
interfaces have corresponding depths of 1, 1.2, 1.5 and 
1.8 km. In each layer, the slowness and the interface depth 
are functions only of x and were interpolated by B-splines. 
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Figure 5. A synthetic example of tomography in a three-layered 
model. In the first layer, level lines of velocity are plotted. In layers 
2 and 3, velocities are constant and equal to 4.5 and 5 km s-', 
respectively. The lower figure shows the starting medium that was 
used to invert the synthetic data set. The three layers have constant 
velocities of 1.80, 3.33 and 5.5 km s-', respectively. 

The parameterization of the medium is displayed in Table 1. 
Constraints were added on the parameters near the sides 

of the model, where there was not enough information 
available from the seismic profile. We imposed the condition 
that the first derivative of the slowness and the reflector 
depth be small. In addition to these, we imposed constraints 
on the second derivative of the slowness of the second and 
the fourth layer in order to avoid coupled oscillations. This 
phenomenon appears when the data cannot resolve 
simultaneously the lateral variations of the slowness and the 
interfaces. 

The inverse problem was solved iteratively as in previous 
sections. The final inversion result obtained after 10 
iterations is displayed in Fig. 9. At the top of this figure we 
show the interfaces inverted from the travel-time data. One 

0 I .  2 .  3 .  4 .  5 .  6 .  7 

' . 5 ~  

I . 8 -  

n 

u 2 . 2 -  

Q) 
t 

3 . 2  2'g1 
Figure 6. Synthetic travel time-data computed for the three-layer 
model shown on Fig. S(a). Each line connects the travel times 
corresponding to a common source. Sources are spaced at 200m 
intervals. For each source, 10 receivers are regularly distributed 
every 200 m, the first one being located 200 m to the right of the 
source. 

can observe that there are practically no lateral variations of 
the interface depths, which is in agreement with the known 
structure of the Paris Basin. At the bottom, we show the 
velocities as a function of x obtained for the last iteration. 
These velocities show much larger lateral variations. The 
residual norm is 6ms, which is smaller than the estimated 
error of the travel-time data. The comparison of the 
inversion result with well data available in the neighbour- 
hood shows a systematic error in the depth of the fourth 
interface. The seismic depths are larger than the well-log 
depths. This observed depth anomaly is probably caused by 
velocity anisotropy of sub-surface layers. 

The a posteriori covariance function of the depth of the 
fourth interface (Fig. 10) shows a moderate standard 
deviation (30 m) and a short correlation length (6 km), 
which is in fact the length of each B-spline. This function is 
easily obtained from the covariance matrix of the B-spline 
parameters because of the linear relation connecting them 
with the interface depth. The local property of B-spline 
limits the correlation length of errors. This could be 
interesting if one wanted to estimate the uncertainty of the 
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Figure 7. Result of the inversion of the model shown in Fig. 6 .  For each iteration, the upper figure shows the interface depths and the lower 
figure shows the velocity as a function of distance x. The corresponding iterations are numbers 1,6,9 and 13, respectively. 

closure of an expected oil trap. Standard deviations are a strong negative correlation between the slowness and the 
important within a 3 km range from the vertical borders of reflector-depth determination. 
the model, especially for the velocity. The covariance The total CPU time for the 10 iterations necessary for the 
function between the reflector depths and the slowness in inversion of Pans Basin data set was 20 minutes on a 
the fourth layer shows a short correlation length (6 km) and Cray computer. The most time-consuming element of our 
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0 
DISTANCE (km) 

5 10 15 20 

1.4 1 
Figure 8. Travel-time data set for the tomographic inversion of the Paris Basin Structure. Travel times corresponding to four reflections are 
shown. Representation is the same as in Fig. 6. 

Table 1. Model parameterization: number of data points and program is ray tracing: about 80 per cent of the computing 
distance between knots. time was spent in solving the two-point ray-tracing 

Layer Slowness Interface 

1 23 1 .  8 4. 
2 8 4. 8 4. 
3 13 2. 13 2.  
4 13 2. 13 2.  

problems. O u r  program uses-the Runge-Kutta method for 
integrating the ray equations. This process is too 
time-consuming for routine applications. In order to  
accelerate ray tracing we are  presently considering the use 
of finite-element methods (Langan, Lerche & Cutler 1985; 

0 
D I S T A N C E  ( k  m) 
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u) 
\ 
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I 2 
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I 

Figure 9. Paris Basin model obtained after 10 iterations from the inversion of Paris Basin travel-time data shown in Fig. 8. In each layer, the 
velocity is modelled as a function of distance Y only (lower figure). The upper figure shows the depths of the four reflectors. 
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-2 

Figure 10. Paris Basin model: two point covariances of the fourth interface depth as a function of the abscissae x1 and x 2  of the points under 
consideration. 

Chapman 1985; Cerveng 1987; Virieux et al. 1988). Another The B-spline representation of the slowness and the 
way to improve the efficiency of the program is to use the interface depth is well adapted for ray tracing and 
information previously obtained by ray tracing from tomography because of the local property of the basis 
neighbouring sources. One can use the propagator matrix functions. B-splines provide also a fast computation method 
not only to perturb the receiver position, as we do in Section for travel-time derivatives. Finally, the local property limits 
3, but also to perturb the source position. This technique, the correlation length of the errors. 
sometimes called continuity, will be implemented in future Using this parameterization, the inverse problem was 
studies. 

The linear inversion consumes little time and any method 
that solves the least-squares problem (21) may be used. 
Using the singular-value decomposition method (SVD) was 
not found intractable for this application. For larger data 
sets, alternative methods, like SIRT (simultaneous iterative 
reconstruction techniques) or projection techniques (van der 
Sluis & van der Vorst 1987), could be used to accelerate the 
procedure. 

iteratively solved by a least-squares approach. Because of 
the inherent poor resolution of the travel-time data near the 
edges of the model and in order to avoid interlayer 
oscillations we introduced a priori information in the form 
of penalty functions. This technique that is frequently used 
in non-linear finite element modelling is very practical and 
easy to use. The functional relations that we impose on the 
model are multiplied by a penalty coefficient and added 
directly to the cost function. When the problem is 
linearized, these penalty functions appear as additional lines 
in the Jacobian matrix of the inverse problem. This method, 
like any other linear inverse, can be cast in the form of a 9 CONCLUSION 

We proposed an iterative non-linear inversion technique for stochastic inverse; in fact, we can identify the corresponding 
reflection tomography. A sensitivity study led us to propose a priori covariance matrix and a priori solution of the 
a suitable parameterization for this problem: in each layer, stochastic inverse. For the tomographic problem, where a 
the slowness and the interface depth were modelled with priori information is naturally introduced in the form of 
functions that vary only in the horizontal direction. This non-linear functions of the parameters, the penalty-function 
parameterization is adopted because seismic reflection approach is easier and faster to implement, and it has a 
travel-time data have little information on the vertical simple geometrical interpretation. A priori data may not be 
variations of slowness. For an adequate ratio of the sufficient to accelerate convergence of the non-linear inverse 
maximum offset to the interface depth, it is possible to problem towards a minimum. A damping factor that forces 
separate lateral variations of the slowness and the interface the search direction to be close to the direction of maximum 
depth, but the poor vertical resolution of slowness may descent turns out to be a very efficient means of making the 
produce a systematic error on the location of interfaces. cost function diminish. 
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A synthetic example presented in this paper shows the 
limitations of reflection tomography. The  most important 
limitations are poor vertical resolution of the velocity and 
decrease of resolution with the ratio of maximum offset t o  
interface depth. In addition, poor vertical resolution 
associated with the non-linearity of the inverse problem can 
introduce errors that are  greater than the computed errors 
obtained in the linear approximation. 

As an example of the use of real data, the travel times of 
four reflections picked on seismic profiles run on the Paris 
Basin, were inverted using the techniques proposed in this 
paper. The minimum norm of the residues obtained after 
several iterations was about 6 ms, less than the predicted 
error of the reading of travel data. 
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