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Abstract. We propose a method for the non-linear inver- 
sion of the velocity field from reflection profiles. The inverse 
problem is separated into a linear and a nonlinear domain. 
Linearized inversion is applied to the retrieval of the short 
wavelength features of the velocity or impedance field. This 
problem has a huge number of degrees of freedom but it can be 
solved by an efficient asymptotic migration-inversion method. 
The low frequency part of the velocity field -- the background 
-- is inverted using a non-linear genetic algorithm applied to 
am objective functional defined in migrated data space. Com- 
puter time is significantly reduced using this objective func- 
tion instead of straightforward waveform fitting. We apply our 
method to the inversion of a 1-D background velocity model 
from a reflexdon profile of the North Sea. For this problem, we 
found that the genetic algorithm is more reliable and efficient 
than other velocity analysis methods. 

Introduction 

A fundamental problem facing seismic imaging is the deter- 
ruination of the background or reference velocity field. This 
is the long wavelength, smooth part of the seismic velocities. 
Prestack depth migration/inversion of seismic data can con- 
struct an accurate image of rather complicated structures, if an 
accurate background velocity model has been previously deter- 
rrdned. Although the theory of full prestack, depth migration 
is well known, the determination of the background velocity 
model is an area of active research (see, e.g., Taranto!a et al., 
1988; Landa et al., 1989). The main problem comes from the 
fact that the background velocity affects only 'the travel times 
and can not be retrieved in a reasonable time by iterative lin- 
earized inversion of waveforms. 

Several methods for the determination of background veloc- 
ity fields have been applied with varying degrees of success, 
e.g. CMP stacking velocity analysis and traveltime tomog- 
raphy. These approaches have a number of serious drawbacks 
and require extensive operator intervention. One of the most 
practical method is iterative migration velocity analysis (Yil- 
mas and Chambers, 1984; A1-Yahya, 1989), but this technique 
still requires human intervention at each iteration step. In or- 
der to make iterative migration automatic, Jin and Madariaga 
(!992) separated the inversion of the velocitymodel into a lin- 
ear and a non-linear part and proposed a two-step non-linear 
Monte-Carlo inversion method. They used a fast ray modeling 
technique for linearized inversion, and an objective functional 
defined in data space so that the random search method for 
the non-linear inversion of the 2D background velocity model 
was possible using a work-station. 
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Recently two alternatives to Monte Carlo inversion have 
been proposed for geophysical problems: Simulated annealing 
and genetic algorithms (GA). GA were well investigated by 
many authors using classical waveform fitting objective func- 
tions (see, e.g. Stoffa and Sen, 1991; Gallagher et al., 1991; 
Wilson, 1991 and Sambridge and Drijkoningen, 1992). The 
algorithm has not been applied, to our knowledge, to the non- 
linear inversion of seismic reflection profiles with large amounts 
of real data. In practice the waveform fitting methods pro- 
posed by the previous authors are too expensive because they 
require extensive forward modeling in order to evaluate the 
cost functionals. The purpose of this note is to improve our 
two-step inversion method using a GA for the non-linear part 
of the inversion. 

The Objective Functional 

The main question for background velocity estimation is how 
do we decide that a velocity model is better than another. A 
direct way would be to use the difference between observed 
and calculated waveforms, as used by Stoffa and Sen (1991) 
and Sambrigde and Drijkoningen (1992). However, since the 
velocity information is contained only in the traveltimes, the 
waveform misfit functional is not the most suitable for veloc- 

ity inversion. The reason is simple, waveform fitting requires 
extensive forward modeling. Computer time for the calcula- 
tion of synthetic seismograms make this approach utterly un- 
realistic, at least in present day computers. For this reason 
nonlinear inversion using a single waveform misfit objective 
functional is difficult to envisage in practica/situations. 

Actually, fitting the waveforms is not the only way to retrieve 
the background velocity information. Working directly with 
migrated data rather than with original data, we can avoid ex- 
pensive forward modeling. in fact, most practical background 
velocity determination methods (for exaraple, migration ve- 
locity analysis) are based on image gather analysis. In an 
image gather each trace represents a migrated image of the 
subsurface at the same horizontal position. The principle is 
that reflexdon events in an image gather should be horizon- 
tally aligned if the background velocity model is correct. 

Many criteria exist for measuring the horizontal alignment 
of the reflection events in an image gather. Here we use the 
one proposed by Jin and Madariaga (1992). We express the 
velocity field as the sum of a smooth background velocity field 
c and a small-scale (small characteristic wavelength) pertur- 
bation &. Using the current background velocity model, for 
every source st, we obtain a prestack depth-migrated image 
by linearized inversion of the surface data that we designate 
f(z,zl•,½). As shown by Lambar• et al. (1992) the imaged 
function f = -2&/c a is a scaled version 

For the non-linear inversion of the reference velocity, we de- 
fine the following objective function directly in depth-migrated 
image space: 
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here z is the surface location where we analyze the coherency 
of the models inverted from different shot gathers. J(c[z) is the 
sum over depth z and sources s• of the images obtained at the 
horizontal location z. If the velocity c was correct, the traces 
for different values of st should be horizontally aligned, and 
g(clz) would be at a maximum. As defined in (1), g is an œ• 
norm that can be easily calculated using the fast asymptotic 
prestack depth inversion method proposed by LainbarS et al. 
(1992). Other prestack inversion methods can probably be 
used without difficulty. In fact, our inversion is performed in 
two-steps: a linearized inversion-migration for the small scale 
velocity perturbations f using the current velocity model c; 
and a non-linear search for the model c using the objective 
functional J. 

The Genetic Algorithm 

The goal of the inversion method is to choose a smooth ve- 
locity model which maximizes the objective functional 
defined in (1). This goal can be achieved by many methods, for 
instance by Monte Carlo (MC), as used by Jin and Mad•iaga 
(ssa). 

For many optimization problems, genetic algorithms (GA) 
have been shown to be more ef•cient nonlinear optimization 
methods than strict MC (see the references in the Introduc- 
tion). Since our emphasis here is the application of GA, we 
briefly describe the particular implementation that we used 
and we refer the reader to previous publications on the sub- 
ject for the theory of GA. In a GA the model parameters 
are represented by simple binary strings. Initially a starting 
set of M models is randomly chosen and the value of the ob- 
jective functional J• is calculated for each of them, where 
is an index over the models of the starting set. A GA it- 
eration consists in three steps: reproduction, crossover and 
mutation. In the reproduction step the members of the cur- 
rent population are selected with a probability function P,(•). 
We followed the suggestion of Stoffa and Sen (1991) and used 
the Boltzmann distribution P,(J•) = Z -• exp(-&/T), where 
Z = •]]i exp(-J//T) is the partition function, and T is a param- 
eter that plays the role of temperature in statistical mechanics. 
The larger is T, the wider is the probability distribution 
In the crossover step a new generation of models is created 
from the parent population, by mixing, or cross-over of the 
bit strings from two parents. The cross-over of the low-order 
bits beyond a certain position is made with probability Pc. Fi- 
nally, in the mutation step we randomly perturb with small 
probability P,• the model parameters of a child model in or- 
der to introduce some diversity in the current population of 
models. The new generation of models is compared to the old 
one and those models are selected for the new generation with 
probability P• calculated as from the objective function J• as 
explained above. The result of the three steps is a new pop- 
ulation of models of the same size as the previous one. The 
iterative procedure is stopped after a few iterations in which 
the objective functional stops increasing. 

Application to a seismic profile from the North Sea 

We apply our non-linear inversion method to a marine re- 
flection profile from the Nord Sea that was previously studied 

by LainbarS et al (1992) and Jin and Madariaga (1992). These 
studies showed that the background velocity of the surveyed 
region had weak lateral variation, so that we can locally 
proximate the background model by a 1-D model in which 
background velocity depends only on depth. 

For the numerical test, we chose 24 common shot gathers of 
48 receivers each. One of the gathers is presented in Figure 
1. The complete migrated and inverted profiles were shown 
in Lambare et al. (1992). Sources and receivers are regularly 
distributed along the profile with a spacing of 50 m. Sampling 
rate is 4 ms and the record length is 4 s. The first and last 
offsets are 183 m and 2533 m, respectively. 

In order to parametrize the smooth background velocity 
model, we used cubic splines. We define the velocity model 
at 15 knots located at the surface, at 800 m and at 14 equidis- 
tant depths located every 200 m. The last nodal point is at 
3600 m. The velocity on the surface is fixed at 1800 m/s. This 
velocity can not be well determined by inversion. The model 
space is limited by hard bounds, so that velocities are searched 
only between 1600 m/s and 4000 m/s at all depths. 

We have a total of 15 velocity knots so that our space ha• 
15 degrees of freedom. Each unknown was coded with a 6 bit 
binary string, defining 64 possible velocity values in the range 
defined by the hard bounds. Every model is characterized by 
a 90 bit string, so that the total number of possible models 
(the statistical universe) is therefore of size 2 sø. By trial and 
error the "temperature" T of the Boltzman distribution was 
fixed at 0.1. 

In Figure 2, the performance of the GA is displayed for dif- 
ferent values of the free parameters P•, P,• and M. Each curve 
is an average over 50 separate trials with different random se- 
quences. The objective functions are normalized with respect 
to its maximum value in an experiment. Figure 2a shows the 
variation of objective function as a function of generation num- 
ber using 3 different crossover probabilities P•. The mutation 
probabilities P,• for all these cases was fixed at 0.01. The result 
shows that the convergence rate with high crossover probabil- 
ity is faster. Figure 2b demonstrates the effect of the numbers 
of models M in the population on the convergence rate. We 
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Fig. 1. An example of the 24 shot gathers used for nonlinear 
velocity inversion. Linear dynamic correction is applied for 
display. 
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Fig. 2. (a): Comparison of convergence of GA with different 
crossover propabilities pc. pc = 0.95 for dashed line, pc = 0.5 for 
dotted line and p• = 0.3 for solid line. The mutation probability 
is 0.01 for all the cases. The number of models in a generation 
is 20. (b): Comparison of convergence of GA with different 
population sizes M. M = 20 for dashed line, M = 10 for dotted 
line and M = 50 for solid line. pc = 0.95, pro=0.01 are used 
in the comparison. To compaxe the performance of GA with 
MC, the objective function calculated by MC is depicted by 
fine solid line. 

have fixed P• = 0.95 and P,• = 0.01. The convergence rate with 
population sizes of 10, 20 and 50 models indicates that the 
convergence is fastest for the test with 20 models. This com- 
parison suggests that the performance is not always improved 
by increasing the size of the population. This reason is that 
the larger the population the longer it takes for information to 
transmit across the population. In order to compare the per- 
formance of MC with respect to GA, we present also in Figure 
2b the variation of the objective function as a function of the 
number of models. In our experiments the objective function 
for MC (thin solid line in Figure 2b) goes rarely above 0.9 
within !800 sampled models. The results show an improve- 
ment in performance for GA relative to MC for our problem. 

In order to see how the image gather changes with the im- 
provement in objective function, we show in Figure 3 the image 
gathers for four different velocity models. The four models are 
shown in Figure 4. We observe that the reflection events in 
the image gathers are visually well aligned foi values of Y = 0.6 
(Figure 3b). Conventional migration velocity analysis would 
stop at this point, yielding an inaccurate velocity model. We 
continue the exploration for better velocity models with even 
higher values of the objective function Y. As shown by Figure 
2b after 1800 iterations, strict Monte Carlo would find models 
with values of the objective function of the order of 0.9 (see 
Figure 2b). A typical model found by the MC method is shown 
in Figure 3c. This model is not entirely satisfactory because 
it does not model well the two reflectors at depths of 2.1 km 
and 2.2 km. With the GA algorithm, on the other hand, the 
objective function increases rapidly to values closer to Y = 1. 
The final model obtained with the GA is shown in Figure 3d. 
It successfully models these two reflectors. Thus our results 
indicate that the GA yields more accurate results than MC 
for a similar computer time. It is remarkable that the aspect 
of the image gathers changes dramatically with the value of 
the objective function. The amplitude of the deeper reflec- 
tors increases significantly as the value of objective function 
increases. The image gathers of Figure 3 show that the max- 
imum value of the objective function results not only from 
the alignment of events in the image gathers, but also from 
the increase in amplitude of the reflectors. The correspond- 
ing velocity models shown Figure 4 show that the algorithm 
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Fig. 3. Image gathers obtained using velocity models that 
give very different values of the objective function. Y = 0.3 for 
(a), Y - 0.6 for (b), o r -- 0.9 for (c) and Y - 1.0 for (d). 
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Fig. 4. Velocity models corresponding to the common image 
gathers in Figure 3. Fine solid line corresponding to Figure 
3a, dashed line to Figure 3b, dotted line to Figure 3c and thik 
solid line to Figure 3d. 

improves the velocities from top to bottom. This observation 
is in agreement with layer-stripping methods used in velocity 
estimation. The set of the best 100 models found by the GA, 
for which Y > 0.95, is shown in Figure 5 in order to give an 
idea of the resolution of the velocity model. We observe that 
resolution is very good at shallow depths but that it degrades 
rapid when the depth is greater than the maximum offset of 
data (2553 m). 
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Fig. 5. Plot of 100 velocity models for which the objective 
function is within 95 % of the maximum. This figure gives an 
ide• of the resolution of the inverse problem. 

Discussion aztd Conclusions 

We proposed a method for the inversion of background ve- 
locity based on a non-linear functional defined in migrated 
data space. Following our recent work on Monte Carlo meth- 
ods, we defined a cost functional that measures the alignment 
of reflection events in image gathers. Defining the objective 
function in this space is much more economical than using 
waveform fitting because it avoids the computation of numer- 
ous and expensive forward models. 

Following Jin and Madarisga (1992) we separated the inver- 
sion into two parts: linear migration-inversion for the small 
scale components of the velocity model and nonlinear inver- 
sion for the background velocity. The interest of this separa- 
tion is that nonlinear inversion can be formulated with a small 

number of parameters (15 in the example presented above). 
Ramdom search techniques become realistic in this case. Al- 
though the linear inversion still has a large number of param- 
eters, less time-consuming gradlent-methods can handle this 
part of the problem efficiently. A genetic algorithm similar to 
that of Stoffa and Sen (1991) and Sambridge and Drijkoningen 
(1992) was used for non-linear inversion. We showed that ge- 
netic algorithms are superior in performance to Monte-Carlo 
methods, even if our implementation of the GA is far from 
being optimal. 

We presented only an 1-D example but the method can well 
be applied to 2-D problems. In spite of the assumption that 
the background velocity model is l-D, our approach is still 
more powerful than stacking velocity analysis because: (1) We 
do not require that reflectors be fist. Because we use a 2~D 
prestack migration method, we can also handle dipping reflec- 
tors. In this way, the important drawback of CMP stacking, 
the so-called dip move out (DMO) problem, is avoided by the 
prestack depth processing. (2) Like migration velocity analy- 
sis, our method is model-based. The advantage of model-based 
method is that a priori information about the model can be 

included in the inversion. (3) Our method is automatic. The 
objective function can be computed and compared without 
human intervention at each iteration. (4) Our method gives 
more accurate result than migration velocity analysis because 
it uses numerical information rather than a visual observsti0n 
of reflector alignments. 
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