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Modeling Dynamic Rupture in a 3D Earthquake Fault Model 

by R. Madariaga, K. Olsen, and R. Archuleta 

Abstract We propose a fourth-order staggered-grid finite-difference method to 
study dynamic faulting in three dimensions. The method uses an implementation of 
the boundary conditions on the fault that allows the use of general friction models 
including slip weakening and rate dependence. Because the staggered-grid method 
defines stresses and particle velocities at different grid points, we preserve symmetry 
by implementing a two-grid-row "thick" fault zone. Slip is computed between points 
located at the borders of the fault zone, while the two components of shear traction 
on the fault are forced to be symmetric inside the fault zone. We study the properties 
of the numerical method comparing our simulations with well-known properties of 
seismic ruptures in 3D. Among the properties that are well modeled by our method 
are full elastic-wave interactions, frictional instability, rupture initiation from a finite 
initial patch, spontaneous rupture growth at subsonic and supersonic speeds, as well 
as healing by either stopping phases or rate-dependent friction. We use this method 
for simulating spontaneous rupture propagation along an arbitrarily loaded planar 
fault starting from a localized asperity on circular and rectangular faults. The shape 
of the rupture front is close to elliptical and is systematically elongated in the in- 
plane direction of traction drop. This elongation is due to the presence of a strong 
shear stress peak that moves ahead of the rupture in the in-plane direction. At high 
initial stresses the rupture front becomes unstable and jumps to super-shear speeds 
in the direction of in-plane shear. Another interesting effect is the development of 
relatively narrow rupture fronts due to the presence of rate-weakening friction. The 
solutions for the "thick fault" boundary conditions scale with the slip-weakening 
distance (Do) and are stable and reproducible for Do greater than about 4 in terms of 
2T,//.t × Ax. Finally, a comparison of scalar and vector boundary conditions for the 
friction shows that slip is dominant along the direction of the prestress, with the 
largest deviations in slip-rate direction occurring near the rupture front and the edges 
of the fault. 

Introduction 

Earthquake source dynamics provides key elements for 
the prediction of strong ground motion and to understand 
the physics of earthquake initiation, propagation, and heal- 
ing (see, e.g., Kostrov and Das, 1989; Scholz, 1989). Recent 
studies of rupture processes of selected earthquakes have 
shed new light on our understanding of seismic rupture prop- 
agation and stress relaxation and have identified the funda- 
mental role that friction plays in earthquakes (see, e.g., Wald 
and Heaton, 1994; Cohee and Beroza, 1994; Cotton and 
Campillo, 1995; Beroza and Mikumo, 1996; Ide and Takeo, 
1997). These models suggest a complexity of the rupture 
process that simple 2D or 3D models of rupture in a uni- 
formly loaded medium may not explain. 

An essential requirement to study dynamic faulting is 
an accurate and robust method for the numerical modeling 
of seismic sources. Two methods have been widely used for 
three-dimensional problems: one is the boundary integral 

equations (BIE) method pioneered by Das and Aki (1977) 
that has recently been improved by the removal of strong 
singularities (e.g., Cochard and Madariaga, 1994; Geubelle 
and Rice, 1995; Fukuyama and Madariaga, 1995, 1998; 
Bouchon and Streiff, 1997). These methods are excellent for 
the study of earthquake recurrence and the transition from 
transient accelerated fault creep to fully dynamic rupture 
propagation. However, at least in their current implementa- 
tions, they cannot be used in heterogeneous media. The fi- 
nite-difference (FD) method introduced by Madariaga 
(1976) and Andrews (1976) for the study of seismic ruptures 
and developed by numerous authors (e.g., Day, 1982a,b; Mi- 
yatake, 1992; Mikumo and Miyatake, 1995; Harris and Day, 
1993) can be used to study rupture propagation in hetero- 
geneous elastic media and are very efficient. The use of FD 
methods requires careful implementation of boundary con- 
ditions, in particular free surfaces, as shown by several au- 
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thors (see, e.g., Kosloff et al., 1990; Ohminato and Chouet, 
1997). Virieux and Madariaga (1982) encountered serious 
problems with the implementation of mixed boundary con- 
ditions (stress inside the rupture zone and slip outside it) in 
their staggered-grid velocity-stress FD method. There seem 
to be other implementations of the FD method that do not 
pose problems with boundary conditions (Day, 1982b, and 
personal comm., 1998). Recently, Olsen et al. (1995) and 
Olsen and Archuleta (1996) demonstrated the efficiency of 
the fourth-order formulation of the velocity-stress method 
(Levander, 1988) by computing wave propagation around a 
kinematically defined rupture in a large-scale 3D model. In 
this study, we extend their method in order to study dynamic 
rupture propagation on a planar shear fault embedded in a 
heterogeneous elastic half-space. For that purpose, we intro- 
duce a new way to impose mixed boundary conditions on a 
plane that coincides with one of the mesh planes. It would 
be possible in principle to simulate geometrically more com- 
plex ruptures, but problems of numerical instability are very 
likely to appear and are left for future work. 

Rupture propagation on a major earthquake fault is con- 
trolled by the properties of the friction law on the fault. Fric- 
tion controls the initiation, development of rupture, and the 
healing of faults. Laboratory experiments at low slip rates 
were analyzed by Dieterich (1978, 1979) and Ruina (1983), 
who proposed models of rate- and state-dependent friction, 
and by Ohnaka and Kuwahara (1990) and Ohnaka (1996), 
who concluded that their experiments could be explained 
with a simpler slip-weakening friction law. These two ap- 
proaches to friction can be reconciled remarking that both 
models contain a finite-length scale that controls the behav- 
ior of the rupture front. Slip-weakening friction laws were 
introduced in dynamic rupture modeling by Andrews (1976) 
for plane (2D) ruptures and by Day (1982b) for 3D fault 
models. Both authors showed that slip weakening regular- 
izes the numerical model of the rupture front, distributing 
stress and slip concentrations over a distance controlled by 
the length scale in the friction law. While these studies 
showed the need for a regularization mechanism, it was not 
clear how many grid points were needed to implement them 
in order to avoid using artificial damping or filtering of the 
slip-rate field. Proper regularization of the slip-rate field is 
essential to implement rate-dependent friction. Following 
Andrews (1976), we show that a relatively large number of 
points (=>4) is needed to resolve slip rate near the rupture 
front. 

In this article, we present and test the validity of our 
particular implementation of dynamic rupture propagation 
using the staggered-grid method. This implementation was 
used to compute spontaneous rupture propagation for the 
Landers earthquake by Olsen et aI. (1997). 

Elastic Shear Fault Model  

We study numerical solutions of the 3D elastic-wave 
equation: 

0 2 
p ~ u  = V-Q, (1) 

where u(x, t) is the displacement vector field, a function of 
both position x and time t. and p(x) is the density of the 
elastic medium. Associated with the displacement field u, 
we have the stress tensor a(x, t) defined by 

a = 2V .u I  + ¢t[(Vu) + (Vn)r], (2) 

where 2(x) and ¢t(x) are Lamr ' s  elastic constants. We can 
transform this system into a more symmetric velocity-stress 
formulation (Madariaga, 1976; Virieux and Madariaga, 
1982; Virieux, 1986): 

0 
m = • 

P o t  v V a + f 

0 
- -  ~ = 2 V . v I  
Ot 

+ #[(Vv) + (Vv)q + rh. (3) 

where v(x, t) is the particle velocity vector and fix) and rh(x) 
are the force and moment rate source distributions, respec- 
tively. 

Slip Boundary Conditions on the Fault 

For simplicity and due to present limitations of the nu- 
merical method, we assume that the fault is a flat horizontal 
plane perpendicular to the z axis in the elastic medium. Due 
to frictional instability, a rupture zone can spread along the 
fault; let F(t) be this rupture zone at time t. The kinematic 
inversion studies cited in the Introduction show that F(t) will 
usually be a collection of one or more rupture zones prop- 
agating along the fault. 

The main feature of a seismic rupture is that at any point 
x inside the rupture zone F(t), displacement and particle ve- 
locities are discontinuous. Let 

D(x,t) = u+(x+,t) - u - ( x  ,t) (4) 

be the slip vector across the fault, that is, the jump in dis- 
placement between the positive and the negative side of the 
fault. The notation x-- indicates a point immediately above 
or below the fault, and u -+ is the corresponding displace- 
ment. In the following, we assume that shear faults do not 
open up because of the strong normal stress component; that 
is, slip has only two components different from zero (i.e., D 
-- [Dr, Dy, 0]), but this restriction could be easily removed. 

Slip is associated through the solution of the wave equa- 
tion (3) to a change in the traction T = a • e z = [Ozx,•yz,O'zz] 
across the fault: 

AT(x,t) = A~2[D] for x E F(t). (5) 

where A~2[D] is a complex singular functional of D and its 
time and space derivatives. The operator A~ has to be com- 
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puted explicitly in the BIE methods (see, e.g., Geubelle and 
Rice, 1995; Fukuyama and Madariaga, 1995, 1997) but not 
in FD because in this case AT is obtained numerically. In 
fact, all we need is a numerical procedure that computes the 
stress change AT given the slip distribution D at earlier 
times. The boundary condition in (5) imposes no a priori 
conditions on the signs of  neither AT nor D, except that there 
should be no interpenetration of matter. 

Friction Laws 

The main assumption in seismic source dynamics is that 
traction across the fault is related to slip at the same point 
through a friction law that for our purposes can be expressed 
in the functional form 

T(D,I},0i) = Ttota I for x ~ F(t). (6) 

Friction T is a function of at least slip, but an increasing 
amount of  experimental evidence shows that it is also a func- 

tion of slip rate 1} and several state variables denoted by 0g, 
i = 1 . . .  N. For more details, see Dieterich (1978, 1979), 
Rice and Ruina (1983), but see also Ohnaka (1996) for an 
alternative point of  view. 

The traction that appears in friction laws is the total 
traction Ttota I o n  the fault that can be expressed as the sum 
of a preexisting field stress T°(x) and the stress change AT 
due to slip on the fault obtained from (5). The prestress is 
caused by tectonic load of the fault and will usually be a 
combination of purely tectonic loads due to internal plate 
deformation, plate motion, etc., and the residual stress field 
remaining from previous seismic events on the fault and its 
vicinity. In the rest of  this article, we assume that the pre- 
existing stress is known. 

Using (5), we can now explicitly formulate the friction 
law on the fault (6): 

T(D,I),0;) = T°(x) + AT(x,t) for x ~ F(t). (7) 

Friction as defined by (7) is clearly a vector. For the appro- 
priate study of a shear fault, we need to write (7) as a system 
of two equations. In spite of  the importance of friction for 
earthquake dynamics, it has rarely been studied for a fault 
that extends in two dimensions inside a 3D elastic medium. 
Here, following earlier work by Archuleta and Day (1980), 
Day (1982a,b), and Spudich (1992), we choose to use a very 
simple approach that will certainly have to be refined in the 
future, assuming that slip rate and traction are antiparallel; 
that is, 

T(D,I),0i) = - T(D,D,Oi)ev, (8) 

where e~ = o/nli nn is a unit vector in the direction of instan- 
taneous slip rate. With this assumption, the boundary con- 
dition reduces (7) to the special form 

--T(D,D,Oi)e v = T°(x) + AT(x,t) for x ~ F(t). (9) 

Figure 1 (left) shows the vector diagram implied by this 
equation. The only fixed vector in this diagram is the pre- 
stress that is known. Friction and slip rate are collinear but 
antiparallel. Stress change AT is in general neither collinear 
with prestress nor with friction. We know of no other con- 
dition that can be applied to this diagram. Dissipation is 
insured by the antiparallelism of friction and slip rate. In 
order to compare with previous results, we also implemented 
a simpler version of friction that we call the "scalar  bound- 
ary condition." We assume that slip is only allowed in the 
direction of the initial stress that is everywhere parallel to 
the x axis; that is, T°(x) = [~x(X), 0] and D(x, t) = [Dr(x , 
t), 0], 

ATx(X,t) = T(D,D,Oi) - ~ ( x )  for x ~ F(t). (10) 

This boundary condition, which may be graphically de- 
scribed as if the fault had " ra i l s"  aligned in the x direction, 
has been applied in many 3D source models starting with 
Madariaga (1976). 

Both boundary conditions (9) and (10) require a friction 
law that relates scalar traction T to slip, its derivatives, and 
possible state variables. Although any realistic friction law 
can be implemented with our method, we use a very simple 
one used by Cochard and Madariaga (1994). In this friction 
law, slip is zero until the total stress reaches a peak value 
(yield stress) that we denote with Tu. Once this stress has 
been reached, slip D starts to increase from zero and T(D) 
decreases linearly to zero as slip increases: 

T(D) = Tu 1 - fo r  

T(D) = 0 for D > D 0 .  

D < D o ,  

( 1 1 )  

where D O is a characteristic slip distance. This decrease of 
friction with increasing slip is usually called slip weakening 
in rock mechanics (Ida, 1972; Ohnaka, 1996). This friction 
law has been used in numerical simulations of  rupture (e.g., 
Andrews, 1976; Day, 1982b; Harris and Day, 1993). Slip 
weakening at small slip is absolutely necessary for the fric- 
tion law to be realizable, otherwise stress 6z becomes infinite 
at the rupture front, so that seismic ruptures would spread at 
either S, Rayleigh, or P-wave velocities until they stop. Of  
course, in numerical implementations, stress is never infinite 
so that rupture velocity is numerically limited. This is the 
so-called Irwin criterion described by Das and Aki (1977) 
and used by many authors since their publication. I n  the 
present work, we want to avoid numerical control of  the 
rupture front by all means, thus we have studied, in detail, 
the values of  Do that render the numerical method indepen- 
dent of  grid size. 

For large values of slip, on the other hand, slip rate 
becomes the dominant parameter as shown by Dieterich 
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Figure 1. Diagram showing the relation be- 
tween initial stress, slip rate, friction, and trac- 
tion change for the vector (left) and scalar 
(right) approximations to friction on the fault 
plane. In the last case, traction change corre- 
sponds to the usual definition of stress drop. 

(1978, 1979), Rice and Ruina (1983), and Ruina (1983). 
Although it is possible to use their friction laws in our nu- 
merical computations, this would require the integration of  
additional equations for the state variables. Because in this 
work we focus on the most essential aspects of rupture phe- 
nomenology in 3D, we will use a simplified friction that is 
a modification of  the friction law used by Carlson and 
Langer (1989). For large slip D, we assume that friction 

increases when slip rate/)  decreases according to the friction 
law 

T(D) = Ts Vo (12) 
Vo + /) '  

where V0 is a characteristic slip velocity and T s <- T, is the 
limit of friction when slip rate decreases to zero. This be- 
havior of  friction is called rate weakening and has been ob- 
served in many materials (e.g., Dieterich, 1978, 1979; Rice 
and Ruina, 1983). Its applicability to seismic ruptures is 
much more controversial, although there is plenty of  indirect 
evidence for its presence in seismic faulting. Heaton (1990) 
proposed that it was the cause of  short rise times. 

The actual friction law that we used in our simulations 
is a combination of  both slip and rate-weakening friction; as 

for any value of  D and/) ,  we choose the largest of  (11) or 
(12). Instead of  writing a complex expression, it is simpler 
to show the friction law graphically in Figure 2 in the form 
of a law where friction depends on the two state variables 
slip and slip rate. To sum up, in our simulations, rupture 
propagation is completely controlled by the complex non- 
linear interaction of  

1. the initial stress field T o in (7); 
2. the distribution of  yield frictional resistance T, in (11) 

and (12); and 
3. the parameters Do, Ts, and Vo of  the friction laws in (11) 

and (12). 

Numer ica l  Implemen ta t ion  

We solve the elastodynamic system of (3) in three di- 
mensions with the fourth-order staggered-grid finite-differ- 

I Friction 

Tu 

) 

• Ts ~Slip rate 

Figure 2. Slip- and slip-rate-dependent friction 
law. For values of stress less than the peak static fric- 
tion (T,), slip and slip rate are zero. Once slip begins, 
stress is a function of both slip and slip rate described 
by the friction surface T(D, D). Slip weakening is 
measured by Do; rate weakening, by V 0. The contin- 
uous curve shows the typical stress trajectory of a 
point of the fault. 

ence method developed by O!sen (1994). This is an explicit 
implementation of  the velocity-stress formulation in (3) us- 
ing a fourth-order approximation to spatial derivatives and 
a second-order approximation to temporal ones. In this 
scheme, illustrated in Figure 3, stress and velocities are de- 
fined at alternating half-integer time steps. At time t u = NAt, 
particle velocity v is computed from previously calculated 
stress components. At the next half-time step tN+ 1/2 = (N 
+ l/2)At, stress cr is updated using the velocity field com- 
puted at time tN. Thus, as time increases, velocities and 
stresses are computed at alternate times. Because stress and 
velocities are computed from (3) using centered fourth-order 
finite differences, the grid is also staggered in space as 
shown in Figure 3. 

The wave equation (3) is solved with homogeneous 
(i.e., v = 0, ai = 0) initial conditions. All the waves that 
propagate in our model are generated by the fault itself. The 
conditions on the fault are the most important element of  our 
numerical method and is explained in detail in the following 
section. 
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Figure 3. A cubic element of the 3D finite-differ- 
ence grid used in the dynamic modeling of a planar 
shear fault, cr and v depict the components of the 
stress tensor and particle velocity, respectively. 

Y 

Numerical Implementation of Boundary Conditions 

In the staggered grid used in our FD method, stresses 
and displacements cannot be computed at the same grid 
points, so that special care must be exerted in order to apply 
friction boundary conditions like (8). In earlier applications 
of  the staggered-grid FD method to study rupture propaga- 
tion (Virieux and Madariaga, 1982), the elastic medium was 
split in two by the fault plane, and symmetry about this plane 
was used. This led to a series of  annoying problems, par- 
ticularly near the crack tip where the boundary conditions 
could not be applied on the same grid plane ahead of  and 
behind the rupture front. The problem remained even when 
slip-weakening friction laws were used (unpublished re- 
suits). We have devised a new approach to the fault bound- 
ary conditions based on the use of a thick fault zone that 
spreads one-half grid cell to each side of  the fault axis. As 
illustrated in Figure 4, we consider a one-grid element-wide 
fault zone centered around the plane z = zsc.  It follows from 
the symmetries of  a plane shear fault in a homogeneous me- 
dium that v~ and Vy are antisymmetric about the fault plane 
z = zsc,  while v z is symmetric about this plane. Similarly, 
the stress components ~rzx and azy are symmetric about the 
fault plane z = zsc,  while the normal stress components ffii 

and the shear stress Cr~y are antisymmetric with respect to 
z = zsc.  The thick fault zone staggered-grid FD method 
preserves the symmetry of stresses and velocities across the 
fault. We have checked that this is valid both for the fourth- 
order FD method used here as well as for the second-order 
one, although the latter has much poorer resolution. 

In the practical implementation, we impose the rupture 
zone boundary conditions in such a way that the symmetry 
of stresses and velocities about the fault plane are preserved: 

z s c + l  

Fault zone 

z s c -  1 @ ,~, @ 

• Vx O v z  • ~zx [] o~z'Oxx 

zsc+l ~ ~ ~,, 

Fault zone 

zsc-1 ~ [] 

• v OVz • ~zy [] ~z'rryy 
Y 

Figure 4. Vertical cross sections along x (top) and 
y (bottom) of the thick fault zone used in our numer- 
ical method. Note that the fault zone has the width of 
one grid spacing. The horizontal component of par- 
ticle velocities v x and Vy as well as the normal (rrii) 
and shear-stress components Cr~y (not shown) are stag- 
gered at integer grid planes zsc (center of the fault), 
zsc + 1, and zsc - 1. The vertical-component par- 
ticle velocity v z and shear-stress components Crz~ and 
rrzy are staggered at half-integer grid points. 

1. If  the fault is slipping, that is, if 1} > 0, we impose the 
boundary condition (9) (vector friction) or (10) (scalar 
friction) on the two stress planes z = z s c  + 1/2Az. 

2. If  the fault is locked, that is, if 1) = 0, T(x, y, z sc )  < T u, 

the boundary condition is applied directly on the fault 
plane, that is, vx(x, y, z sc )  = Vy(X, y, z sc )  = 0, where v~, 
Vy are the particle velocity components along the fault. 

Thus, in order to preserve symmetry, stress and velocity 
boundary conditions are implemented differently. Because 
by construction vx(x, y, z sc )  and Vy(X, y, z sc )  are always 0, 
we compute the slip rate 1) between the walls of  the fault in 
the following way: 

O(x,  y, z sc )  = v(x, y, z sc  + Az) (13) 

- v(x, y, z s c  - Az). 

Finally, slip D is computed by straightforward numerical 
integration of the slip rate in (13). 

In order to understand the practical implementation of  
the friction law, consider the state at time t = tu. Velocity 
components are updated from the previous stress field at 
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time t = tN- 1/2, and slip rate on the fault is computed from 
(13) and integrated to obtain slip D. At the next half time 
step t = tN+ 1/2, stress a is computed everywhere. Then we 
apply the boundary conditions using the friction law defined 
by (11) and (12) and Figure 2. 

Dimensional Analysis 

In all our simulations, we used nondimensional vari- 
ables. This has the advantage of clearly showing how dif- 
ferent variables scale with stresses and distances. We choose 
the following dimensional variables: 

• Distances along the fault are measured in units of Ax, the 
grid interval. 

• Wave velocities are measured in units o f t ,  the shear-wave 
velocity. 

• Stress is measured in units of T,, the peak frictional resis- 
tance (yield stress) in the friction laws described in (11) 
and (12). 

All other dimensions are determined by these definitions. In 
particular, 

• Time is measured in units of At = HAx/ce, where ce is the 
P-wave velocity. H is the so-called CFL (Courant-Fried- 
rich-Lewy) parameter that controls stability of the numer- 
ical method. In our simulations, it was taken less than or 
equal to 0.43 in order to insure stability and good accuracy. 

• Displacement is measured in units of Tu/# × Ax. 
• Particle velocities are measured in units of Tu/tt × ft. 

Slip and slip rate are normalized by 2T, I/z × Ax and 2TJkt 
× r, respectively. The factor of 2 is not really necessary, 
but we decided to follow the tradition in seismological pub- 
lications. We also assume in the numerical computations that 
the P-wave velocity c~ is equal to x/3fl. Finally, Do, the slip- 
weakening distance in (11), is measured in units of slip (i.e., 
2T,/lz × Ax), and Vo, the rate-weakening parameter, is mea- 
sured in units of slip rate (i.e., 2Tu//z × ~ .  

It is important to remark that we used the more tradi- 
tional choice Ax, the grid interval, as unit of length. We 
preferred Ax to a physical length such as the slip-weakening 
distance Do as unit of displacement because, as discussed 
later, the relation between D o and distances along the fault 
is dependent on load and rupture history. 

Validation of  the Numerical  Method 

Testing a numerical method for the solution of 3D spon- 
taneous rupture along a planar fault is a difficult problem 
because the only known exact solutions for shear faults are 
the self-similar ruptures that start from a point (Kostrov, 
1964: Burridge and Willis, 1969) and expand at constant 
rupture velocity with either a circular or an elliptical shape. 
Such solutions are unfortunately incompatible with friction 
models that contain an intrinsic length scale, because rup- 
tures in such media can only start from a finite initial rupture 

patch. For this reason, we decided to validate the numerical 
method by studying a circular shear fault that breaks instan- 
taneously and does not propagate. This problem was ap- 
proximated by Brune (1970) and solved numerically assum- 
ing circular symmetry by Madariaga (1976). It is also 
representative for the initial asperity models discussed in the 
following section where we trigger rupture by a sudden 
"push"  within a finite circular patch. The friction law plays 
no role in this simulation, our main purpose is to check that 
slip and stress are mutually consistent. 

We simulated numerically the instantaneous rupture of 
a circular fault embedded in a homogeneous elastic medium 
of S-wave speed fl = 1, P-wave speed c~ = ~ ,  and density 
p -- 1. The fault has a radius of 30Ax. We assumed a simple 
Coulombian friction (i.e., Do = 0 and V 0 = 0 with yield 
value T, = 1). Prestress on the fault just before rupture was 
exactly T O = T~ = 1. Stress reduces instantly to zero at 
t = 0, so that the stress drop Aa is exactly 1 everywhere in 
the rupture zone. As shown by Brune (1970), this fault ra- 
diates a plane shear wave perpendicularly to the plane of the 
fault of amplitude TJlztq = 1 in our nondimensional units. 

In Figure 5, we show the numerical solution of slip com- 
puted on this instantaneously rupturing circular shear fault. 
At the top, we show slip as a function of time and radius 
along the x axis of the fault. The initial slope of all the slip 
functions is clearly equal to 1, as expected for the initial 
radiation according to Brune's (1970) model. After about 20 
time units, the slip functions at the center of the fault show 
a break in slope corresponding to the arrival of the P stop- 
ping phase. After about 34 time units, the S stopping phase 
arrives, soon after which the fault stops slipping. Because 
we do not allow slip rate to change sign, the final slip over- 
shoots the static solution, but overshoot for a circular shear 
fault is very small. Stress inside the fault adjusts very slowly 
to this additional stress drop. The final slip at the center of 
the fault is indicated with an arrow and matches very well 
the static value of n/4Aa/ct × r, where r is the radius of the 
fault (see, e.g., Scholz, 1989). The bottom of Figure 5 shows 
the slip functions along the y axis; the solutions are similar 
to those on the top, but they are not exactly equal. It is 
interesting to remark that even for a simple instantaneous 
circular fault, there is no cylindrical symmetry around the 
center of the fault. This occurs because faulting is in the in- 
plane mode (mode II) along the x axis and in antiplane mode 
(mode III) along the y axis. These results show that our nu- 
merical method is stable and produces smooth slip functions 
that reproduce many of the known properties of the simple 
instantaneous circular crack model proposed by Brune 
(1970). 

Spontaneous Rupture of a Localized Asperity 

We illustrate spontaneous rupture starting from a cir- 
cular asperity ready to break, surrounded by a fault surface 
with a lower stress level. These conditions are very similar 
to those used by Day (1982b) and Das (1981) to start rupture. 
There are two main reasons to proceed this way: First, if the 
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Figure 5. Slip as a function of time for an instan- 
taneous circular fault. Each curve represents the slip 
function at a different point along a radius of the fault. 
Slip along the x axis (top) and the corresponding slip 
functions along the y axis (bottom). The arrows in- 
dicate the arrival of P and S stopping phases at the 
center of the fault. The horizontal arrow to the right 
of the source functions indicates the theoretical slip 
at the center of a circular shear fault with the same 
stress drop. 

asperity is too small, rupture will start and stop immediately. 
For rupture to expand, stress must be high over a finite zone, 
sometimes called the minimum rupture patch. Once rupture 
has started from this asperity, it will grow or stop depending 
on the values of the stress field inside and outside the as- 
perity and the constants Do and V0 of  the friction law in (11) 
and (12). A full exploration of  the parameter space will be 
subject of future work, but the parameters used in our sim- 
ulations were chosen so as to push the rupture beyond the 
asperity (this is equivalent to  using the so-called sigma pa- 
rameter of  the friction law used by Langer et al. 1996). As 
shown by Rice and Ben-Zion (1996), this initial kick is not 
needed if one uses one of  the Dieterich-Ruina friction laws 
that contain a time-dependent relaxation mechanism and if 
one uses a numerical procedure that models the slow buildup 
of applied stresses over times that are much longer than the 
rupture time. Second, if the stress field were uniform, rupture 
would occur instantaneously or grow at the maximum pos- 
sible velocity from an arbitrary point on the fault. This is 
unrealistic and not supported by observations. Thus, we as- 
sume that fault rupture must occur at stress levels that are 
below the yield stress except for a small number of  isolated 

asperities. In the following examples, we assume that there 
is only one such asperity even though rupture starting from 
several locations is possible (e.g., Day, 1982b; Olsen et aL, 
1997). 

Scaring of Rupture with the Slip-Weakening 
Distance D O 

An essential requirement for an accurate numerical 
method is that the numerical solution becomes independent 
of  grid size beyond the use of  a certain number of grid points 
per wavelength. In our problem, the shortest physical dis- 
tances are the radius of  the asperity R and the width of the 
rupture front. The latter depends on the slip-weakening dis- 
tance Do as shown by Ida (1972) and Andrews (1976). For 
2D faults and for the slip-weakening law (11), this width, 
L c, is 

4 ~ L  
Lc 3n T~ext Do. (14) 

We have assumed as in (11) that the residual friction at high 
slip rates is Tf = 0. This expression is valid for a constant 
stress level Text outside the asperity. For a stress distribution 
that scales only with the size of  the grid, the fault scales with 
D O . However, it would be convenient to scale our numerical 
computations by Lc instead of  D 0, but unfortunately, (14) 
depends on the load through the initial stress field Tex t . If  
this external stress varies spatially, the denominator has to 
be replaced by a complex expression that contains the stress 
intensity. Furthermore, (14) is only valid asymptotically, 
when the crack tip is very sharp. For these reasons, we de- 
cided to use Ax and not D O as length scale in our numerical 
simulations. 

In order to study the convergence of the numerical 
method as the grid size is refined, we study the scaling of a 
simple circular asperity keeping all the parameters constant 
except the grid size and D 0. Stress inside the asperity is Tas p 
= 1.8 × T,, Tex t = 0 . 8  X Tu, and H = 0.35. Replacing 
Text in (14), we find that Lc = 1.36 X Do. Figure 6 shows 
snapshots of  the slip rate as a function of  position on the 
fault at equivalent instants of  time. Because we use Ax as 
the scaring distance, we have to increase both the radius of  
the asperity R as well as the time of  the snapshot for increas- 
ing values of  D O . The four figures show from the top left 
snapshots for t = 140 (Do = 2, R = 3), t = 280 (Do = 4, 
R = 6) , t  = 420 (D O = 6, R = 9 ) , a n d t  = 560 (D O = 8, 
R = 12). The external rectangles define the size of the grid, 
256 X 256 for D O from 2 to 6 and 300 × 256 for D O = 8. 
Note the scaling of  the figures; that is, the snapshot for Do 
= 8 is precisely twice as large as as that for Do = 4. Clearly, 
the degree of  resolution improves as Do increases. 

From a close examination of  these snapshots and several 
others, we concluded that the solutions for the thick fault 
boundary conditions implemented in a fourth-order stag- 
gered-grid method are contaminated by numerical noise 
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Figure 6. Scaling of rupture at constant load for spontaneous rupture starting from 
an overloaded asperity. The four snapshots show the distribution of slip rate on the 
fault at equivalent times for four different values of D o. The initial asperity radius R 
as well as the instant of time of the snapshot all scale with D o. (top left) Do = 2, R = 
3, and T = 140; (top right) D O = 4, R = 6, and T = 280; (bottom left) D o = 6, R 
= 9, and T = 420; and (bottom right) D O = 8, R = 12, and T = 560. 

when D O < 4 and that numerical simulations are stable and 
reproducible for D o > 4 (Lc > 5.44Ax). For  3D simulations, 
this is a rather large number that requires the use of  very 
dense grids for accurate simulation of  spontaneous rupture. 
Andrews (1976) studied 2D spontaneous rupture with the 
same sl ip-weakening law as ours using a second-order FD 
method. He reported stable results for Lc = 10 X Ax, al- 
though certain models used L C = 5 x Ax in nondimensional 
units. Despite the use of  a value of  Tex t different from ours, 
his Lc  is quite equivalent to ours. Detailed comparison is 
difficult with the 3D simulations of  Day (1982b) who ex- 
pressed L c in terms of  D o, not Ax as here. 

Spontaneous Growth of  Rupture 

We use the simple 3D fault model  of  the previous sec- 
tion (initial stress distribution symmetric about the origin) 
to study the spontaneous growth of  rupture. Rupture resis- 
tance, represented by T, and Do, is perfectly uniform. This 
model  is not unlike that of  Kostrov (1964) or Burridge and 
Will is  (1969). The main differences are that, as previously 
explained, we initiate the rupture from a finite asperity and 
that the rupture velocity is not a prescribed constant but de- 
termined from the friction law. Our solutions are not self- 
similar and, as already illustrated by Das (1981), Day 
(1982b), Virieux and Madariaga (1982), and others, spon- 

taneous ruptures do not maintain simple elliptical shapes as 
they grow. 

To illustrate the resolution and stability of  the numerical 
method, we used an asperity with a radius R = 10Ax. The 
initial stress was 1.6 X T, inside and 0.5 X T, outside the 
asperity. The excess stress in the asperity is enough to give 
a strong initial kick to the rupture so that it propagates away 
from the asperity. For  smaller values of the initial stress or 
radius of  the asperity, the rupture would simply stop. The 
slip-weakening parameter was Do = 4 in nondimensional 
units (see equation 11) and H = 0.35. The final stress inside 
the fault is close to zero, obtained numerically from the 
simulation. 

Figure 7 shows slip and stress distributions on the fault 
plane as a function of  t ime and position along the x axis of  
the fault (the in-plane, or mode II direction). We observe 
that rupture starts from a zone around the center of  the fault 
and then grows bilaterally at a slightly increasing rate. The 
slip function at the bottom resembles that of  a self-similar 
fault but has a bump near the center of  the fault. This local- 
ized excess slip is the most characteristic feature of faults 
that start from an initial asperity. Because this initial asperity 
forms spontaneously on a fault where the friction law has a 
characteristic length (D O = 4 in our particular friction law), 
we expect most slip functions to have such a feature. Nat- 
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Figure 7. Slip (top) and stress (bottom) as a func- 
tion of radius and time for a circular rupture growing 
spontaneously after the instantaneous break of an 
overloaded initial asperity. The radial section was 
computed along the longitudinal (x) axis of the fault. 
Rupture along this line is dominated by the in-plane 
stress. The ridge-shaped part of the slip is the excess 
slip due to large stress drop inside the asperity. Note 
the shear wave propagating ahead of the rupture front 
in the stress field. 

urally, if  the initial asperity is small compared to the full size 
of  the rupture, the bump will become insignificant, and the 
slip functions (Fig. 7) become similar to those of  an elliptical 

crack. 
Although stress (Fig. 7) is sharply concentrated around 

the rupture front, it does not contain the local oscillations 
that are frequently observed in low-resolution simulations. 
The strong ridgelike phase that is observed ahead of  the rup- 
ture front is the S wave. As in the 2D simulations by An- 
drews (1976), the stress field has a peak that moves at the 
shear-wave speed. Andrews showed that when the stress 
field outside the fault is sufficiently strong, the rupture front 
becomes unstable, and the rupture jumps  to the shear-wave 
speed. We show an example of  this in a later section. Inside 
the fault, stress remains zero during the entire rupture pro- 
cess because we omitted any velocity weakening in these 
simulations. 

In order to understand the accuracy of the numerical 
solution of  the friction law (11), we show in Figure 8 the 
slip rate (top) and stress (bottom) distributions as functions 
of posit ion along the longitudinal axis of the fault (the in- 
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Figure 8. Resolution of the friction law, illustrated 
by the slip rate (top) and stress (bottom) as a function 
of position along the longitudinal (x) axis of the 
model shown in Figure 7, starting at the center of the 
fault. The crosses show the actual values computed 
numerically for Do = 4. The shear-stress wave is 
clearly seen as a bump ahead of the stress concentra- 
tion due to the rupture front. 

plane direction). We clearly observe the bump associated 
with the S wave, and the stress distribution closely resembles 
that determined by Andrews (1976) for a two-dimensional 
in-plane crack. The section was computed at a nondimen- 
sional time t = 200; at this time, the rupture front extends 
from grid points 30 to 35. For  this simulation, we used H 
= 0.35, D o = 4, Tex t = 0.5 X T,, and the initial asperity 
had a nondimensional radius of  R = 10. The stress field 
around the crack tip shown in Figure 8 confirms the scaling 
of  the rupture with Do as discussed in the previous section, 
as it clearly shows that stress relaxes over a distance of about 
5 grids. The peak o f  the S wave is at position 48 as expected 
because the S wave advances 1 grid point every 5 nondi- 
mensional time units for a CFL parameter of 0.35. The S 
wave emanates from the edge of  the asperity at x = 10. In 
these figures, we used no artificial damping or filtering so 
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that, except for the low-amplitude numerical noise in the 
velocity field, the friction law is well resolved numerically. 
Because we compute slip rate between points located 1-grid 
interval away from the fault, slip rate begins to increase very 
slowly starting from the S wave. The oscillations in the slip- 
velocity fields are due to the jump of the rupture front from 
one grid point to the next. Compared to slip-rate fields com- 
puted in previous numerical simulations, we observe that the 
oscillations are satisfactorily damped by the use of a finite 
slip-weakening distance in the friction law. The overall qual- 
ity of our simulations is similar to that obtained by Andrews 
(1976) and others in two-dimensional rupture simulations. 

Spontaneous Rupture on a Finite Fault 

In this section, we study the propagation of rupture 
away from the circular asperity presented in the previous 
section and the arrest of rupture when it reaches unbreakable 
boundaries of the fault. The main purpose of these studies 
is to show the role of stopping phases and healing phases 
for simple geometries, subjects that were first explored by 
Day (1982b) and Das and Kostrov (1983). We also briefly 
demonstrate that the numerical method proposed here can 
handle rate-dependent friction laws and vector friction, two 
important subjects of recent research in earthquake dy- 
namics. 

Circular Fault 

We model a circular fault of radius 50 × Ax, starting 
from a concentric asperity of radius 6 × Ax, D o = 4; stress 
inside the asperity was 1.2 x Tu and 0.8 X T, outside. 
Snapshots of slip rate are shown in Figure 9 at several suc- 
cessive instants of time. Time is measured in units of At = 
HAx/o~, where H = 0.35 as discussed earlier. From time 
steps t = 17.5 to 35, rupture is taking place inside the as- 
perity and propagating away from the asperity for t > 52.5. 
We observe that rupture becomes spontaneously elongated 
in the vertical direction, which is also the direction of the 
initial stress. Thus, as already remarked by Das (1981) and 
Day (1982b), rupture tends to grow faster in the in-plane 
direction, which is dominated by mode II. 

At time t = 87.5, rupture in Figure 9 has reached the 
unbreakable border of the fault in the in-plane direction, and 
at time t = 105, the stopping phases generated by the top 
and bottom edges of the fault are moving toward the center 
of the fault. The snapshots after t = 122.5 show stopping 
phases propagating inward from all directions. The slipping 
patch in darker color is now elongated in the antiplane di- 
rection, which is due to slower healing. At time t = 140, 
the in-plane stopping phases (moving in the vertical direc- 
tion) have already reached the center of the fault and crossed 
each other. In the last two snapshots, rupture continues in a 
small patch near the center of the fault that coincides with 
the initial asperity. However, slip rate has decreased to such 
small values that it is very likely contaminated with numer- 
ical noise. 

Rectangular Fault 

In the second set of simulations, we studied a model 
that starts in the same way as the circular fault from an over- 
loaded asperity. However, here the unbreakable barriers 
force it to expand in essentially one direction along a rec- 
tangular fault. We build this model as a prototype of rupture 
along a shallow strike-slip fault and use the same values for 
the friction laws as those for the circular crack simulation. 
Here, H = 0.35, slip-weakening distance Do = 4, initial 
stresses inside and outside the asperity were Tas p = 1.2 X 
T, and Text = 0.8 X T,, respectively, and the radius of the 
initial asperity Ras  p = 6 × Ax. For the rate-weakening sim- 
ulations, we used V 0 = 0.01 and T s = T u. 

Figures 10 and 11 show snapshots of the slip rate on 
the fault plane for simulations using slip-weakening friction 
and slip- and rate-weakening friction, respectively. The pre- 
stress on the fault is directed along the vertical (long) axis 
of the fault. In the simulation with slip weakening but no 
rate weakening (Fig. 10), we see the rupture emerging from 
the asperity with relatively slow healing (long wake trailing 
from the front). Rupture starts out slowly, accelerates toward 
the S-wave speed, and at a mature stage, near time t = 80, 
suddenly " jumps"  to the P-wave speed. The transition to 
super-shear rupture speeds is an instability that develops 
from the in-plane direction and spreads laterally along the 
rupture front producing a "bulge" observed in the snapshots 
after t = 80. Stopping phases emitted from the edges of the 
fault clearly control the duration of slip as shown in snap- 
shots at t = 120 through 160. In the snapshot at t = 160, 
the stopping phases have reached the center of the fault just 
below the time label 160. 

The situation is quite different when we use a rate-de- 
pendent friction law, where the slip rate tends to concentrate 
in narrow patches (Fig. 11). Compared to Figure 10, the 
rupture front is narrower and clearly delineated. Well before 
the arrival of stopping phases from the edges of the fault, 
slip rate has become very small near the center of the as- 
perity. Rupture takes the shape of a band. As time increases 
and rupture is controlled by the edges of the fault, the rupture 
front becomes narrow and localized. This is similar to the 
behavior predicted by Heaton (1990). 

The other major difference introduced by rate-depen- 
dent friction is that the stress becomes extremely heteroge- 
neous behind the narrower rupture front. It appears that the 
rupture leaves a wake of complexity after its passage. This 
complexity is apparent in the distributions of both stress drop 
(Fig. 12, top) and slip (Fig. 12, bottom). As is well known, 
the stress field is related to the spatial gradient of slip, so 
that heterogeneity is enhanced for the stress drop. Finally, 
note that the faster healing caused by rate-weakening friction 
decreases the final slip significantly. 

Vector Friction 

So far, we have allowed slip to occur only in the direc- 
tion of the prestress. This produces locally large stresses in 
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Figure 9. Snapshots of slip rate at successive instants of time for the spontaneous 
rapture of an overloaded asperity inside a circular fault (solid line). The nondimensional 
time for each snapshot is shown below each picture. 

the direction perpendicular to the initial stress in order to 
force slip in the longitudinal direction. If we remove this 
strong restriction, slip is no longer parallel to the initial 
stress. Figure 13 shows a comparison between snapshots of 
the unidirectional slip rate (scalar friction approach) and the 
equivalent ones with slip allowed in any direction on the 
fault (vector friction approach). We used the same parame- 
ters as those for the simulation shown in Figure 10 (i.e., no 
rate weakening). The comparison shows that the two cases 
are very similar; that is, slip predominantly occurs along the 
prestress. The largest deviations occur near the rupture front 
and the edges of the fault. Note that healing appears slightly 
slower (i.e., longer tail trailing from the front) for the vector 
friction. However, this difference is likely due to the use of 
the same healing criterion for the two cases, that is, reversal 
of the slip rate in the direction of the prestress. In the future, 
healing for the vector friction will have to be modified to 
account for direction as well as magnitude of the slip-rate 
vector. 

Discussion 

Modeling of spontaneous seismic ruptures requires ac- 
curate numerical schemes with low dispersion and spatial 

resolution that allows the rupture front to be discretized by 
a sufficient number of grid points. Several versions of the 
finite-difference method have been proposed in the literature 
for the study of 3D spontaneous seismic ruptures by, among 
others, Virieux and Madariaga (1982), Day (1982b), and 
Mikumo and Miyatake (1992). In this article, we proposed 
a simple internal boundary condition for the modeling of a 
flat fault in the fourth-order staggered-grid method devel- 
oped by Olsen (1994). Both slip-weakening and rate-depen- 
dent friction laws can be studied with a thick fault model, 
in which the internal boundary conditions on the fault are 
applied on two rows of cells surrounding the fault. It is very 
likely that the particular version of the boundary conditions 
we used can be improved (Stefan Nielsen, personal comm., 
1998), as long as fourth-order accuracy is maintained near 
the fault. It appears that the reason why second-order stag- 
gered-grid FD schemes by Virieux and Madariaga (1982) 
were found to be inaccurate for the study of spontaneous 
rupture was the way in which they imposed boundary con- 
ditions inside and outside the rupture zone on the fault. We 
verified that the thick fault zone works both for second-order 
and fourth-order velocity-stress FD methods. However, in 
this article, we have used only the fourth-order method be- 
cause it has a strong advantage over the second-order one in 
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Figure 10. Snapshots of slip rate at successive instants of time for the spontaneous 
rupture of an overloaded asperity inside a rectangular fault (solid line). No velocity- 
weakening friction is included, The nondimensional time is listed for each snapshot. 
The lower fight panel shows the slip rate versus time along a line in the in-plane 
direction intersecting the asperity. The slope of the slanted lines depicts the P- and S- 
wave velocity. 

terms of the number of grid cells required per wavelength. 
We showed that accurate results can be obtained for D o = 
4 or larger in nondimensional time units. 

The use of symmetries necessary to impose the bound- 
ary conditions has the obvious limitation that this technique 
cannot be easily extended to study curved faults or faults 
slanted with respect to the finite-difference grid. On the other 
hand, our method can include free-surface boundary condi- 
tions, stratified media, and localized heterogeneities without 
any changes. Olsen et al. (1997) have, for instance, used this 
technique to model the 1992 Landers earthquake with a re- 
alistic crustal model. 

The aim of this study was limited to the validation of 
numerical simulations through the study of simple rupture 
models that contain well-known properties of seismic rup- 
tures in three dimensions. Except for the instantaneous rup- 
ture of a circular fault, none of the problems studied here 
has an exact solution for comparison. For this reason, we 
studied simple models that have already been discussed in 
the literature by many authors (see, e.g., Kostrov and Das, 

1989, for a review). Our rupture simulations use a much 
larger number of grid points than in most previous models 
and are thus expected to be more accurate. It is therefore 
encouraging to see that we reproduce many known proper- 
ties of shear faults. A problem we encountered in trying to 
compare our simulations with previous results is that the 
values of grid spacing and the slip-weakening distance were 
not always reported or were too coarse. 

Among the properties of faulting that we reproduced 
successfully is the lack of cylindrical symmetry of shear 
faulting. This loss of symmetry was discovered by Kostrov 
(1974), who emphasized the difference of stress intensities 
along the antiplane and in-plane borders of the fault. Ellip- 
tical self-similar faults were studied by Burridge and Willis 
(1969) and others. The initial stress field introduces a fun- 
damental anisotropy of rupture speeds for sharp shear 
cracks: stress intensities are higher in the antiplane (mode 
III) direction than in the in-plane (mode II) direction, sug- 
gesting faster growth in the antiplane direction. In our nu- 
merical simulations, this occurs only when Do < 0.5, but in 
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Figure 11. Same as Figure 10 but with velocity-weakening friction included in the 
simulation. 

this case, the numerical solution does not model the rupture 
front accurately, and rupture is numerically controlled. 
When the grid resolution is sufficiently large (i.e., for D o > 
4 in nondimensional units), ruptures always grow faster in 
the in-plane direction than in the antiplane one as observed 
by Day (1982b). The reason for this is the presence of a peak 
in stress that moves at the shear-wave speed. This peak exists 
only in the in-plane direction because vertically polarized 
shear waves have an extremum of the radiation pattern in 
this direction [see Fukuyama and Madariaga (1998) for fur- 
ther discussion in the context of modem displacement 
boundary integral equations]. For finite D o , the rupture front 
is "pulled" by the stress concentration at the S wave, as is 
clearly observed in Figure 7. As proposed by Andrews 
(1974) for plane cracks and by Day (1982b) for 3D faults, 
rupture velocity tends to become super shear in the in-plane 
direction when the ratio of ambient stress outside the fault 
to peak stress is high. According to Andrews (1974), an in- 
plane rupture front becomes unstable and jumps to super- 
shear speeds when this ratio is of the order of 80%. In terms 
of the ratio S of Das and Aki (1977), transition to super- 
shear speeds occur when (1 + S)-1 _ 0.8 or S = 0.25. 
This in in full agreement with the results reported by Day 
(1982b) in his Figure 4. In our high-resolution images shown 

in Figure 8, we clearly observe that the transition to super- 
shear speeds spreads laterally along the rupture front. De- 
tailed study of the stress and slip-rate fields in the area be- 
tween the shear wave and the rupture front shows that the 
instability is accurately modeled numerically, without con- 
tamination of numerical noise. The transition to super-shear 
speeds is perfectly stable for the four different grid resolu- 
tions shown in Figure 8. Such super-shear transition is rarely 
observed in actual earthquakes, except for local bursts of fast 
rupture for the 1979 Imperial Valley earthquake (Archuleta, 
1984). Two explanations for the small number of observa- 
tions of super-shear rupture speeds seem possible to us: ei- 
ther stress distributions in the fault zone are very heteroge- 
neous and only isolated patches of the fault are highly 
stressed (Day, 1982b; Olsen et  al., 1997) or strongly rate- 
dependent healing behind the rupture front inhibits super- 
shear speeds (Cochard and Madariaga, 1994). For a number 
of reasons, including the results from the simulation of the 
Landers earthquake by Olsen et  al. (1997), we prefer the 
first explanation where the distribution of prestress deter- 
mines the propagation of the rupture front and produces 
rapid healing of slip. 

Rupture initiation occurs over a patch of a size that is 
related to the slip-weakening distance Do. Without a highly 
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Figure 12. Final stress without (top left) and with (top right) rate weakening, and 
final slip without (bottom left) and with (bottom right) rate weakening, for the simu- 
lations shown in Figures 10 and ll. The plots clearly show a decrease in slip as well 
as the development of stress heterogeneity inside the fault due to rate weakening. 

prestressed patch larger than such critical size, rupture will 
start and die immediately. Although we can determine nu- 
merically the size of the asperity needed to start rupture for 
a given value of D 0, we did not manage to derive a simple 
expression that takes into account also the prestress outside 
the asperity. In principle, rupture development is determined 
by the stress concentration on the rupture front, propagating 
as the prestress times some power of the radius of the as- 
perity. Simple asymptotic numerical analysis suggests that 
this power should be 1/2, whereas our numerical experience 
indicates a value closer to 1. Clearly, this point needs further 
theoretical scrutiny in order to understand rupture under fi- 
nite fracture energy. The problem is that when rupture 
emerges from the asperity, the asymptotic shape expected 
from crack theory is not yet fully developed. A possible 
reason is that, as the fault reaches the critical size, slip rates 
are not large enough to generate seismic waves. The way 
the rupture is initiated strongly influences its subsequent de- 
velopment (i.e., generation of heterogeneity) as stressed by 
Langer et aI. (1996), Madariaga and Cochard (1996), and 
Rice and Ben-Zion (1996). In our simulations, we triggered 

ruptures by a sudden break of a finite zone on the fault (an 
"asperity"). The rupture initiation problem will be a strong 
focus of our future research. 

An important feature of friction laws that we briefly 
explored for a rectangular fault is their sensitivity to slip rate. 
It has been demonstrated in a number of experiments on very 
different materials that, at least at low slip rates, friction is 
rate sensitive, decreasing when slip rate increases. From a 
theoretical point of view, several authors, starting with Carl- 
son and Langer (1989), showed that if friction weakens with 
slip rate, slip and stress heterogeneity may develop even on 
a perfectly flat, uniform fault. This is a somewhat contro- 
versial subject that needs to be studied in three dimensions 
[see, e.g., Langer et al. (1996), Madariaga and Cochard 
(1996), Rice and Ben-Zion (1996) for different points of 
view]. A strong limitation of numerical methods for this pur- 
pose is the noise that appears behind the healing "front." 
This noise occurs because of geometrical effects in the rec- 
tangular grid and produces in extreme cases a sort of "scin- 
tillation" of the fault plane where slip rapidly starts and 
stops. This is likely due to "healing noise": when slip rate 
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F i g u r e  ] 3.  Snapshots  o f  the slip rate on a rectan- 
gular fault using scalar (left) and vector  (right) bound-  
ary condit ions for the friction. For  clarity, only slip- 
rate vectors where  / )  > 0.25 are plot ted for the 
slipping areas on the fault. The  nondimensional  t ime 
is l isted for each o f  the three snapshots.  

tends to change sign very frequently, neighboring points of  
the fault heal at slightly different times. We expect that the 
use of  more sophisticated friction laws with state variables 
and a finer discretization of the fault may produce smoother 
results. Finally, another currently undertaken problem (see, 
e.g., Ide and Takeo, 1997) is to determine the friction laws 
by inversion of  recorded ground motion. Results of  such 
analysis can be used to set important guidelines for future 
inversion attempts to capture the physics of  earthquake rup- 
ture but may require very accurate high-resolution simula- 
tion methods without artificial numerical damping. This is 
an area where our FD method should excel. 

Our staggered-grid velocity stress FD method can be 
improved and extended in several ways. Foremost, our study 
was limited to a single planar fault. However, we expect no 
substantial problems for the implementation of  boundary 
conditions for two or more parallel fault strands. The method 
presented is presently limited to planar faults, while the 
much more challenging implementation of more realistic ge- 
ometries is left for future work. Such configuration would 
allow the study of fault interactions in three dimensions 
(Harris and Day, 1993). Also, while our method is tested for 
simple slip- and rate-weakening boundary conditions on the 
fault, it can in principle be extended to use any realistic 
friction law. It would be possible, for example, to use the 

rate- and state-dependent friction laws of Dieterich and 
Ruina. If the use of  vector friction is considered critical, our 
suggested healing criteria should be improved. 

Conclus ions  

We have shown that the fourth-order staggered-grid 
velocity-stress finite-difference method can be used very ef- 
fectively to study spontaneous rupture propagation in a re- 
alistic fault model embedded in a 3D elastic medium. We 
show that the use of a simple slip-weakening model con- 
taining a length scale is able to regularize the rupture front. 
The solutions for our fault boundary conditions scale with 
D O and are stable and reproducible for D O greater than 4. 
This regularization eliminates undesirable oscillations in the 
stress and slip-rate fields in the vicinity of the rupture front. 
It therefore allows simulation of realistic rate-, slip-, and 
state-dependent friction laws without any numerical damp- 
ing. After initiation from a finite initial patch, the sponta- 
neous rupture accelerates to a speed close to that for the S 
waves. If the rupture resistance level is below a critical 
value, the rupture speed jumps to that for the P waves, start- 
ing along the in-plane direction. The use of rate-weakening 
friction tends to increase the rupture resistance, thereby in- 
hibiting the transition to super-shear rupture velocities. Heal- 
ing occurs by stopping phases from the boundaries of the 
fault and from the use of rate-weakening friction. A com- 
parison of simulations using scalar and vector boundary con- 
ditions for the friction on the fault suggests that slip pre- 
dominantly occurs along the prestress, with the largest 
deviations near the rupture front and the edges of the fault. 
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