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On the Relation Between Seismic Moment and Stress Drop in the 
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The seismic moment is related by definition to the average slip on the fault plane of an earthquake. Here 
we derive an exact expression for the seismic moment in terms of a general heterogeneous stress drop 
distribution and the geometry of the fault of a complex event. We find that the seismic moment is 
proportional to a weighted integral of the stress drop on the fault. The weight in this linear relationship is 
the slip for a hypothetical event with the same source geometry but uniform stress drop. This relationship 
between seismic moment and stress drop depends on geometry. In particular, for multiple sources the 
weight is reduced by factors of the order of o/R, where 0 is the radius of a typical subfault and R is the 
radius of the total source area. As a consequence of these results we find that for a given stress drop, a 
simple fault generates a larger seismic moment than a multiple fault of the same total surface. Conversely, 
for a given moment and source area, a complex event would need higher stress drops on the subfaults than 
a simple smooth fault. We test these results with three rectangular models of faulting. The first is a simple, 
smooth fault with uniform stress drop. The second model is a simple fault with zero stress drop in the 
central section of the fault. The last model is a complex event where the central section of the fault remains 
unbroken. We show that the last two models are difficult to distinguish from their far-field radiation. 

INTRODUCTION 

The seismic moment, first determined by Aki [1966] for the 
Niigata earthquake of 1964, has become one of the most 
important source parameters. Kanamori and Anderson [1975] 
and Kanamori [1977] have presented a list of seismic moments 
for about 50 large earthquakes, while Hanks [1977] has sum- 
marized more than 400 seismic moment determinations for 

small- to medium-size events. The seismic moment was in- 

troduced from the representation theorem of dislocations as 
equivalent double couple sources [Burridge and Knopoff, 1964]. 
The representation theorem yields a definition of the seismic 
moment in terms of the slip at the fault and the source area. It 
is also important to express the seismic moment in terms of 
dynamic source parameters like the stress drop in order to 
invert the latter from seismic observations. This has been done 

in the past using specific fault models with uniform stress drop 
and simple geometries [Knopoff, 1958; Keilis-Borok, 1959]. The 
use of these models has led to the remarkable result that the 

calculated stress drops vary very little and are limited to the 
range from 1 to 100 bars [Aki, 1972; Thatcher and Hanks, 
1973; Kanamori and Anderson, 1975; Hanks, 1977]. 

Several recent observations indicate, however, that many 
events are in fact complex or multiple events (Wyss and Brune 
[1967]; Hanks [1974]; Wu and Kanamori [1975]; Fukao and 
Furumoto [1975]; J. A. Rial, unpublished manuscript, 1978; H. 
Kanamori and G. Stewart, unpublished manuscript, 1977; 
among others). Direct evidence of the segmentation of faults 
has been reported by Spottiswoode and McGarr [1975] for 
shocks in deep gold mines in South Africa. Complex events 
have also been proposed in the numerical modeling of faulting 
with variable strength by Das and Aki [1977] and Mikumo and 
Miyatake [1978]. Models proposed to explain source com- 
plexity may be broadly divided into two classes. First, models 
where the complexity is attributted to heterogeneity of stress 
drop due either to the nonuniformity of tectonic stress, of 
frictional stress, or of both. A massive, localized stress drop in 
the initial source region was proposed by Hanks [1974] for the 
San Fernando earthquake; a similar model was proposed by 
Burdick and Me#man [1976] for the Borrego Mountain earth- 
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quake. Kanamori and Stewart [1978] have interpreted the com- 
plexity of the Guatemala earthquake of 1976 by a highly non- 
uniform stress drop along the fault. Following them, we shall 
call 'asperity model' a model where source complexity is due 
to heterogeneous stress drop. The other, alternative model 
which we shall call the 'barrier model' has been proposed by 
Das and Aki [1977]; in this model, complexity is due to the 
presence of unbreakable barriers along the fault plane. In this 
case the fault is not a simple, connected fault but a set of 
subfaults distributed on the fault plane. This model empha- 
sizes the important role of strength in controlling and even- 
tually stopping the growth of rupture on the fault. Each of 
the preceding models puts emphasis on either one of the two 
fundamental parameters that control the fracture of hetero- 
geneous material: strength and stress heterogeneity. 

From the previous discussion of observations and models, it 
appears that it would be very interesting to study the relation 
between stress drop, source geometry, seismic moment, and 
seismic radiation in the presence of heterogeneity of stress and 
source complexity. Madariaga [1977] has shown that in two 
dimensions the stress drop determined by the usual assump- 
tions is not a true average of the stress drop on the fault. Here 
we shall derive a general relationship between seismic moment 
and stress drop for complex faults and heterogeneous stress 
field. We shall also compare numerical solutions for an asper- 
ity and a barrier model of source complexity. 

THE GENERAL RELATION OF Mo, STRESS DROP, 
AND GEOMETRY 

The seismic moment is usually defined in the form 

Mo = I.t fs dS D(x, y) = i. t15S (1) 

where • is the rigidity, D the offset of the fault, S its total area, 
and/5 the average slip. As defined in (1) the seismic moment is 
a scalar: it is the moment of one of the couples in the double- 
couple representation of a point dislocation [Burridge and 
Knopoff, 1964]. Implicit in the definition is the assumption that 
the fault is plane. For curved fault surfaces, or for non- 
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coplanar multiple sources, the seismic moment should be de- 
fined as a tensor whose components are [Kostrov, 1974] 

Mø = # fs (Dt(r)nj + D•(r)nt) dS (2) 
where r is the position vector on the fault, • = (nx, ny, nz) is the 
unit normal, and D is the slip vector at the point r. In (2) it was 
assumed that the faults do not open (i.e., D.r• = 0). The 
surface S may be curved, or it may be a collection of smaller 
faults in the case of multiple earthquakes. 

The basis of this work is Betti's reciprocity theorem for 
static elastic fields. Let Us consider two general elastic static 
states of the same elastic, possibly nonuniform body of volume 
V and surface S. The surface S includes the external surface 

S•, which will be taken at infinity, and a collection of internal 
surfaces S t which we shall eventually close to form cracks. A 
first elastic state of displacement ut and stresses ao and a 
second one of displacements vt and stresses r o are considered. 
We shall assume that there are no body forces in V. Then the 
elastic reciprocity theorem may be written in the form 

Lrou,n•dS=fsat•o,n•dS (3) 
where rtt are the components of the external normal to S. Let 
us now close the internal surfaces S t to form cracks. We 

choose on each of these cracks a negative and a positive side. 
We define the normal to the negative side as the reference 
normal. Then the identity (equation (3)) may be written as 

• routn I dS + Jz rtiAutnl dS 

where Z is the collection of all internal surfaces S t, Art = vt + -- 
vt-, and Aut = ut + -- ut- are the slips at the cracks for each 
elastic field. We now let the surface S• tend to infinity. If we 
take zero stress as the reference stress level, the integrals on S• 
will generally be finite. Yet it is well known that the absolute 
stress level does not affect seismic radiation; only stress 
changes do. For this reason we take the initial stress at1 ø, or 
ro ø, before the earthquake as the reference stress. In this case, 
r 0 and fftj are the stress changes due to slip at the faults. They, 
and the displacements fields ut, vt, decrease like R- •' at infinity, 
and the integrals on S• may be dropped from (4). Let us 
remark that, as noticed by Saoage [1969], in the earth, at1 ø and 
ro ø are of internal origin so that the elastic reciprocity theorem 
(equation (3)) does not apply to them. A second remark is that 
S• may be taken as the surface of the earth; for shallow 
earthquakes this may require modifications of the fields vt, ro 
used below. 

Let us derive now an expression for the seismic moment (2) 
in terms of the stress drops. For that purpose we take ut, o'tj to 
be the actual elastic field due to an earthquake; then 

Aut = Dt aon• = Aat on S t (5) 

where D is the slip and Aa the stress drop at the fault S t. For 
t)t, rtl we take the following: 

/Xvt = E/ on S t (6a) 

ro nj = # nt bt• on S t (6b) 

where Et• will be the slip determined from the solution of the 
crack problem with stress drop #nt•t• and bt• is Kr6neker's 

symbol. Replacing (5) and (6) in the reciprocity theorem (4), 
we find 

# f• ntD• dS = f• AatEtt dS 
Repeating the process with another solution of (6), where ron• 
= #n•i•tt, and adding, we finally find 

Mt• = f• Aat(Et t + Et •) dS (7) 
where 2; is the collection of all fault segments S t. The ex- 
pression (7) defines the seismic moment tensor in terms of the 
stress drop A o't in a completely general case. But this definition 
uses weighting functions Ett which themselves have to be ob- 
tained from the solution of crack problems. This may seem not 
to be very useful. However, in most problems of interest in 
seismology the slips Ett are already known from standard 
solutions in fracture mechanics. For example, for plane faults 
the stress drop in (6b) is constant, and solutions are known for 
many simple fault shapes and for some multiple cracks. We 
shall use these solutions to define the seismic moment in sev- 

eral seismologically interesting problems. 

SIMPLE PLANE FAULTS WITH HETEROGENEOUS 

STRESS DROP 

Assuming that slip is parallel everywhere on a plane fault, 
the seismic moment tensor may be written in the simpler form 

Mt•_ = Mo(ntv•_ + nkv,) (8) 

where nt and v• are the cosine directors of the fault hormal and 
the slip vector, respectively, and M0 is given by (1). From (7) 
we find the alternative expression 

Mo = fz AatEt dS (9) 
where Et is the slip calculated for a crack of the same shape as 
the studied fault, but with a uniform stress drop Art = #vt. 
Equation (9) yields a general relationship between seismic 
moment and stress drop for plane faults. It is valid for faults of 
any geometry, including multiple faults and heterogeneous 
stress drop on the fault. But the weighting function Et has to 
be obtained from the solution of an auxiliary crack problem 
with uniform stress drop. Let us consider first simple faults, 
i.e., faults without 'barriers' or unbroken patches. In this case, 
Et is known for several simple source shapes. It may also be 
readily calculated by finite element methods. Here, because of 
its mathematical simplicity, we shall assume that the source 
area is an ellipse; this is a rough approximation to some 
aftershock areas. A solution for an elliptical fault with uniform 
stress drop may be derived from Eshelby [1957]. The slip is 
found as 

Et(x, y) = AtW 1 L: I4 • (10) 

where we choose the axis x in the semimajor axis direction; L 
and W are the semimajor and semiminor axes, respectively. 
The nondimensional constants ./It are a function of the elliptic- 
ity • = W/L and are shown in Figure 1 for longitudinal Ax or 
transverse A y slip. The constants At are smoothly varying 
functions of the ellipticity, which vary at most by a factor of 
about 2. In the case of a circular fault L = W = R, (10) reduces 
to the well-known result 
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Fig. 1. Coefficient .'It for elliptical faults (equation 10)) as a func- 
tion of ellipticity • = W/L. Longitudinal slip is along the major axis 
of the fault, while traverse slip is across the minor axis. 

24 ?/R•.)•/•. Et(r) = •--•-• R(1 - (11) 

where r is the radial variable [Eshelby, 1957; Keilis-Borok, 
19591. 

The expression (9) is valid for a general stress drop distribu- 
tion on the fault and yields a precise relation between seismic 
moment and stress drop for elliptical faults. We may give it a 
more conventional form: 

Mo = C,(Aat) WS (12) 

where now Ct = {At is a nondimensional constant which 
depends on the direction of slip at the fault and the ellipticity 
of the fault. It varies from 0.728 for circular faults to a maxi- 

mum of 1.33 for longitudinal slip on a very long fault. The 
estimated stress drop 

(Aa) = •-• Aa 1 L• • dS (13) 
is an average of the stress drop with a weighting function that 
emphasizes the stress drop near the center of the fault. The 
fault appears to be stiffer near the ends and softer toward the 
center of the fault. Equation (12) is the one most commonly 
used to invert stress drop from estimations of M0 and S. A 
usual approximation is that the fault is circular, in which case 
W = R and Ct = 0.728. Therefore, it is (fia) that is estimated 
from observations. In the special case of smooth faulting with 
uniform stress drop fia, the estimated stress drop (fia) = fla. 
For heterogeneous stress drops, (fia) will in general differ &om 
the true average stress drop 

Aa = .•- Aa dS (14) 
The difference will be larger if the stress drop is larger near the 
edges of the fault. Extreme examples are the constant dis- 
location models (like Haskell's) where stress drop is infinite 
near the edges of the fault (R. Madariga, manuscript in prepa- 
ration, 1979); in that case, A-"• is unbounded, while (Aa) is 
finite. In less extreme cases, the estimated stress drop (Aa) will 
probably yield a good approximation to Aa. 

The asperity model may be discussed with this theory. In 
this model, due to preseismic slip or foreshocks there are large 
stress concentrations in the vicinity of unbroken asperities of 
the fault. The earthquake releases these stress concentrations, 
and a smooth final stress distribution results. This model pre- 
dicts highly heterogeneous stress drop so that the estimated 

stress drop (aa) will underestimate the stress drop at the 
asperities. Let us assume, as an example, that identical aspe- 
rities cover a surface Sa of the source area S. Assuming a stress 
drop aaa at the asperities and no stress drop in the rest of the 
fault plane, we find 

(aa)-• aa = Aa,S,/S (15) 

where, for purposes of illustration, we have neglected the 
difference between (Aa) and •-'•. Thus the estimated stress drop 
underestimates the stress drop at the asperities by the ratio of 
the total asperity surface to the total source area. 

COMPLEX, MULTIPLE PLANE FAULTS 

As mentioned in the introduction, several observations seem 
to indicate that earthquakes might in fact be complex suites of 
smaller events. Observational evidence of this type of source 
heterogeneity has been reviewed by Aki et al. [1979]. They 
have interpreted these observations in terms of the barrier 
model of Das and Aki [1977]. In this model, segments of the 
fault remain unbroken after the main event. Intuitively, we see 
that these unbroken segments act as pins on the fault so that 
the slip will be highly heterogeneous. Simultaneously, large 
stress concentrations appear at the unbroken segments. These 
stress concentrations may be thought as stress rises or negative 
stress drops. 

In order to discuss the seismic moment of these events we 

shall make several additional simplifying assumptions. First, 
we shall assume that all the multiple faults are coplanar. This 
assumption is also generally made in observational work. If 
this is not assumed, the moment tensor may not be written in 
terms of a single scalar M0 as in (8). For multiple coplanar 
faults the seismic moment is again given by the expression (9). 
But now Et is the slip produced by a constant stress drop art = 
#vt in each one of the subfaults of the complex event. This slip 
is necessarily smaller than the slip calculated for a single 
source of the same total area. Thus, for a given stress drop on 
the subfaults, the seismic moment will be larger for a single 
fault than for a multiple fault of the same equivalent area. 
When using (12) to estimate (Aa) in the usual way, the actual 
stress drop in every subfault will be underestimated. To illus- 
trate this problem, we shall assume that the actual event is 
made of N smaller fractures of area S t. We shall also assume 

that each of these subfaults is of circular shape. Et is the slip in 
a coplanar array of circular cracks with identical, uniform 
stress drop. The solution of this problem depends on the actual 
separation between faults and their spatial arrangement. For 
purposes of illustration-we shall neglect the interaction be- 
tween faults, assuming that they are independent. This will 
probably underestimate the slip on each fault by factors that 
depend on the distance between neighboring faults. The slip E i 
in each subfault is of the form (11) with R = Rt, the radius of 
one of the subfaults. 

The total seismic moment for this complex event may be 
written as 

Mo = • • Rt Aa(1 -- r"lR?') •/" dS (16) 
where the sum is over all the subfaults. We may rewrite this 
equation in the slightly different form 

16 

Mo = '• • Rt(Aa)tSt (17) 
where (fiah is a weighted average of the form (13) of the stress 
drop in each of the subfaults. Compared to the simple crack 
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Fig. 2. Geometry of the rectangular fault model. Rupture starts at 
x = 0 simultaneously across the width W of the fault. Rupture velocity 
is constant vn = 0.75Vs and parallel to the longitudinal axis of the 
fault. In all the models the total fault length L = 2 W. 

model of stress drop (/xa) = (/xa)t and total surface S = 
the seismic moment (17) is smaller by .a factor of Rt/R than 
that of the simple fault. We may see this more clearly if we 
assume that all the subfaults are identical, with radius Rt = 
and stress drop (Aa) = • and that the total area S = •tSt. In 
this case the seismic moment (17) has the simpler expression 

16 

Mo = •"• o•S (18) 
This is to be compared to the seismic moment of a simple 
circular fault of area S (and radius R) with apparent stress 
drop (Aa): 

16 R Mo= • (Aa)S (19) 
Assuming now that the stress drop on the simple circular fault 
is $ we find that (Aa) = $. The seismic moment (19) of a simple 
fault is larger than that of a complex fault (18) by the ratio of 
the total radius R to that of a typical subevent o. Similar 
results would be obtained for faults where isolated patches of 
the fault remain unbroken after the event. Simple smooth 
faults have larger seismic moments than complex ones with 
similar stress drops on the broken patches. This is natural, 
since the unbroken patches appear to 'pin down' the fault, 
reducing the total fault slip. 

The problem of interest in seismology is usually the inverse 
one: what is the stress drop in the broken patches of the fault? 
For given M0 and S and using the usual circular fault model, 
the stress drop would be estimated as 

(Aa) = $p/R (20) 

This is the stress drop that would be estimated if the usual 
assumption of smooth faulting is made. It is clear that 
underestimates the true stress drop on the broken patches of 
the fault by a factor p/R, the ratio of the typical radius of a 
subfault to the total fault radius. 

THREE NUMERICAL MODELS 

In the following we shall study numerical solutions to three 
models of rupture that illustrate the foregoing discussion. Let 
us consider a rectangular fault as shown in Figure 2. As in 
Haskell's model we shall assume that rupture starts suddenly 
at x = 0 over the whole width W of the fault. It extends 

subsequently at a constant rupture velocity vR = 0.75Vs, where 
Vs is the shear wave velocity. The length of the fault, L = 2 W, 
is the same in all three cases. Model I is a simple smooth fault 
on which the stress drop Aa is uniform (Figure 3a). This model 

is essentially Haskell's but with constant stress drop rather 
than constant source time function on the fault. Model II is 

also a simple fault but with nonuniform stress drop (Figure 
3b). The stress drop varies only as a function of x, i.e., it is 
uniform on any given cross section of the fault. The fault plane 
is divided into three sections of equal length L/3. In the central 
section we assume that the stress has already been relieved and 
the stress drop is zero, but slip may occur freely. In the two 
extreme sections the stress drop is 1.7Aa. This value of the 
stress drop is used in order to get the same seismic moment for 
all three models. The extreme sections may be considered as 
asperities where a large stress is released during the earth- 
quake. Model III (Figure 3c) is a complex event where the 
central one tenth of the fault does not break. For simplicity we 
assume that in the unbroken section a virtual rupture contin- 
ues propagating at velocity vR, so that the new rupture is 
nucleated at x = 0.55L at time t = 0.55L/va. This model 
corresponds closely to model PSV 1 of Das and Aki [ 1977]. The 
main differences are that our calculation is three-dimensional, 
while theirs is two-dimensional and that we fixed the rupture 
velocity, while they calculated it from a rupture criterion. This 
cannot be done in our calculations, since the fault would tend 
to grow faster near the center, thereby loosing its simple rec- 
tangular shape. Renormalizing the static solution, so that the 
seismic moment is the same as in model I, we find that the 
required stress drop in the broken segments is 2.0Aa. This 
result may be interpreted with the theory of the last sections. 
In order to generate the same seismic moment, a complex fault 
with unbroken segments needs a larger stress drop in its bro- 
ken parts. Model II is intermediate between models I and III; 
its average stress drop is 1.12Aa, only slightly larger than the 
uniform stress drop of the first model. This small difference is 
due to the border effects of the faults, which cause stress drops 

MODEL II • 

Crx• /Xu x 

Fig. 3. The three models of rupture studied in the text. The figures 
show (left) the stress drop, and (right) the final slip along the axis y = 0 
of the fault. Stresses and slips are normalized so that the three models 
have the same seismic moment. (a'• In model I the stress drop is 
uniform. (b) In model II the stress drop is zero in the central one third 
of the fault. Slip occurs everywhere on the fault plane but it is reduced 
in the section with no stress drop. (c) Model III is a double model, 
where the central one tenth of the fault does not break. The unbroken 

section develops a large stress concentration (stress increases). This 
stress was obtained from the final static configuration of the fault 
system. 
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Fig. 4. Slip on the fault for model III shown at four instants of time. At t = 1, rupture is advancing in the first fault. At t 
= 1.5, rupture of the first block is complete. At t = 2.0, rupture is progressing in the second fault. At t - 2.5, rupture has 
already been concluded, and the final static slip has already been reached. Time is measured in units of 2L/V•,. 

near the edges to have less weight in calculating the seismic 
moment (equation (13)). 

It appears then that these three models with widely different 
stress distributions have the same seismic moment. If we 

wanted to distinguish between them, we would have to look at 
higher frequencies or to details of the radiation. This requires 
dynamic solutions of those models. We have done that using 
the three-dimensional finite difference method described by R. 
Madariaga (manuscript in preparation, 1978). This program 
calculates the history of slip on the fault. As an example, in 
Figure 4 we show the slip on the fault at four different instants 
of time for model III. In the first instant we show the slip 
before rupture arrives at the barrier. In the second, the first 
subfault is entirely broken. In the third, rupture is already 
progressing in the second fault. The fourth figure shows the 
slip after the fault has reached its final static distribution. 
From this solution and similar ones for the other models we 

may compute far-field radiation. This is done by means of the 
representation theorem. Figure 5 shows the far-field pulses and 
spectra for the three models. For this example we have chosen 
a direction of radiation with cosine directors vx = vy = 0.5 and 
vz = 0.71. This is typical of radiation in the forward direction 
with respect to rupture growth. For radiation in the backward 
direction (i.e., t,x < 0) the pulses get wider. Let us remark first 
that P pulses are systematically longer than S pulses. This is 
typical of unilateral ruptures and is the reverse of what is seen 
in symmetrical faults, for example, in circular cracks [Mada- 

riaga, 1977]. Otherwise, P and S pulses are very similar, and 
we shall refer in the following only to S pulses. The total time 
length of the pulses in all three cases is close to T = 1.5L/rs 
for S waves, indicating that T is related to the overall faulting 
process. For models II and III the far-field signals show double 
pulses. The duration of each of these pulses is close to 0.4L/rs 
and is related to the rupture time through the asperities or 
subfaults. The radiation from models II and III is quite similar 
except for the deeper minimum in the pulses of model III. The 
spectra show characteristics which derive directly from the 
pulse shapes. For model I, the spectra have simple f•-•' high- 
frequency trends and a corner frequency fo s = 0.45vs/L. The 
coefficient 0.45 may seem larger than those in the usual corner- 
frequency to size relationships. But notice that here L is the 
total length, not the radius as in the usual formulas. The 
spectra for models II and III are more complicated. The main 
feature is a large secondary spectral lobe. The spectra have a 
poorly defined intermediate slope and then a steep f-8 trend at 
high frequencies. The estimation of corner frequencies poses 
some problems; if we take the intersection of the f-8 trend with 
the flat, low-frequency trend, we get a corner frequency fo' = 
1.2vs/L. This corner frequency is about 3 times that of model 
I. It is clearly related to the length of the subfaults or as- 
perities. There is no definite corner frequency associated with 
the overall length of the fault unless we want to introduce an 
intermediate-frequency trend between the first two spectral 
lobes. Models II and III are very similar from the point of view 
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Fig. 5. Radiation from the three models shown in Figure 2. P waves are shown with full traces, S waves with dashed 
lines. Radiation is shown here for a direction with cosine directors vx = vy = 0.5 and vz = 0.71. 

of far-field spectra. The numerical solutions presented here are 
valid at intermediate frequencies; it is probably necessary to 
look at even higher frequencies to detect significant spectral 
differences between the two models. 

COMPLEX EVENTS CONSIDERED AS SIMPLE ONES 

Model II and Model Ill generate very similar far-field pul- 
ses, the main difference being the deeper minimum in the 
model III pulses. In this respect, model II appears as a less 
extreme example of source complexity than model Ill is. In 
fact it is possible to interprete model III as a simple rectangu- 

lar fault with a highly heterogeneous stress drop distribution. 
In the central, unbroken section the stress drop is negative or, 
rather, there is a stress rise in this section. This stress rise is 
exactly the stress concentration necessary to cancel slip in this 
segment. This stress is, of course, unknown a priori; it can only 
be computed as part of the solution to the complex crack 
problem. In Figure 3c we show the stress concentration calcu- 
lated on the y = 0 line, its most significant feature being the 
inverse square root stress concentrations typical of crack prob- 
lems. This stress concentration is a function of y; in particular, 
as y -• ñ W, the square root singularities disappear. We may 
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calculate now the estimated stress drop (Aa) assuming that the 
fault is a simple one using (13). Due to the large negative stress 
drops in the unbroken section, (Aa) is significantly lower than 
the stress drop in the broken segments. This model allows us to 
consider complex events as simple ones but is not very effective 
computationally, since it requires solving the complete crack 
problem in order to find the stress concentration in the unbro- 
ken segments. The relations we have derived in the previous 
sections evaluate the seismic moment from a knowledge of the 
stress drop in the broken segments only. We can understand 
now why model II and model III are similar. In model III the 
stress drop is large and negative in the central section, while in 
model II it is exactly zero there. This explains why model III 
has a deeper minimum in the far-field pulses of Figure 5. 

This model is also useful in more general situations where 
flat, isolated fault segments are not the only features of the 
earthquake. Since large earthquake faults are probably very 
complicated, with kinks, barriers, material property discontin- 
uities, etc., it is quite likely that certain segments of the fault do 
not fail completely during the main event. There might be 
sections between the component faults which deform plas- 
tically. In most cases these defects or barriers of the fault will 
block or reduce slip and thereby generate stress concentra- 
tions. The double fault of model III with a perfectly elastic 
barrier between them is an idealization. In practice the barrier 
may suffer plastic deformation. This would reduce the stress 
concentrations somewhat and increase the estimated stress 

drop (Aa); but the main conclusion is still that source hetero- 
geneity in the form of barriers, preslip segments, etc. will tend 
to yield an estimated stress drop that is a lower bound to the 
stress drop in the segments that actually broke during the 
earthquake. 

SOURCE VOLUME AND SOURCE STRAIN 

An examination of the definitions (12), (18), or (19) reveals 
that the seismic moment is actually the product of the csti- 

This relation in fact generalizes the usual definition (1) of the 
seismic moment, since here it is not necessarily related to slip 
on a simple plane fault. It may, for instance, be due to slip on a 
series of faults distributed in a volume as discussed by Kostrov 
[1974]. It may also be related to general inelastic deformation 
in the source region as discussed by Randall [1971 ], Backus and 
Mulcahy [1976], and McGarr [1976]. 

CONCLUSIONS 

The seismic moment was introduced as a kinematic parame- 
ter describing the radiation of low-frequency seismic waves by 
a dislocation source. From the representation theorem it was 
found that it is a measure of the average slip discontinuity on 
the fault multiplied by the source area. In this sense it is a 
measure of the distortion of the source region due to faulting. 
We have shown in this paper that it may also be given a 
dynamic interpretation in terms of the stress drop of the frac- 
tured areas at the source. The relation is very general but not 
as simple as that between moment and slip at the source. In 
fact, the geometry of the source affects the seismic moment as 
much as the stress drop itself. In particular, for multiple 
sources the seismic moment is smaller than for simple faults of 
the same area and stress drop. A simple interpretation of this 
result is that the unbroken sections of the fault pin down the 
fault and reduce the distortion of the source region, reducing 
in consequence the seismic moment which measures this dis- 
tortion. Consequences for the inverse problem are severe: the 
stress drops for complex events, estimated by the usual circular 
fault formula [Keilis-Borok, 1959], are only a fraction of the 
actual stress drop on the broken sections of the faults. The 
actual and estimated stress drops are in the ratio of the total 
source size to the size of a typical subevent. 

Observations of many earthquakes have led to the con- 
clusion that the stress drops are almost constant ranging from 
about 10 to 100 bars [Aki, 1972; Kanarnori and Anderson, 1975; 
Hanks, 1977]. These stress drops have been obtained from 

mated stress drop by a certain volume. Thus, although the formulas derived from simple smooth faults. There is abun- 
fault is plane, a volume appears naturally in the definition of dant evidence that many events are not simple but rather 
the seismic moment in terms of the stress drop. This volume complex, multiple events. In this case our previous discussion 
may be written in the general form implies that the actual stress drops, at least in some segments 

of the fault, are probably much larger than estimated by the 
V = CdS (21) usual methods. This has already been proposed and docu- 

where C• is a constant, S is the source area, and I is a character- mented by several authors, including Hanks [1974], Burdick 
istic length. For simple smooth faults, I is the half-width W of and Mellman [1976], and Aki et al. [1•979]. We conclude that 
the fault (equation (12)). For a circular fault I = R, the radius on the large scale the stress drop is nearly constant from event 
of the fault, and V = 2.28R 8. For complex faults, (18)indicates to event; but on a smaller scale the stress drop may display 
that I = 0, the typical radius of a subfault. We may in general large variations on the fault plane. In this small scale the stress 
define I as the typical length of the freely slipping segments of drop may not only vary but it may be very large or even 
the fault. This length appears naturally in (21), since the slip negative (stress increase) as in the case of model III, the barrier 
On a crack is always controlled by the shortest dimension on 
the fault. Physically, we may interpret this volume as the size 
of the region where large deformation occurs (of order Aa/t•). 
In this sense, (2!) may be used as a definition of the source 
volume associated with a plane fault. For complex events this 
volume is reduced by a factor of l/R compared to that of a 
simple smooth fault. 

It is interesting to note at this point that the estimated stress 
drop (Aa) is closely related to the definition of plastic strain 
used in dislocation theory. In fact, the source strain 
t• corresponds to the plastic strain as defined by McClintock 
and Argon [1966, p. 105]. The seismic moment may then be 
defined as 

Mo = •v V = (Aa)V (22) 

model of Das and Aki [1977]. 
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