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Abstract We review the development of earthquake dy-
namics taken from thepoint of viewof theoriginof seismic
radiation instead of the detailed study of rupture propaga-
tion on complex surfaces. Many features of seismic radia-
tion can be explained by simple models that serve as ele-
mentary canonical problems. Some of these properties are
very well known like the fact that at low frequencies, the
seismic spectrumisproportional to the seismicmoment.At
high frequencies, on the other hand, radiation is generated
by the motion of the rupture front, in particular stopping
phases andgeometrical obstacles (barriers).A rupture front
moving at constant speed does not produce far-field radia-
tion. For many practical applications, for determining
source size and stress drop, for example, it is not necessary
to determine geometrical details of the rupture. For such
cases, a simple circular crack model is quite sufficient. An
improvement on thismethod is tododynamic inversionon
simple,elliptical-shapedsourcesandlettingtherupturestart
arbitrarily from a point on the fault. This problem can be
solved nowadays with finite differences and a variety of
inversion techniques.

Keywords Earthquakes . Dynamics rupture .

Dislocation . Crack

1 Introduction

The first attempts to formulate a finite-source model
compatible with mechanics and seismic observations
started in the early 1960s with the rectangular kinematic
dislocation models studied, for instance, by Haskell
(1964), Ben-Menahem (1962) or Ben-Menahem and
Harkrider (1964). In dislocation models, the propaga-
tion of rupture is fixed a priori and the slip distribution is
determined by inversion. Kinematic models do not nec-
essarily satisfy physical constraints on the propagation
of shear fracture in the Earth. Dynamic source models
on the other hand are based on fracture dynamics. They
were introduced almost at the same time as kinematic
models thanks to the concomitant development of theo-
ry and observations. Although there were many other
fundamental contributions, we retain the following four:
(1) development of fracture dynamics byKostrov (1964,
1966, 1975) followed soon by work by Freund
(1972a,b), Burridge and Halliday (1977), and many
others. These authors provided the basic framework
for the generation of seismic waves by shear faulting;
they computed energy balance and introduced the new
concept of dynamic energy release rate. Energy release
rate had been introduced by Griffith (1921) for quasi-
static fracture mechanics and Rice (1968) who showed
that energy release rate was path independent. (2) In the
early 1970s, the connection between fracture and friction
was introduced by Ida (1972) for antiplane dynamic
cracks based on Kostrov’s (1966) solution for cracks
moving at variable sub-shear speeds and by Palmer and
Rice (1973) for quasi static shear slip. (3) Aki (1967)
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introduced the concept of seismic source scaling and
some basic properties of earthquake spectra that ex-
plained why magnitude scales gave different results at
different frequencies. (4) Finally, Brune (1970) intro-
duced the properties of seismic radiation, the so- called
omega-squared model which was based on empirical
observations and a simple radiation model.

Madariaga (1976, 1977) connected theory and
observation producing a simple mechanical model of a
circular seismic source that explained different
observations already available at the time with more
general fracture mechanical concepts. It turned out that
the seismic spectra proposed by Aki (1967) and Brune
(1970) could be explained by some general properties of
earthquake dynamics. Similar results were obtained by
Sato and Hirasawa (1973) who studied a circular fault
that stopped abruptly at some finite time. The circular
crack model provided a way to compute the scaling of
corner frequencies with the size of the fault. Most prac-
tical work for finite-source modeling and inversion is
still done using dislocation source models initially in-
troduced by Haskell (1964, 1966). As shown by many
authors (see, e.g., Madariaga 1977) dislocation models
do not produce a finite energy radiation at high frequen-
cies and therefore, they need to be regularized near the
rupture front. The regularization is earthquake dynam-
ics. Given that the main source of seismic observations
is geodesy and seismic waves, earthquake source theory
must be intimately related to seismic wave radiation.
But this is very difficult to establish because earthquake
rupture propagation is a very non-linear problem. Geo-
physicists linearise it by using dislocation sources mov-
ing at constant or slowly varying speeds that are then
converted into dynamic models by a posteriori methods
introduced by Fukuyama andMikumo (1993), Bouchon
(1997), and Ide and Takeo (1997). More recently, as will
be discussed later in this paper, dynamic inversion has
become possible for some particular earthquakes, but it
is still far from being a standard procedure (Peyrat and
Olsen 2004; Di Carli et al. 2010; Ruiz and Madariaga
2011, 2013; Diaz-Mojica et al. 2014; Twardzik et al.
2014). In spite of much progress in kinematics and
dynamics, most kinematic and dynamic models explain
the seismic spectrum up to frequencies of the order of
1 Hz or less. Modeling higher frequencies remains
difficult because seismic wave propagation at higher
frequencies requires detailed models of the structure of
the earth and better and more detailed models of the
rupture processes on the fault.

In this paper, we will briefly review some of the basic
concepts that led to the classical fracture model of
earthquakes, the circular shear crack, and recent at-
tempts to do dynamic inversion.

2 The circular fault Model

2.1 The circular shear crack model

The circular shear crack model introduced by Kostrov
(1964 and 1966) is considered as the first attempt to
build a model of an earthquake source based on the then
new concepts of fracture dynamics. The initial work on
the corresponding static shear fault model was done by
Eshelby (1957) and Keylis-Borok (1959). Let us con-
sider the problem of a circular fault of radius a. Shear
stress far from the fault has a constant value σ0 and is
zero inside the fault. Under these conditions, a solution
for the slip on the fault (r<a) for Poisson ratio 0.25, can
be written as

Δu rð Þ ¼ 24

7π
Δσ
μ

ffiffiffiffiffiffiffiffiffiffiffi
a2−r2

p
ð1Þ

where r is the radius and Δσ is the stress drop. For the
circular crack model, the seismic moment in terms of the
stress drop is given by

M 0 ¼ μΔuS ¼ 16

7
Δσa3 ð2Þ

The slip distribution (1) applies also to situations in
which stress inside the fault does not drop to zero during
slip. This occurs when faulting occurs under friction, the
most common situation in earthquake dynamics. In this
case, stress drop is the difference between the initial
stress (σ0) and the final stress (σf) under friction.

The stress outside the circular fault (r > a) can be
computed using the method proposed by Eshelby
(1959). The stress field around a circular crack is
not cylindrically symmetric about the axis of the
fault. The reason is that under shear, the crack is in
fracture mode II in the direction of application of
stress and in mode III in the direction transverse to
the initial stress. Letting the initial stress be oriented
along the x-axis and the normal to the fault being the
z-axis, the stress field of the circular crack presents
singularities of the inverse-square root type along the
circumference of the crack. In cylindrical coordi-
nates (r, ) on the plane of the fault, where r is the
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radius from the origin of rupture and is the azimuth
measured from the mode II slip direction, we get

σxz r;ϕð Þ≈ KIIcosϕþ KIIIsinϕð Þ 1ffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffiffiffi
r−a

p for r > a

ð3Þ
and a similar expression applies for the other shear
stress component on the fault, σyz. Here, KII and KIII

are the in-plane and antiplane stress-intensity fac-
tors, respectively. Thus, stresses are square root sin-
gular around the fault with an intensity that depends
on the two coefficients

KII ¼ 16

7
ffiffiffi
π

p 1

1−ν
Δσa1=2 and KIII ¼ 16

7
ffiffiffi
π

p Δσa1=2

where v is the Poisson’s modulus, Δσ is the stress
drop assumed constant inside the fault, and a is the
fault radius. For the usual value v=¼ used in seis-
mology, the mode II stress-intensity factor is four
thirds times the mode III intensity factor. In summa-
ry, slip is maximum at the center of the fault and has
an ellipsoidal shape that decreases to zero near the
edges of the fault. Associated with this decrease in
slip, inverse-square root singularities appear at the
edge of the fault (r = a).

2.2 Circular fault. Brune’s model

The most common model for a circular fault of finite
dimensions was proposed by Brune (1970, 1971).
Brune derived this model from the assumption that
faulting occurred instantaneously on a flat circular shear
crack. From several energy conservation arguments he
proposed that the far-field displacement of S waves at
distance r from the fault was of the form

u tð Þ ¼ 1

4πρβ3

1

r
RSM 0ω

2
c β t−

r

β

� �
e−ωc t− r

βð Þ H t−
r

β

� �
ð4Þ

where RS is the S wave radiation pattern and ρ and β are
the density and shear wave velocity of the elastic medi-
um, respectively. H is Heaviside’s distribution. In Eq. 4,
ωc is the corner frequency. The amplitude of the Fourier
spectrum of u(t) is given by,

���U ωð Þ
��� ¼ 1

4πρβ3

1

r
RSM 0

1

1þ ω2=ω2
c

ð5Þ

This Fourier spectrum has the usual form of Brune’s
inverse ω squared model. It is flat at low frequencies less

than the corner frequency ωc and decays like the inverse
square of the frequency ω at high frequencies. From an
argument about the conservation of high-frequency en-
ergy, Brune proposed that the corner frequency was
related to the fault radius by

ωc ¼ 2:34
β

a
ð6Þ

The corner frequency ωc is inversely proportional to
the source radius a. This relation is widely used in
seismology and earthquake engineering to determine
the radius of the fault from the corner frequency of
the spectrum of S waves. It should be noted that the
radiation from an instantaneous circular shear crack
is not of the form (Eqs. 4 and 5) and that the actual
high-frequency decay of the spectrum (Eq. 5) is of
the order of ω−5/2, i.e., faster than ω−2, as shown by
Madariaga (1976).

2.3 Energy balance for Brune’s circular model

A very important and still poorly understood issue in
seismology is the energy balance of earthquakes. The
circular crack model has the very useful property that all
relevant energies can be computed exactly. For a circular
crack, the static slip produces a total strain energy re-
lease that can be directly computed from the slip distri-
bution (Eq. 1):

ΔW ¼
Z
S

σΔu dS ð7Þ

where σ ¼ 1=2 σ0 þ σ f

� �
is the average stress acting

on the fault. This energy is actually dissipated in two
ways: first as friction (mostly heat) that is equal to

ΔT ¼
Z
S

σ fΔu dS ð8Þ

and as the available elastic energyΔU, the energy that is
available to produce seismic radiation and to make
rupture grow:

ΔU ¼ 1

2

Z
S

ΔσΔu dS ð9Þ

with ΔW=ΔU+ΔT. In a circular crack, the available
strain energy can be directly computed from the slip
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distribution (Eq. 1) since Δσ=σ0−σf is assumed to be
constant, so that

ΔU ¼ 8

7

Δσ2

μ
a3 ð10Þ

We can now compare the available energy (Eq. 10)
with the seismic energy actually radiated by Brune’s
model. This can be computed from the expression for
the energy radiated by a point source (Eq. 4.87 of Udias
et al. 2013):

Es ¼ 1

4π2ρ
1

α5
R2
P

� 	þ 1

β5 R2
S

� 	� �Z
−0

∞
ω2 M0 ωð Þ

��� ���2dω
for S waves, we get

Es ¼ 1

16πμ
R2
S

� 	
M 2

0

ω3
c

β3 ¼ 2:34

7
4 R2

S

� 	Δσ2

μ
a3

where we wrote M0 and ωc in terms of stress drop Δσ
and the radius of the fault a. Finally, we use the root
mean squared averaged radiation pattern 〈RS

2〉=0.4 to
find

Es ¼ 0:535
Δσ2

μ
a3 ¼ 0:47ΔU ð11Þ

The value of 0.47 for the ratio between Es and ΔU
was assumed by Brune (1970, Eq. 39). Defining the
radiation efficiency (Husseini and Randall 1976) as
ηr =Es/ΔU, Brune’s model has an efficiency of 47 %.
This about half the maximum possible radiated energy.
Where does the rest of the available energy go? It goes
into fracture energy, the energy that is used to create the
fault surface. This could not be clearly explained in
Brune’s (1970) model because he assumed that the fault
broke instantaneously at time t=0.

2.4 Scaling laws

Earthquakes occur with very different sizes from very
small ones that can only be detected by extremely
sensitive instruments to very large ones that produce
catastrophic damage and ground rupture along hundreds
of kilometers. It is possible to establish scaling laws
among the parameters that control seismic rupture, so
that some parameters can be expressed in terms of
some other more fundamental ones (Madariaga and
Olsen 2002). The first seismic scaling law was intro-
duced by Aki (1967) from considerations about the
different magnitude scales that were in common use at

the time. His argument was that all these magnitude
scales could be reconciled if all earthquakes shared the
seismic wave spectrum with a flat part at low frequen-
cies and with ω−2 decay of amplitude at high frequen-
cies, just like the Brunemodel of expression (5). He then
compared the spectrum of earthquakes of different sizes
and concluded that the corner frequency was inversely
proportional to the size of the earthquake, and that the
moment was proportional to the stress drop times the
cube of the source length and times the inverse of the
cube of the corner frequency, that is:

M 0≈Δσa3≈Δσω−3
c ð12Þ

Comparing earthquakes of different size occurring in
similar tectonic areas, he found that the scaling relation
implied that within an order of magnitude, stress drop
Δσ was essentially the same for all earthquakes. It has
been observed by Kanamori and Anderson (1975) and
Hanks (1977) that most earthquakes have fairly constant
stress drops between 0.1 and 10MPa. In Fig. 1, we show
a collection of observations of moment and length of
many earthquakes, in many different environments in-
cluding very recent events of large magnitude (from
Zollo and Emolo 2011). It is observed that the ensemble
of observations fills a region between two lines that
correspond to stress drops of 1 to 10 MPa for an equiv-
alent circular fault. The moments reported in Fig. 1
stretch over 10 orders of magnitudes.

2.5 Energy scaling

If we follow the circular shear crack model, we
observe that strain energy change during an earth-
quake scales like ΔU∼Δσ2a3 (see Eq. 10); while
moment scales like M0∼Δσa3 (Eq. 3). Thus, two
quantities that have the same dimensions (J=Nm)
scale differently, one like Δσ the other like Δσ2.
We can now recall relation (Eq. 11) according to
which radiated energy also scales like Es∼Δσ2a3.
It is clear that the circular crack model has addi-
tional features that were not taken into account in
the instantaneous crack model of Brune. These
differences between the scaling energy and mo-
ment with stress drop are not always obvious
because very often, it is assumed that Δσ is the
same for all earthquakes. We can finally produce
an alternative scaling law between energy and
moment for Brune ’s model based on the
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relationship (Eq. 11) where we replace the radius a
by its expression (Eq. 6) in terms of the corner
frequency:

Es ¼ 0:00796
M 2

0

μ
ω3
c

β3 ¼ 1:9739
M 2

0

μ
f 3c
β3 ð13Þ

Where ωc = 2πfc. This relationship can be used to test
whether Brune’s model applies to a particular earth-
quake or to a suite of seismic events. In general, we
should expect that the coefficient in Eq. 13 depends on
the rupture process, average rupture speed, friction law,
etc. (see, e.g., Ide and Beroza 2001; Abercombrie and
Rice 2005; Lancieri et al. 2012).We notice that although
the numerical coefficient in Eq. 13 was computed for
Brune’s model, it can be computed for any kinematic or
dynamic model of seismic radiation. Expression 13 also
shows that radiated energy is not proportional to mo-
ment but to moment squared.

3 Rupture of a quasi dynamic circular fault

As already mentioned earlier, Brune (1970) assumed
that rupture occurred instantaneously across the fault
so that the process of fracture propagation was not
modeled. A more realistic model for a circular earth-
quake source is a shear fault that expands at subsonic
velocity v under constant stress conditions (Madariaga
1976). We call quasi-dynamic model one with imposed
rupture speed but well-defined stress drop. In more
advanced earthquakemodels, discussed in the following
sections, the rupture velocity will be allowed to change
as the crack propagates. For many earthquakes, howev-
er, the circular crack propagating at constant speed
provides a sufficiently simple model that can be used
to compute its most fundamental properties, like size,
stress drop, etc.

We consider a circular rupture embedded in an infi-
nite homogeneous isotropic elastic medium where a
circular crack expands from the origin at constant rup-
ture velocity. Although this very simple problem has no
exact solution, it can be solved numerically by a finite
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differencemethod. At the timewhen thismodel was first
studied, computer resources were very limited so that
several simplifying assumptions were made. One of
them was that as the crack was expanding slip on the
fault was everywhere parallel to the applied stress. Al-
though we know that this approximation is not entirely
correct, modern studies have shown that the assumption
was reasonable (Bizzarri and Cocco 2003). If slip on the
fault is everywhere parallel to a coordinate axis, the
problem can be reduced to a cylindrical one and
solved numerically with a specific technique.
Nowadays, it is just as simple to use a straightforward
cubic grid as proposed by Madariaga et al. (1998) for
finite differences.

Since we are assuming that the material proper-
ties and the initial stress field are homogeneous,
once the rupture begins to propagate it would
continue to propagate without limit. If we want
the fracture to come to a stop, when the radius
takes a particular value a, we have to impose this
as a boundary condition, that is, motion stops at
r = a when t = a/v. Let the fault plane be on the
plane x3 = 0, and shear stress act in the x1 direction
(σ13=σ0). Before rupture initiation (t < 0), the fault
is subjected to a uniform state of stress at large
distances from the fault. At t= 0, the shear stress
acting on the fault is considered to be sufficient to
initiate rupture. Before rupture stops, we can solve
for the slip rate inside the fault exactly using the

self-similar slip distribution found by Kostrov
(1964). Slip inside the fault before the rupture
stops is given by

Δu ¼ C vð ÞΔσd
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vtð Þ2−r2

q
for r < vt ð14Þ

Where C(v) as a constant that depends on the
rupture speed. Actually, C(v) is very close to one
for the entire rupture velocity range from 0 to the
Rayleigh wave speed. According to Madariaga
(1976), C(v)= 1 for v= 0, and C(v)= 0.9 when v
approaches the Rayleigh wave speed. Taking the
derivative with respect to time, the slip velocity
can be written for constant Δσd as

Δu: ¼ C vð ÞΔσd

μ
v2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vtð Þ2−r2

q for r < vt ð15Þ

which shows that as in all crack models, the slip
velocity field has an inverse-square root singularity
right behind the propagating rupture front (r = vt).

In Fig. 2, we show the numerical solution for slip as a
function of position and time obtained for a circular
crack that propagates at 80 % of the shear wave speed.
The elastic medium has a P wave speed of 6200 m/s,
shear wave speed of 3520 m/s, and density is 2700 kg/
m3; thus, the rupture speed is v=2534 m/s. We assumed
that kinematic (or effective) stress dropΔσdwas 4MPa.
As observed in the figure, once the rupture reaches the
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final radius of a= 20 km, it stops growing instanta-
neously. This generates three healing phases that prop-
agate inward from the edge of the crack with velocities
α, β, and the Rayleigh wave speed cR. The slip distri-
bution in Fig. 2 is plotted along the longitudinal (mode
II) axis. A very similar distribution can be plotted along
the transverse (mode III) axis; differences appear only
after the arrival of P healing phase because along the
mode III axis, P wave is very weak, almost null. Thus,
even for this very simple model, slip distribution is not
cylindrically symmetric on the fault plane once the
rupture front interacts with the borders of the fault.
Our numerical calculation takes into account these
asymmetries.

Once the healing phases reach the center of the fault,
slip reduces rapidly and it ceases completely after the
Rayleigh waves have crossed each other. This healing
occurs because after the Rayleigh wave, slip rate be-
comes negative reversing the sense of friction. The final
slip on the fault after the rupture stops can be approxi-
mated by the static solution for a circular crack (Eq. 1).
Although the final slip computed numerically with high
resolution is not exactly of the elliptical shape predicted
by the static solution (Eq. 1), the elliptical distribution is
a good approximation for many purposes. Computa-
tions for many simulations at different speed show that
the static stress drop Δσs is always larger than the
dynamic stress drop Δσd for the circular shear crack.
For instance, for a crack running at v=0.9β, Madariaga
(1976) found that Δσs= 1.2Δσd.. For the example
shown in Fig. 2, the final static stress drop is not uniform
but is still about 15 % higher than the kinematic stress
drop (effective stress in Brune’s terms). Finally, we can
compute the seismic moment released by the circular
crack model of Fig. 2, it isM0=4.9×1019 Nm, which is
equivalent to a moment magnitude Mw=7.0.

3.1 Energy balance of the quasi-dynamic circular shear
fault

We mentioned that Brune (1970) made a crude approx-
imation to the radiation from a circular shear crack by
equating the high-frequency energy flow in the direction
perpendicular to the fault to that observed in the far field.
The self-similar circular crack model provides a simple
way to compute the energy balance. For that purpose,
we use the model of Kostrov (1964) growing at constant
speed v from an initial point as was assumed in the initial
part of our numerical solution shown in Fig. 2. As

shown by Madariaga (1976) the total energy released
by fracture growth, called EF, is

EF ¼ 2π
Z a

0
Gc r; vð Þrdr

where Gc(r,v) is the energy release rate computed for a
self-similar circular crack growing at constant speed v.
Omitting details EF is:

EF ¼ π

3
g vð ÞΔσ2

d

μ
a3 ð16Þ

Where g(v) is smoothly varying function of rupture
velocity that has a complex expression given by
Madariaga (1976). A misprint in the original expression
was corrected by Ide (2002). The rupture velocity-
dependent factor g(v) decreases monotonically from 1
at v=0 to 0.1 at v=0.9β. The most important feature of
Eq. (16) is that the total energy spent in propagation of
the circular rupture grows in proportion to the cube of
the radius.Gc(r), the specific energy release rate per unit
surface of the fault, grows like the radius as the fault
expands. Thus, Gc for a circular shear crack is not a
constant but a function of radius. Recalling from Eq. 10
that the strain energy release by a circular crack also
grows like the cube of the radius and so does the
radiated energy (Eq. 11) we observe that all energy like
quantities in the circular fault grow in proportion of
radius to the cube and the square of the stress drop.

The most obvious consequence of the scaling of
energy balance is that for a circular shear crack growing
at constant rupture speed, the energy release rate is not a
material constant as assumed in the Griffith model of
fracture (see discussion by Abercombrie and Rice 2005
and Lancieri et al. 2012). Either faults do not propagate
at constant rupture speed and adjust their speed to pro-
duce a constant energy release rate or, more likely, Gc is
not a material property.

3.2 Far-field displacements of a dynamic circular fault

Up to this point, we have discussed the main
features of the slip distribution produced by a
propagating circular fault. Now, we will consider
the relation between elastic wave radiation field
and the dynamic process at the source. The far-
field P or S wave displacement produced by the
circular crack in a homogenous medium can be
computed from the distribution of slip velocity
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Δu:. For the circular shear crack the far-field S
waves are given by

uP;S r; θ;ϕ; tð Þ ¼ μ
4πρc3

1

r
Rc

Z
Σ
Δ u

:
r′;φ; t−

r

c
þ r′sinθ

c

� �
dS ′

ð17Þ

where P,S indicate whether a P or an S wave is
being modeled. c stands for the P or the S wave
speed as a function of the wave being computed.
ri is the position vector from the origin to the
observation point (r, θ, φ) with θ as the polar
angle of the vector ri measured from the vertical
to the fault, φ is its azimuth, and r the position
on the fault. Rc is the radiation pattern correspond-
ing to a shear fault point source at the center of
the fault, which we consider to be only a function
of the location of the observation point Rc(r, θ, φ).
A simple kinematic model for a circular crack was
proposed by Sato and Hirasawa (1973) in which
rupture initially followed the Kostrov (1964) slip
distribution (Eq. 14) and then slip rate dropped to
zero at some finite time. Such a model is the only
one for which we know an analytical expression
for the far-field radiation (see Udias et al. 2013,
section 7, for a full discussion).

For all other dynamic models, the far-field radiation
may be computed using Eq. 17. Its numerical evaluation
poses no problem once the slip rate distributionΔu: has
been computed. We are also very much interested in the
spectrum of the radiated waves because most studies of
earthquakes parameters are done using the spectrum.
The spectrum of radiated waves can be computed by
straightforward numerical Fourier transform of Eq. 17.
We used Eq. 17 to compute the far-field radiation from
the circular crack model shown in Fig. 2. We callΩ0 the
term under the integral in Eq. 17.We computed it for the
angles θ=60° and φ=0 is shown in Fig. 3. The ampli-
tude is given in units of moment rate for displacement,
the duration of the signal is about 12 s, which is approx-
imately twice the time for the rupture to cross the fault
radius of 20 km at a rupture speed v=2534 m/s.

In Fig. 4, we show the displacement spectrum
for the shear waves. We can distinguish three parts
in the far-field displacement spectrum. In the first
part, corresponding to the low frequencies, the
spectrum is flat with a value proportional to the
seismic moment M0 = 4.9 1019 Nm, as the fault
appears as a point source. In the second part,

corresponding to the intermediate frequencies, the
shape of the spectrum is controlled by the size of
the fault. In this part, the envelope of the spectrum
may have several decay rates, depending on the
azimuth of the observation point. At high frequen-
cies, beyond the corner, the spectrum decays like
ω-2. The high-frequency decay, inversely propor-
tional to the square of the frequency, is controlled
by the discontinuities of the seismic pulse, in
particular by the stopping phases. As we see in
Fig. 3, the most important stopping phase is ob-
served at time t1 = 2 s, near which the far-field
displacement has an abrupt change. This is the
first stopping phase coming from the edge of the
fault closest to the observer. The second stopping
phase, located at t2 = 11.5 s, is less remarkable
than the first one because it is emitted by the far
edge of the fault so that directivity is weaker. This
stopping phase suffers a phase shift (Hilbert trans-
form) when it crosses the axis of the fault. More
details were presented by Madariaga (1977) who
found asymptotic approximations for these stop-
ping phases.

The complicated shape of the spectrum shown
in Fig. 4 depend on both θ and φ. This makes it
difficult, in practice, to provide a single value of
the corner frequency as a function of radius and
rupture velocity. The corner frequency, as we have
seen, is usually determined as the intersection of
two straight lines fitted to the spectrum in the low
and intermediate frequency parts. A general prop-
erty of the amplitude spectra is that the corner
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frequencies of P waves are higher than those of S
waves. This reflects the fact that in the time do-
main, the S wave pulses are longer than those of P
waves. For v= 0.9β and α/β= 1.732, the values for
the corner frequencies of P and S waves are

ωc
P ¼ 1:16 α=a

ωc
S ¼ 1:32 β=a

ð18Þ

A much more detailed study of quasi-dynamic and
dynamic circular shear crack models was carried
out by Kaneko and Shearer (2014, 2015) who
computed corner frequencies for different rupture
seeds and radiation angles (θ, φ).

4 A dynamic circular fault in a homogeneous
medium

In this section we study the spontaneous propagation of
rupture starting from an initial circular asperity and the
arrest of rupture at an unbreakable circular barrier.

4.1 Friction

The problem of dynamic rupture is ill-posed if there is
no friction law applied on the fault. The consequence of
the lack of friction is that rupture is instantaneous or
propagates at the P wave speed in mode II and the shear
wave speed in mode III. For any causal control of
rupture, we have to take into account friction on the
fault plane, or alternatively, we have to introduce the

amount of energy spent in rupture growth, Gc defined
earlier. The origin ofGc in friction laws was first studied
by Ida (1972) who used slip weakening at high speeds.
Similar results were derived for quasi-static crack
growth by Palmer and Rice (1973).

Friction controls the initiation and propagation of
rupture and the healing of faults. Because at high speeds,
most friction laws are equivalent (see Bizzarri and
Cocco 2003 and Daub and Carlson 2008), in the fol-
lowing, we will use the slip-weakening friction law, in
which the slip is zero until the total stress reaches a peak
value of static friction that we denote σs. Once this stress
has been reached, the slip Δu starts and the friction
decreases until it reaches a residual or kinematic friction
σk:

σ Dð Þ ¼ σs− σs−σkð ÞΔu=Dc for Δu < Dc ð19Þ

where Dc is the slip-weakening distance and σs and σk
are the static and kinematic friction, respectively. For
Δu>Dc the stress drop is total, so that σ=σk. This
friction law has been extensively used in numerical
simulations of rupture by Andrews (1976), Day (1982)
and many others. Without loss of generality, and for
simplicity of the numerical simulations, wewill measure
all stresses with respect to the kinematic friction σk. This
is equivalent to assuming that σk =0 in Eq. 19. It is an
important property of linear dynamic ruptures that the
slip, energy balance, and seismic radiation depend only
on the stress change, not on the absolute stress levels. In
other words, we can add to Eq. 19 any stress field that is
in equilibrium with its sources because the seismic
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waves generated by the fault ignore the presence of
preexisting stresses in the elastic medium. Seismic
waves only interact with preexisting stress in the fault
zone or if wave propagation is non-linear. The most
important feature of the friction law (Eq. 19) is that in
order to propagate rupture along the fault plane, the
elastic medium surrounding the fault has to provide a
fracture energy per unit surface equal to the energy
release rate, Gc =½ (σs−σk)Dc.

4.2 Scaling of dynamic rupture

The equations of motion for elastic waves contain no
intrinsic length or stress scales except for the size of
possible elastic wave heterogeneities. For uniform elas-
tic media, the stress and length scales are entirely deter-
mined by the boundary conditions and the initial stress
field. From a dimensional analysis of the source prob-
lem in a uniform medium, we conclude that rupture
propagation is completely controlled by the following
physical and geometrical parameters:

1. The initial stress field σ0;
2. The parameters Dc, σs, and σk, of the friction law
(Eq. 19).
3. The length scales that define the geometry of the fault;
in our case, the radius a.

Like any other non-linear problem in physics, the
solutions of earthquake dynamics are controlled by a
number of non-dimensional parameters, which can be
defined from appropriate dimensional analysis of the
equations and boundary conditions. For earthquake dy-
namics, there are two non-dimensional numbers, which
have been well identified. These are the stress ratio (S),
introduced by Das and Aki (1977),

S ¼ σs−σ0

σ0−σk
ð20Þ

and the energy ratio (k) proposed by Madariaga and
Olsen (2002)

κ ¼ σ0−σkð Þ2a
μ σs−σkð ÞDc

ð21Þ

The ratio S is closely related to the transition from sub-
to super-shear rupture propagation, while κ controls the
initiation of rupture and the overall qualitative nature of
the rupture. It is possible to derive other parameters from

the equations of motion; for instance, the ratio of the
overall dimension of the fault and the average fault slip,
but they have not been discussed in the literature.

Let us study the spontaneous propagation of rupture
on a flat fault. Rupture occurs under slip-weakening
friction defined in Eq. 19. We use the same overall size
as in the study of the quasi-dynamic circular fault. The
space and time steps will also be the same: 200 m and
0.01 s, respectively, insuring that the Courant–
Friedrichs–Lewy (CFL) constant that controls conver-
gence of finite differences is H=0.178. In order to
obtain a circular rupture, we introduce an unbreakable
barrier, concentric with the initial asperity, with radius
20 km. It would be interesting to study cases where the
initial asperity or hypocenter is not located at the center
of the circle (Kaneko and Shearer 2015). Since we are
interested in comparing spontaneous rupture simula-
tions with the quasi-dynamic circular crack model of
the previous section, we use a stress drop of 4.5 MPa so
that the rupture does not become super-shear in our
simulation. Peak stress in the friction law was 8 MPa
andDcwas 0.2 m so that energy release rate was 0.8MJ.
The non-dimensional parameter κ was 1.21. These pa-
rameters insure that rupture propagation is sub-shear in
the in-plane direction. Snapshots of the slip rate are
shown in Fig. 5 at several successive instants of time
measured in seconds. We observe in Fig. 5 that after
1.7 s, the rupture becomes spontaneously elongated in
the horizontal direction, which is also the direction of
the initial stress. In this direction, mode II prevails. In
the transverse (vertical) direction, the slip is in mode III.
Thus, as already remarked by Das (1980) and Day
(1982), the rupture tends to grow faster in the in-plane
direction, which is dominated by mode II. At time
t=6.5 s, the rupture has reached the unbreakable border
of the fault in the in-plane direction and is already
healing in the in-plane direction. At time t=8.1 s, the
stopping phases generated by the edges of the fault are
moving toward the center of the fault. The slipping
patches in the darker regions are now elongated in the
antiplane direction, owing to slower healing.

4.3 Radiation from the spontaneous circular crack

How much does spontaneous rupture affect the quasi-
dynamic circular crack models? To respond to this ques-
tion, we computed the seismic radiation from the dy-
namic model. As for the quasi-dynamic model, there are
significant differences in the seismic signal pulses
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radiated in different directions of space. To illustrate this
variability, we show in Fig. 6 the radiation in two
directions of space: along the mode II direction and
along the transverse or mode III direction. The angles
θ and ϕ are the polar angles measured from the normal
to the fault plane and the azimuth measured from the
direction of slip on the fault. The displacement signals in
two different directions (θ= 60°, ϕ=0° and θ=60°,
=90°) are shown in Fig. 6. Both have roughly the same
duration, of about 10 s, but are quite different because
one (for =90°) has a larger displacement at the begin-
ning of the signal while the other is stronger near the
end. The reason is that the stopping phases, the abrupt
changes in slope in the figures, have different

amplitudes. The corresponding amplitude spectra are
shown in Fig. 7; these spectra have the typical ω−2

spectral decay at high frequencies. We can compare
the signals of Fig. 6 with those emitted by the quasi-
dynamic model, shown in Fig. 3. They are similar, but
the size of the stopping phases is again different. The
spectra of Figs. 3 and 6 are very similar: they have the
same spectral shape and the corner frequencies vary
from 0.1 to 0.12 Hz, the quasi-dynamic model having
the highest corner frequency. It is not surprising that
very different time-domain signals produce similar
spectra. The reason is that the spectra are dominated
by the stopping phases, which carry the information
about rupture arrest. Although arrest is faster in the in-

Fig. 5 Snapshots of the slip rate
on a finite circular crack of 20-km
radius with a fixed border. The
darker regions show higher slip
rates. The rupture propagation is
sub-shear. The non-dimensional
parameter values are S= 0.78 and
k= 1.71. The rupture reaches the
border at 6.1 and at 7.3 s the
stopping phase propagates
inwards
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plane direction, the difference in arrival time of the
stopping phases is not very large, so that the main
features of the spectrum are preserved. It is possible to
study the variation in the corner frequency as a function
of the polar or azimuth angles, but the effect of moving
the initiation point with respect to the circular border is
much more important (see Kaneko and Shearer 2014,
2015 for a full discussion).

5 Dynamic inversion

The first attempts at dynamic inversion were based on
the conversion of source models obtained by kinematic
inversion into dynamic models (Fukuyama and
Mikumo 1993; Bouchon 1997; Ide and Takeo 1997).
The first attempts at direct dynamic was the trial and
error method used by Peyrat et al. (2001) to develop a
dynamic rupture model of the Landers earthquake. This
is a tedious but enlightening method for understanding
rupture propagation starting from a kinematic slip mod-
el. In the present section, we introduce a dynamic non-
linear inversion method where the best model is
searched by exploration of a limited parameter field.
This approach is non-linear because the seismic waves
do not depend linearly on the parameters of the source
model. However, if we can reduce the source model in
such a way that it can be processed by a single node in a
multicore machine, it is possible to run many different
models in parallel. The first attempts at dynamic inver-
sion were made by Peyrat and Olsen (2004), Corish

et al. (2007) and Di Carli et al. (2010), who inverted
the Mw 6.7 Tottori 2000 earthquake in Japan. From
these early experiences, it was clear that dynamic inver-
sion was only feasible for relatively simple models. Di
Carli et al. (2010) used an elliptical patch model pro-
posed by Vallée and Bouchon (2004) to capture the long
wavelength features of an inverted event.

5.1 Iwate earthquake of 2008

The 2008 Iwate MW=7.1 intraplate earthquake at 115-
km depth was well recorded by the Japanese strong
motion networks KiKnet and K-NET, as shown in
Fig. 8 where the star shows the epicenter and the
rectangles show the locations of the strong motion
instruments used in the inversion. The gray and black
circles show the sites that were used by Ruiz and
Madariaga (2013) to do a second inversion to verify
that the results are robust. The Iwate earthquake was
studied in detail by Suzuki et al. (2009), who proposed
two different kinematic source models. One using a
couple of intersecting fault planes and another that uses
a single fault. For dynamic inversion, we adopted the
single fault plane model shown in Fig. 8 (strike 178°,
dip 73°, and rake −95°). For dynamic inversion, we used
a single elliptically shaped fault model instead of the
usual grid of rectangles in kinematic inversions. The
stress and friction were uniform inside the elliptical fault
patch. Rupture propagation was controlled by the slip-
weakening friction law (Eq. 19). For simplicity, in the
following, we will assume that the residual friction
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σk =0. In the forward dynamic model, rupture starts at
the hypocenter, triggered by a small circular asperity.
Once the rupture breaks the small asperity, it will grow
or stop spontaneously depending on the values of the
stress field σ0 and the friction law. For the dynamic
inversion, Ruiz and Madariaga (2013) used a total of
10 parameters, which included the parameters of the
friction law and the geometry of the fault. The initial
asperity may be located anywhere inside the fault. Its
location was part of the inversion. Since from seismic
data we cannot distinguish between the barrier and
asperity models (Ruiz and Madariaga 2011), the inver-
sion was made using the asperity model; the region
outside the ellipse was considered to have a very large
negative initial stress load that was enough to stop the
rupture when it reached the edge of the ellipse.
Converting an asperity model into a barrier model is
straightforward. The synthetic and observed records
were compared using a simple normalized L2 norm.
The search for the best model was made using
the neighborhood algorithm (NA) of Sambridge
(1999, 2001) although other minimization tech-
niques, such as a genetic algorithm, can be used
(Diaz-Mojica et al. 2014).

A three-dimensional fourth-order staggered-grid fi-
nite difference method with absorbing boundaries and
thin fault boundary conditions was used to solve the
forward dynamic rupture simulation (Madariaga et al.
1998; Dalguer and Day 2007). The spatial and temporal
steps were 200 m and 0.005 s respectively, so that the
CFL constant (H=βΔt/Δx) for this grid is everywhere

less than 0.3 and the finite difference method is stable.
The grid had 160×160×160 elements and was centered
at the hypocenter on the fault plane. The fault zone was
32-km wide and 32-km deep but only a small part broke
during the earthquake. The AXITRA spectral code was
used to simulate wave propagation from the source to
the receivers (Coutant 1990). For AXITRA, we used a
velocity model proposed by Suzuki et al. (2009). For the
dynamic modeling with finite differences, the structure
near the source was assumed to be homogeneous with
shear wave speed 4.45 km/s, density of 3300 kg/m3, and
a rigidity of 66 GPa.

Non-linear dynamic inversion was carried out for the
strong motion records located within a 40-km radius
from the epicenter. Beyond this distance, conversion
into local surface waves may affect the records signifi-
cantly. Table 1 shows the optimal values for the most
significant parameters obtained by dynamic inversion.
In the table, a and b are the semiaxes of the source
ellipse and the stresses are referred to kinematic friction
σk =0. The best model obtained by the neighborhood
algorithm had a misfit χ2 =0.4, meaning that our model
explains 60% of the observed data, which also converge
to a seismic moment M0 1.5×10

19 Nm, similar to that
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Fig. 8 Dynamic inversion of the
Mw 7.1 Iwate intermediate-depth
earthquake of 24 July 2008. The
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for the inversion and the circles
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and Madariaga (2013) for the
verification of the inversion
results

Table 1 Parameters for the best model inverted for the 2008 Iwate
earthquake

a (km) b (km) σ0 (MPa) σs (MPa) Dc (m)

4.02 8.06 34.25 55.96 1
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obtained by Suzuki et al. (2009) from kinematic
inversion.

The misfits for each step in the inversion are shown
in Fig. 9. In this figure, we also show the values of κ
computed according to Eq. 21 for each model using an
average radius of the source ellipse for R; k converges to
the value 1.34. The convergence to a well-defined value
of k can be explained by a tradeoff between the initial
stress and the friction law parameters.

Figure 10 shows snapshots of the slip rate on the fault
plotted every 0.4 s. The largest values of slip rate are
attained near the boundaries of the ellipse where the
large negative stress stopped the rupture. The overall
characteristics are short rupture duration of less than
2.1 s, implying a very high sub-shear rupture velocity.
Rupture starts in the small asperity and then propagates
to the rest of the fault, mainly in a direction away from
the surface. The overall slip distribution for our dynamic
model is a simplified version of the kinematic slip
distribution obtained by Suzuki et al. (2009). Overall
size and moment are the same although the kinematic
slip distribution is heterogeneous with a main slip patch
similar to ours.

The results listed in Table 1 and shown in the pre-
ceding figures indicate that the Iwate intermediate-depth

earthquake had a relatively small size considering that
the maximum slip was 4 m. The moment of the event
was 1.5 1019 Nm. As a consequence, the stress drop was
large, 34.7 MPa. The most important parameters from a
dynamic point of view are the peak friction stress
σs=56 MPa and the slip-weakening distance Dc=1 m,
which together give an energy release rate of 23 MJ/m2;
this is also very large compared with those estimated for
events of this magnitude at shallower depths. This result
may not be generalized to other intermediate-depth
earthquakes because, as show by Allmann and Shearer
(2009), stress drops determined from spectral analysis
vary widely in different geographical zones and stress
regimes. See also Vallee (2013) who reported that
shallow and deep events have similar strain drops at
shallow and intermediate depths, stress drops increasing
only due to the increase of rigidity.

The synthetic displacements reproduce the observed
records very well. Figure 11a shows the simulation of
the EW components of stations iwth03 and inth23. The
synthetics and observed records have not been corrected
for any time shift so that the velocity model and the
structure at the source are compatible. The duration of
the signals is of the order of 4–5 s, implying a very fast
rupture and a massive stress drop. In Fig. 11b, we also
show the Fourier spectra computed for the two records
shown in Fig. 11a. The dynamic models fit the spectra
very well: they all resemble Brune’s ω−2 model below
the low-frequency cutoff of the low-pass filter applied to
the data.

5.2 Resolution of the inverse problem

Whether one uses kinematic or dynamic inversion, a
crucial test of the inversion is the non-uniqueness of
the solutions. In order to test this point, we proceeded to
do a large number of models using a variation of the
classical Monte Carlo technique. For this purpose, we
chose a small subset of the parameter space to explore
values of the dynamic parameters σ0, σs, and Dc, keep-
ing all other parameters fixed to those of the best model
obtained using NA, Table 1. In Fig. 12, we plot the
results of Monte Carlo exploration. Models with misfits
lower than 0.5 are drawn with large dots, larger misfits
are saturated to 0.5. These large dots represent a family
ofmodels that fit the observations well. Figure 12a show
the seismic momentM0 of the models against their k. All
the models that fit the data with error less than 50 % are
grouped in an area where the seismic moment varies
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around 1.5×1019 Nm and k varies between 1 and 1.5.
Figure 12b shows the relation among S, k, and the
misfits of all models. We observe that the acceptable
solutions are located in an intersection of k and S values.
Then, k and S are parameters that control rupture prop-
agation better than σ0, σs, and Dc, independently.

6 Discussion and Conclusions

We have reviewed the development of earthquake dy-
namics of circular faults from a relatively simple subject
whose main purpose was to explain the origin of seismic
radiation and establish general scaling relations between
seismic radiation, seismic moment, and the size of
earthquakes. It was soon realized that ruptures were
controlled by the relative values of stress drop and the
friction law that opposes slip between the two sides of

the fault. Curiously, although very complex models of
faulting have been proposed including the role of many
mechanical properties like advanced friction laws, pore
pressure effects, thermal effects, etc., the study of
earthquake radiation by the propagation of rupture has
been relatively limited. A possible explanation is that it
is not obvious how those complexities affect seismic
radiation and how much of it is observable. As shown
by Madariaga (1977) and many others, the radiation of
seismic waves into the far field is largely dominated by
large changes in the propagation speed and stress
conditions near the rupture front rather than the
conditions under which ruptures propagate. Actually,
one of the curious results of early studies in dynamics
is that a rupture front moving at constant speed does not
radiate. This was established very early in the study of
earthquake dynamics in a series of papers published in
the early 1970s by Freund (1972a, b) and Kostrov

Fig. 10 Snapshots of the slip rate
field for at 0.4-s intervals for the
best model found by dynamic
inversion for the 2008 Iwate
earthquake (Ruiz and Madariaga
2013). The sides of each square
are 32 km in length
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(1966, 1973) and later generalized byMadariaga (1983)
for an arbitrarily moving rupture in antiplane mode.

Earthquake dynamics was initially based on the solu-
tion of a relatively simple, but well-defined problem: the
rupture of a circular crack by a rupture that started at the
center of the fault and propagated at constant speed
(Kostrov 1964). This model has a high degree of symme-
try, but in spite of this, its solution is not symmetric as a
consequence of the different response of the earth to
modes II and III type of fracture. Radiation from this
model is quite complex; but for most practical applica-
tions, it is often reduced to a single spectral shape of the
ω−2 type proposed by Aki (1967) and Brune (1970). The
advantage of the simple crack model is that the energy
balance can be established completely, i.e., strain energy,
radiated energy, and fracture energy are known. Since
fracture energy release depends on the speed of the rup-
ture front, rupture velocity plays amajor role in the energy
balance. This is the reason that radiated energy and mo-
ment scale differently (see Ide and Beroza 2001). Appar-
ent stress or energy moment ratio is not the same for all
earthquakes producing departure from strict static self-
similarity. The simple quasi-dynamic rupture model has
been extended to a more natural spontaneous rupture
model by many authors starting with Day (1982). Recent-
ly, Kaneko and Shearer (2014, 2015) have done extensive
analysis of the problem for many spontaneous circular
and elliptical rupture. The variation of corner frequency

around the source is quite large as could be expected from
simple energetic arguments.

Another approach to earthquake dynamics that re-
mains still difficult in practice is dynamic inversion, i.e.,
directly searching for the rupture model from seismic
observations. The main problem is the cost of numerical
modeling of the rupture process, but the modeling is
very rapidly becoming possible at least for events that
occur in places where local site effects do not affect
groundmotion very seriously. The main issue in dynam-
ic inversion is the parameterization of the source and its
rupture process. Most seismologists and geodesists are
used to linearization; this is achieved by dividing the
source into small rectangles of uniform slip. This meth-
od is not easy to apply to dynamic models where most of
the information comes from the borders of the rupture
and from internal asperities. These are very non-linearly
related to the seismic waves emitted by the earthquake.
In spite of these difficulties, we showed that it is possible
with present day resources to do limited non-linear
inversion for seismic sources in the single elliptical
approximation. This should improve as better seismic
observations become available and improvements in
seismic wave simulation open the way to large
inversions.
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