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ABSTRACT We study a simple antiplane fault of finite
length embedded in a homogeneous isotropic elastic solid to
understand the origin of seismic source heterogeneity in the
presence of nonlinear rate- and state-dependent friction. All
the mechanical properties of the medium and friction are
assumed homogeneous. Friction includes a characteristic
length that is longer than the grid size so that our models have
a well-defined continuum limit. Starting from a heteroge-
neous initial stress distribution, we apply a slowly increasing
uniform stress load far from the fault and we simulate the
seismicity for a few 1000 events. The style of seismicity
produced by this model is determined by a control parameter
associated with the degree of rate dependence of friction. For
classical friction models with rate-independent friction, no
complexity appears and seismicity is perfectly periodic. For
weakly rate-dependent friction, large ruptures are still peri-
odic, but small seismicity becomes increasingly nonstationary.
When friction is highly rate-dependent, seismicity becomes
nonperiodic and ruptures of all sizes occur inside the fault.
Highly rate-dependent friction destabilizes the healing pro-
cess producing premature healing of slip and partial stress
drop. Partial stress drop produces large variations in the state
of stress that in turn produce earthquakes of different sizes.
Similar results have been found by other authors using the
Burridge and Knopoff model. We conjecture that all models
in which static stress drop is only a fraction of the dynamic
stress drop produce stress heterogeneity.

A fundamental problem for understanding seismicity and the
nature of large earthquakes is the origin of stress and slip
complexity on seismic faults. Although seismicity has been
carefully studied, the dynamics of the observed complexity of
seismic sources is poorly understood although it is generally
considered to be mainly due to fault segmentation. Initial work
on seismic source dynamics (1-3) was derived from models of
mode I fracture. In mode I, residual stress after opening a
crack is obviously zero. This assumption had the virtue of
simplifying the solution of the crack problems and allowed us
to calculate radiation (4) and compare it with empirical models
of radiation (5). At the end of the 1970s, the first models of
complexity (asperities and barriers) were proposed but their
relation to seismicity was not explored (6-8). A fundamental
question that was left unanswered in these models was how do
asperities arise on a fault loaded by very slow tectonic forces?
According to current models, asperities are due to preseismic
slip and foreshocks that concentrate stresses on locked areas of
the fault; so that it is not enough to consider individual events,
but the complete seismicity of the fault before a large event has
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to be studied in detail. To do this we have to specify the state
of stress before and after an earthquake. In most of the
previous work on earthquake dynamics as reviewed by Kostrov
and Das (9), it was invariably assumed that residual stress after
any event was uniform and equal to zero. This is very unlikely
as we have attempted to show in our recent work (10, 11).
The question of the origin of complexity was posed from a

completely different point of view by research on self-
organized criticality (12), and on the artificial seismicity of the
box and spring model of Burridge and Knopoff (13-18). These
studies suggested that stress and slip would become sponta-
neously heterogeneous because of nonlinear instabilities in the
mechanical model of a frictional fault. These results led to an
interesting controversy because quasi-static models studied by
Rice using the experimentally derived friction laws by Diet-
erich (19, 20) and Ruina (21) did not give rise to any significant
heterogeneity. Rice and coworkers (22, 23) suggested that
heterogeneity may be due to the lack of a continuum limit of
some of these models.
Without waiting for the clarification of nature of heteroge-

neity of problems for the Burridge and Knopoff models, we
started a study of a simple antiplane fault model (10, 11) where
the only change with respect to Kostrov's original formulation
(3) was that the friction law was assumed to be rate dependent,
as suggested by Carlson and Langer (14). In the present paper,
we present results for a simple fault with rate-dependent
friction that has been regularized at small scales by using a
slip-weakening zone (24). We will demonstrate that depending
on the value of a single parameter that measures the rate
dependence of friction, we either produce complexity or
suppress it. We are of course quite aware that our fault models
are very crude and lack many complexities of actual faults; yet
some of them have a large number of the features observed in
actual seismicity including slip and stress complexity, events of
many different sizes, variable recurrence times, etc.

Definition of the Model

Let us consider, as in Fig. 1, a two-dimensional antiplane crack
of length 2L embedded in a linear elastic medium of elastic
constant ,L and mass density p. The elastic medium is subject
to a slowly increasing uniform shear stress oyz(x, y, t) = Te(t),
due to slow plate motion or intraplate deformation. As the
external stress, Te(t), increases with time, the frictional resis-
tance to slip between the walls of the fault is eventually
overcome, and slip occurs. The amount of slip and the history
of slip on the fault depends on the nonlinear friction law that
relates shear stress transmitted across the fault T(x, 0, t), to slip
D(x, O, t), slip velocity V(x, 0, t) = D(x, O, t), and possibly to
certain state variables Oi(x, 0, t). The exact nature of this
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FIG. 1. Simple model of an antiplane fault in a homogeneous linear
elastic medium. The fault extends from -L to L and is clamped at the
ends by unbreakable barriers. The fault is driven by a slowly increasing
homogeneous shear stress field. The only possible source of hetero-
geneity in this problem is the nonlinear frictional interaction between
the walls of the fault.

friction law will be discussed after we set up the elastodynami-
cal problem.
We have assumed antiplane slip, so that the only component

of displacement that we consider is u = uy and the relevant
traction component across the fault is T = -aoy. Thus, u
satisfies the wave equation

1 a2u a2U 02U
2 at2 ='X2 + 2 [1]

where 3 is the shear wave speed. By using the symmetry about
the fault plane z = 0, we find the appropriate boundary
conditions for the solution of the problem in the upper
half-space (z > 0):

u(, 0+, t) = 0 on -oo <x < -el(t) and 2(t) <x < oo [2]

outside the slipping part of the fault delimited by 1e(t) and e2(t),

T(c, 0+, t) = Te(t) + T(D, V, 0) on -l(t) <x < e2(t) [3]

inside the fault. T(D, V, 0) is the friction law. This problem is
then a typical crack problem with mixed boundary conditions,
which consists in finding the slip D(x, 0, t) = 2u(x, 0+, t) on
the fault.

In spite of the apparent simplicity of this crack problem, in
most cases it is intractable by analytical methods because of the
mixed boundary conditions (Eqs. 2 and 3). As discussed (25),
finite differences are too inaccurate because of high frequency
dispersion, so that we adopted a boundary integral equation
method that we believe is the most appropriate for solving this
kind of crack problem (26, 27). The appropriate boundary
integral equation (10) is

T(D, V, 0) = Te(x)- V+ S,2p [4]

where S is the space-time convolution integral

S(x, t) = 2 K(6, T) Au(x - t T)ddT,

[5]
with K(x, t) = Vt2 - x2/12/(xt)H(t - IIxll/3). The convolu-
tion over space has a Cauchy-like singularity at 6 = x. The
convolution over time, on the other hand, is regular because
K(x, t) -- 0 when x 0. The details of the numerical method
used to solve this problem and its implementation in a CM5
parallel computer have been discussed (10). Thus it is suffi-
cient to say that Eq. 4 is a nonlinear algebraic equation for the
simultaneous solution of D, V, T, and 0.

Let us remark that the fault is assumed to be clamped at the
ends by unbreakable barriers. This boundary condition is
different from the periodic conditions used by Carlson and
Langer (14). To apply periodic boundary conditions, we would
have to change the Green functions used to derive Eq. 4.

Friction Law

The nature of the solution of Eq. 4 is completely determined
by the friction law T(D, V, 0). Extensive work on rock friction
has been discussed by Dieterich (28) and does not need to be
repeated here. Experimental evidence (20, 21, 29) shows that
friction laws at low slip rates should at least include three
elements: (i) direct stress change for rapid increases in slip
velocity, (ii) an intrinsic time constant for the response to
abrupt changes in velocity, and (iii) velocity weakening at
steady-state slip.
At present we are unable to introduce such laws in our

numerical method because they were proposed for very low
values of slip velocity, so that the solution of the boundary
integral equation problem would have to take into account slip
rates varying over more than six orders ofmagnitude (i.e., from
/im/s for fault creep up to m/s for seismic slip). Since the time
step for the solution of Eq. 4 is controlled by the faster time
scales present in it, the slow evolution of the fault in the
interseismic period would have to be computed at the time
steps appropriate for the dynamic regime, which is several
orders of magnitude less than those that are actually needed.
Equations of this type are called stiff and require special
techniques for their solution as shown by Tse and Rice (30) for
a spring-loaded massive slider. A possible method to increase
the time steps during. the interseismic period would be to
modify Eq. 4 at low speeds by using its quasi-static approxi-
mation as proposed by Perrin et al. (31), but we have not
implemented this option yet.
Because of the difficulties discussed in the previous para-

graph, we have used a simplified friction law. The most
sweeping assumption is that the fault is perfectly locked during
the inter-seismic period so that successive events can be
treated independently. In the Dieterich-Ruina rate- and state-
dependent laws, slip occurs at all times no matter how small the
total stress. In the period when the fault is locked, we assume
that there is no slip on the fault, so that stress increases steadily
during the continuous load Te(t). When the total stress on a
certain point of the fault reaches a threshold T., slip begins and
we immediately switch to the dynamic equation (Eq. 4).
The particular friction law assumed in our computations is

T(D,V,O) = T(1 - D/Uo) forD < U0

T(D,V,0) = 0 for D > U0 and0> 00 [6]

T(D,V,0) = Tsp(l - 0/0o) for D > Uo and 0 < 0o,
to which we add the following evolution equation for 0

dO 1
dt --(- V),dt TO

[7]

whereD is slip measured from the beginning of the current slip
episode, 0 is a state variable, and V is instantaneous slip
velocity. At steady state, 0 is equal to the slip rate, so that 0
differs from slip rate V only during fast rate changes. The
first-order evolution equation for 0 introduces a relaxation
time scale 0T and a corresponding relaxation length Dc = 13To.
These are the small scale parameters needed to regularize the
fault model at small scales and avoid the intrinsic discreteness
ofour previous models (10). The dependence of friction on slip
and steady-state slip rate (0) is better appreciated in Fig. 2. As
slip begins, there is a slip-weakening process that simulates
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energy dissipation near the rupture front. U0 controls the
minimum size of a fault patch before it becomes unstable. As
shown by Dieterich (32) and Ohnaka (33), this is an observable
feature of realistic friction laws. In the state- and rate-dependent
laws, slip-weakening is produced by the direct change of stress due
to rapid increases in slip rate. Dynamic simulations of simple
crack models by Okubo (34) showed that rate- and state-
dependent laws behave in a very similar way to slip-weakening
models near the rupture front.
The other main feature of the friction law described in Fig.

2 is slip rate weakening at low slip rates. This is a more
controversial feature that has been included in the rate- and
state-dependent friction laws in the form of a logarithmic
decrease of friction with increasing velocity. In the present
study, we assume a linearly decreasing dynamic friction as a
function of increasing steady-state slip rate to simulate the
simpler frictional models used by Carlson and Langer (14).
They assumed that friction was a simple function of slip rate only:

V0
T(D, V, 0) = Tsp V + V for all V, [8]

so that stress increased as the slip rate decreased. Rate
dependence may destabilize healing depending on the value of
Tsp (11). For small Tsp, the friction law is not very different
from the usual rate-independent friction. For large values of
Tsp, the destabilizing effect is more pronounced and sponta-
neous heterogeneity develops for large values of this parameter.
That friction decreases with slip rate seems to be a well

documented feature of many frictions including those of
Dieterich (19, 20) and Ruina (21). In these friction laws,
steady-state frictional stress is proportional to a logarithm of
steady-state slip rate of the form Tss(Vss) = -a log(Vss), so
that frictional stress decreases more mildly as a function of slip
rate than in the model of Carlson and Langer (14).

Fig. 2 also shows the trajectory of a point on the fault in the
slip-steady-state-slip-rate space. As slip begins, stress slowly
decreases transferring load to neighboring points on the fault.
Simultaneously slip velocity increases rapidly because any
stress relaxation is initially compensated by increases in slip
velocity. The time scale of this rapid velocity increase is
controlled by the relaxation time T0 and the slip-weakening
time UO/VR, where VR is the rupture front speed. In our
computations, these two time scales are of the same order as
they are also in the slip- and rate-dependent models. After this
brief time, the fault slips freely at high slip rates. Slip rate
becomes determinant for the fate of the fault only when the slip
rate is less than the threshold V0 (which corresponds to 0o). At
that point, stress increases as slip rate decreases, further
driving the local point on the fault toward locking. This locking
process is a highly nonlinear feature of the friction law that is
entirely due to local conditions on the fault and is completely
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FIG. 2. Main features of the friction law assumed in this paper.
Friction is represented as a function of slip (D) and state variable (0).
Transient slip rate may be different from 0 in the course of rapid
changes in slip rate.

independent of the propagation of stopping phases or other
signals along the fault.

Simulation of Seismicity on a Finite Fault

Let us now study the seismicity on the fault model that we have
just described. In the following simulations, all parameters will
be rendered nondimensional by the following choices: stress is
scaled by ,L, the rigidity. We choose T,U/, = 1 as the peak
traction resistance on the fault. We scale length by the unit step
Ax used to discretize the fault. The total fault length L/Ax =
511 in most of the simulations presented here. Time is scaled
as t x (3/Ax, slip scales are scaled as D x 1x/(2Tu x Ax), and
slip rate is scaled as V x ,t/(p3 X 2Tu). The shortest nondi-
mensional time scale admissible in our computations was 0.5
so that the Courant parameter of our numerical solutions is
also h = 0.5. We could have used the maximum stable value
h = 1, but we prefer to stay on the safer side. All the other
parameters appear in the friction law and were adopted as
follows: Uo = 10, T0 = 3, 00 = 1, and Tsp will be varied as
explained later. Let us remark that when Tsp = 0, we get the
classical Coulomb friction law with initial slip-weakening.
Computations using this law were extensively studied by
Andrews (26) and produce perfectly repeatable earthquake
sequences in our computations. For Tsp = 1, the final stress is
equal to the peak stress on the fault as assumed in the original
work by Carlson and Langer (14). In this case, events can be
artificially triggered by relaxing a point on the fault. We
consider these two values as extreme models of slip rate
sensitivity of friction. As we will show later, a transition in the
behavior of the fault occurs around Tsp = 0.6.

Let us emphasize that in all our calculations the material
parameters ,L, X3, Tu, T0, 00, and U0 are considered to be
uniform along the fault. The presence or lack of heterogeneity
of stress and slip will be entirely due to the nonlinear features
of the friction law (Eq. 6).
The slip-weakening parameter U0 determines the shortest

scale in our problem. Let us define the total length of an event
e as the total number of fault elements involved in the rupture.
In our simulations, events occur at scales f shorter and longer
than Uo. Only the larger events are considered as seismic
events; small events, such that . < U0, never develop the fast
rates typical of seismic events and friction never drops to 0 as
allowed by the friction law of Fig. 2. These events would
disappear if we could include fault creep in our model.

Simulation of a Relatively Smooth Fault (Tsp = 0.4). Let us
consider first a model that is just below the critical value of
partial stress drop. In Fig. 3, we show the velocity and stress
field for a typical large event in this model. Because of limited
resolution, we have decimated the output so that Fig. 3 (and
also Fig. 4) presents only 1 line in 10. Although the slip velocity
field does not resemble the classical self-similar crack models
of Burridge (1) or Madariaga (4) much, slip continues for a
long time after the passage of the rupture front. A weak
stopping phase is clearly observed traveling across the fault, so
that that slip duration is controlled by the total length of the
slip zone. An interesting feature of the slip velocity field is the
variation of velocity intensity near the rupture front. After a
period of growth, the velocity peak decreases temporarily near
the center of the fault. This is quite different from models with
constant stress drop in which velocity intensity grows like the
square root of distance from the nucleation point. This is a
clear manifestation of incipient complexity. The stress field
shows a clear decrease after the passage of the rupture front
although several slip events leave a trace inside the fault. At the
end of the rupture process, stress drops to a value close to 0.2
and is rather uniform. After reloading of the fault by the slow
external stress field, the next event in the series will occur
under a mildly complex stress distribution that is not enough
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FIG. 3. Slip velocity and stress fields as a function of position and
time for a typical large event when the control parameter Tsp = 0.4 is
less than critical.

to excite the small scale fluctuations that are observed in the
rougher models.

Simulation of a Rough Fault (Tsp = 0.8). Let us look now at
a typical event for a model in which Tsp is higher than the
critical value. As shown in Fig. 4, the velocity field has
completely changed compared to that of Fig. 3. Rupture occurs
now in the form of several successive narrow slip velocity
pulses. Each of these narrow pulses propagates at a rather
constant velocity, increasing slip velocity rapidly and then
freezing spontaneously behind the rupture front. Because
these pulses do not completely relax the stress on the fault,
other pulses may be triggered in their trail, producing complex
rupture sequences. We observe also that velocity intensity
changes rapidly as rupture develops. Whenever the velocity
intensity decreases below a certain level determined by the
velocity-weakening properties of friction, rupture stops. The
stress field is also completely different from that of the
previous case. After the passage of each of the rupture
episodes, stress recovers immediately behind the rupture front,
and the fault remains in a state of complex stress. The stress
distribution has reached a steady state that maintains com-
plexities of all scales. These results suggest we have reached a
critically self-organized state (12).

Properties of the Seismicity for Different Values of Tsp. Fig.
5 compares the history of seismicity on the two previous fault
models. As already discussed above, these plots contain two
families of events: small events that occur repeatedly at the
same place and that are smaller than 10 grid points, the
minimum "seismic" event size. Since the total size of the fault
is 511 grids, we have a practical range of less than two orders
of magnitude in size. This is clearly not enough to define
properties like spectral distribution of heterogeneities but is
enough to get a qualitative feeling for the properties of the
"seismicity" of our models. As it is easily observed in Fig. 5,
there is a substantial difference between the seismicity for the
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FIG. 4. Slip velocity and stress fields as a function of position and
time for a typical large event when the control parameter Tsp = 0.8 is
larger than critical.

model with Tsp = 0.4 and the model for Tsp = 0.8. For Tsp =
0.4, all large events rupture the entire fault, so that they all have
very similar seismic moment. Although they have the same
length, large events are not identical and they occur at irregular
intervals. The distribution of stress on the fault changes
substantially from event to event, but the stress distribution is
not complex enough to produce self-organized criticality.
For the larger value of Tsp, the seismicity changes qualita-

tively: events of all sizes occur with variable lengths and seismic
moments. Seismicity is now disorganized in space and time:
large events continue to occur at a mean rate determined by
the loading rate of the system, but interseismic intervals vary
widely. Also, seismic events are much more frequent in this
model because seismic events release less stress than in the
previous case. Each event in this complex fault model is
unique. Stress drop varies substantially along the fault and the
slip function is very complex as is clearly shown by the stress
and slip velocity distributions shown in Fig. 4.

Finally, let us look at the scaling law for these two types of
models. The scaling law for the model with Tsp = 0.4 is trivial
and does not need to be plotted because all seismic events
rupture the whole fault. Apart from a small variation in
average stress drop and slip from event to event, the seismic
moment of all the large events is the same and is completely
determined by the rate at which the fault is loaded. The
seismicity in this case is typically slip-predictable. For the more
complex model with Tsp = 0.8, the scaling law is shown in Fig.
6 where we also plot two lines corresponding to the moment-
length relation for different values of stress drop. Clearly,
although the spread of lengths is not very large due to the
computer limitations already cited above [although, for this
figure, L/Ax = 1023 instead of 511], the seismic moment for
these events is proportional to e2, as expected for two dimen-
sions. Thus in the case of complex seismicity, the seismicity
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FIG. 5. Seismicity as a function of time for two models of seismicity
in the presence of a velocity-weakening friction law. (Upper) The
control parameter is less than critical (Tsp = 0.4). Only large events
crossing the whole fault occur. (Lower) The control parameter is super-
critical (Tsp = 0.8). Events of all sizes occur more frequently with
different rupture lengths and a wide spread of seismic moments.

spontaneously satisfies the scaling law. Somehow, in our

simulations, the length of every event is automatically chosen
so that the scaling law is satisfied. We did not initially expect
this result, but in retrospect it is not difficult to understand. In
our model, there are only two physical length scales: the
minimum event size controlled by the slip-weakening zone and
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FIG. 6. Scaling law of seismic-like events for the supercritical
model (Tsp = 0.8) of Fig. 4. Events of different sizes with variable
rupture lengths e occur. These events satisfy a scaling law where the
moment is proportional to £2. Diagonal lines represent models of equal
stress drop.
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FIG. 7. Stress and slip for a simple and a somewhat complex slip
distribution. For the elliptical distribution shown with a broken line,
stress drop is constant. For the variable slip model shown with a
continuous line, stress is highly variable. Stress on a fault is roughly
speaking proportional to the slip gradient so that it can have large
variations for very small changes in slip. Complexity will develop
whenever these variations in stress are compatible with the friction law.
Partial stress drop seems to be a condition that favors the development
of heterogeneity.
the total fault length L. The later should of course not appear
in the scaling law for events that do not rupture the entire fault.
Thus, the scaling properties of events larger than the minimum
size should depend only on the minimum event size and on

their own fault length. Our results suggest that the minimum
rupture size does not influence the behavior of the fault. This
is an encouraging result that indicates that our previous
computations using a nonregularized friction law (10) were not
affected by the lack of a small cut-off size.
The Origin of Complexity. For rate-independent friction

(Tsp = 0), static and dynamic stress drops are almost the same.

Actually, for antiplane faults, static stress drop overshoots the
dynamic stress drop by -24%. For higher values of Tsp, the
fault locks prematurely so that static stress drop becomes less
than the dynamic one and varies significantly from point to
point. This lateral variation develops because slip arrest occurs
locally, not in response to waves propagating inside the fault.
Because of this early healing, the final slip at neighboring
points on the fault may be quite variable. Since-roughly
speaking-stress changes on the fault are related to the
gradient of slip, even small variations of slip can produce strong
heterogeneities in the static stress field after the event. Let us
illustrate this by considering a simple fault with uniform stress
drop. Slip in this case has an elliptical distribution tapered near
the edges by the slip-weakening distribution of stress. This slip
distribution and its corresponding stress change are shown in
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Fig. 7 by the broken lines. Let us add to this distribution some
heterogeneity and look at the slip and stress distribution, as
shown in Fig. 7 with the solid lines. We observe that a modest
change of the slip distribution produces large variations in the
residual stress pattern. Since stress can only change inside a
limited range (0 < T < Tu), these lateral variations put some
fault elements closer to rupture than others. As a consequence,
the future seismicity of the fault is completely determined by
these heterogeneities in the residual stress field. Thus the
mechanism that generates complexity in our model is clearly
identified, although we do not know what is the bifurcation
value for the control parameter Tsp. We propose that the key
to the creation of heterogeneity in our models is partial stress
drop. This is not at all a new concept in seismology; Brune (5)
proposed from observational arguments that most earth-
quakes presented partial stress drop and suggested that the
dynamic stress drop (Tu in our case) was much larger than the
static stress drop. The main difference between our results and
the suggestion by Brune (5) is that he considered a model
where partial stress drop was uniform along the fault, while in
our models a partial stress drop triggers strong lateral varia-
tions of the static stress drop.
Conclusions

We have demonstrated that, for certain highly rate-dependent
friction laws, a simple antiplane fault embedded in a homo-
geneous medium can spontaneously become complex. This
complexity has several interesting features:

(i) Premature locking of the fault, so that slip duration at any
point of the fault is independent of the total size of the fault.
Premature healing produces partial stress drop, so that stress
heterogeneity may be simply due to the extreme sensitivity of
fault stress to very small changes in the slip distribution.

(ii) Self-healing slip pulses are spontaneously generated for
large values of Tsp. These pulses were proposed by Heaton (35)
and they were explained in our previous work (10).

(iii) Stress heterogeneity and partial stress drop are mani-
festations of the same underlying instability. Partial stress drop
occurs for all friction models that have a strong rate-dependent
friction. Partial stress drop disorganizes the fault for the simple
reason that stress drop of neighboring points will be highly
variable.

(iv) Slip gradient (dislocation density) and stress heteroge-
neity appear when small scale modes of slip on the fault can
express themselves. For full stress drop models like rate-
independent friction laws, these small scale modes are sup-
pressed by the requirement that the stress drop be fixed,
uniform, and determined only by constitutive parameters. In
that case, only material heterogeneity can produce complexity.

(v) Seismic events (i.e., events whose length is greater than
the length of the slip-weakening zone) follow an e2 scaling law
in which seismic moment scales like the product of partial
stress drop and the square of the length of the zone that
actually slipped during the event. Thus, the regularization
length that is included in our slip-weakening model has no
influence on the properties of large seismic events. We find
that the size of the slip pulse that traverses the fault determines
the actual final size of the rupture. If the slip pulse is large, it
simply reaches further along the fault.

(vi) Seismic-like events in our simulations are both periodic
and simple for small values of the control parameter Tsp. For
values larger than a critical value situated around Tsp = 0.6, we
observe events of all sizes and a much higher rate of seismicity.

In conclusion, we have shown that a rate-dependent friction
can spontaneously produce heterogeneity for large values of a
control parameter. This limit corresponds to that of the friction
law used by Carlson and Langer (14) in their study of the
Burridge and Knopoff model. At the other extreme, the
rate-independent friction suppresses these instabilities for the
very simple reason that partial stress drop is eliminated from
the outset. It is very likely that both material heterogeneities
and dynamically generated complexity play a role in deter-
mining the observed complexity of faulting and seismic events.
Given the little knowledge that we currently have about the
friction laws at high slip rates, we firmly believe that hetero-
geneity should be explored without preconceived assumptions
about which of material and dynamically generated heteroge-
neity dominates in the earth.

J. P. Vilotte provided many useful and timely discussions. This work
was initiated with support from the European Union under Contract
N ERBSC1 from the "Science" Program.

1. Burridge, R. (1969) Philos. Trans. R. Soc. LondonA 265, 353-381.
2. Kostrov, B. V. (1964) J. Appl. Math. Mech. 28, 1077-1087.
3. Kostrov, B. V. (1966) J. Appl. Math. Mech. 30, 1241-1248.
4. Madariaga, R. (1976) Bull. Seismol. Soc. Am. 66, 639-666.
5. Brune, J. N. (1970) J. Geophys. Res. 75, 4997-5009.
6. Das, S. & Aki, K. (1977) J. Geophys. Res. 82, 5658-5670.
7. Kanamori, H. & Stewart, G. S. (1978) J. Geophys. Res. 83,

3427-3434.
8. Madariaga, R. (1979) J. Geophys. Res. 84, 2243-2250.
9. Kostrov, B. V. & Das, S. (1982) Bull. Seismol. Soc. Am. 72,

679-703.
10. Cochard, A. & Madariaga, R. (1994) Pure Appl. Geophys. 142,

419-445.
11. Madariaga, R. & Cochard, A. (1994) Ann. Geof: 37, 1349-1375.
12. Bak, P., Tang, C. & Wiesenfeld, K. (1988) Phys. Rev. A 38,

364-374.
13. Burridge, R. & Knopoff, L. (1967) Bull. Seismol. Soc. Am. 57,

341-371.
14. Carlson, J. M. & Langer, J. S. (1989) Phys. Rev. Lett. 62, 2632-

2635.
15. Carlson, J. M., Langer, J. S., Shaw, B. E. & Tang, C. (1991) Phys.

Rev. A, 44, 884-897.
16. Shaw, B. E., Carlson, J. M. & Langer, J. S. (1992) J. Geophys. Res.

97, 479-488.
17. Myers, C. R. & Langer, J. S. (1993) Phys. Rev. E 47, 3048-3056.
18. Schmittbuhl, J., Vilotte, J.-P. & Roux, S. (1993) Europhys. Lett.

21 (3), 375-380.
19. Dieterich, J. H. (1978) Pure Appl. Geophys. 116, 790-806.
20. Dieterich, J. H. (1979) J. Geophys. Res. 84, 2161-2168.
21. Ruina, A. (1983) J. Geophys. Res. 88, 10359-10370.
22. Rice, J. R. (1993) J. Geophys. Res. 98, 9885-9907.
23. Rice, J. R., Ben-Zion, Y. & Kim, K.-S. (1994) J. Mech. Phys.

Solids 42, 813-843.
24. Ida, Y. (1972) J. Geophys. Res. 77, 3796-3805.
25. Virieux, J. & Madariaga, R. (1982) Bull. Seismol. Soc. Am. 72,

345-368.
26. Andrews, D. J. (1985) Bull. Seismol. Soc. Am. 75, 1-21.
27. Koller, M. G., Bonnet, M. & Madariaga, R. (1992) Wave Motion

16, 339-366.
28. Dieterich, J. H. (1994) J. Geophys. Res. 99, 2601-2618.
29. Scholz, C. H. (1990) The Mechanics ofEarthquakes and Faulting

(Cambridge Univ. Press, Cambridge, U.K.).
30. Tse, S. T. & Rice, J. R. (1986) J. Geophys. Res. 91 (B9), 9452-

9472.
31. Perrin, G. O., Rice, J. R. & Zheng, G. (1995)J. Mech. Phys. Solids

43, 1461-1495.
32. Dieterich, J. H. (1992) Tectonophysics 211, 115-134.
33. Ohnaka, M. (1992) Tectonophysics 211, 149-178.
34. Okubo, P. G. (1989) J. Geophys. Res. 94, 12321-12335.
35. Heaton, T. H. (1990) Phys. Earth Planet. Inter. 64, 1-20.

Proc. Natl. Acad. Sci. USA 93 (1996)


