236

Physics of the Earth and Planetary Interiors, 36 (1984) 236-259

Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

The role of a heterogeneous inclusion during continental collision

J.P. Vilotte 1*, M. Déﬁéhieres !, R. Madariaga *> and O.C. Zienkiewicz

! Centre Géologique et Géophysique, Université des Sciences ét Techniques du Languedoc, Place E. Bataillon, 34060 Montpellier Cedex
o (France)
? LLE.G.S.P., LA. du CNRS no. 195, Institut de Physique du Globe, Universités Paris VI et VII, 4. place Jussieu, 75230 Paris Cedex 05

(France)
3 Civil Engineering Department, University College of Swansea, Singleton Park, Swansea SA2 8PP (Gt. Britain)

(Received November 17, 1983; revision accepted June 20, 1984)

Vilotte, J.P., Daignieres, M., Madariaga, R. and Zienkiewicz, O.C., 1984. The role of a heterogeneous inclusion during
continental collision. Phys. Earth Planet. Inter., 36: 236-259.

We study a simple model of the deformation due to collision between two continental plates. The model is patterned
after the geometry of the India-Asia collision but it may be applicable to more general situations. The collision is
modelled by the indentation of a viscoplastic plate (Asia) by a rigid punch (India). A finite element approach, capable
of dealing with finite deformation, heterogeneity and non linear rheologies is used to study the role of an inclusion of
increased rigidity on the viscoplastic flow of the plate. The heterogeneous zone was chosen to approximate the shape
and position of the Tarim basin behind Tibet. The lateral boundaries of the plate were defined so as to approximate
those that are believed to apply for the Asian plate, i.e., fixed boundaries to the West and North, free boundaries to the
West and South. Several geometries and contrasts of rheology were analyzed to verify the general validity of our results.
The purpose was to determine the main kinematic features of the flow not to model the particular case of Tarim. It is
found that the heterogeneity affects the flow in a drastic way even for small contrasts of rigidity and for small size
heterogeneities. The main effect of the heterogeneity is to create two important shear zones or internal boundary layers.
The most important is in front of the inclusion separating the main flow from the inclusion. As the flow proceeds, the
inclusion rotates and the shear zone progressively bends in qualitative agreement with the bending of the large strike slip
faults like the Altyn Tagh that separates the Tarim from Tibet. Our model of continuous deformation does not allow for
the formation of faults or fractures, but the shear zones may be understood as the initial stages for the generation of
fractures or velocity discontinuities. Another shear zone develops to the left of the inhomogeneity, near the fixed
boundary and in the wake of the punch. The role of these shear zones is to isolate the heterogeneity from the main flow
to facilitate its rigid rotation inside the flow of the softer plate. A final observation is that in the presence of the
heterogeneity the lower left hand corner rotates almost like a rigid block producing a sharp bend on the left hand side of
the plate. As the inclusion rotates pushed by the punch this rigid block rotates clockwise to open up the space necessary
for the homogeneity.
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1. Introduction

In a previous work, Vilotte et al. (1982) pre-
sented a numerical method to solve the problem of
the plane indenter under plane strain or plane
stress conditions, and for a variety of lithospheric
rheologies. The technique was applied to the study
of intracontinental deformation, in particular to
the collision between India and Asia (Tapponnier
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and Molnar, 1976). The model that was studied
was extremely simplified because our main con-
cern was to analyse the effect of boundary condi-
tions and deformation mode (plane stress or plane
strain) on the evolution of the indented plate.
Among the simplifications that were introduced
we think that the most important were: (1) the
effect of gravity was not taken into consideration,
(2) only infinitesimal deformation was studied;



and (3) the lithosphere was assumed to be homo-
geneous. Those approximations are restrictive for
the study of the complete geological evolution of
this model of continental collision. As part of a
continuing effort to study systematically the role

of different parameters on continental deforma-

tion, we study here the effect of relaxing the last
two restrictions cited above. The role of gravity
will be reported elsewhere.

We consider the effect of a lithospheric hetero-
geneity upon the finite deformation of a plate
indented by a rigid punch. The model parameters
will be chosen so as to determine the effect of a
rigid zone of the lithosphere in front of the inden-
ter. Our intention is to approximate roughly the
geometry of the Tarim depression to the North of
Tibet. These models will be solved by a finite
elements technique which allows us to take into
account rheological heterogeneities and several
types of boundary conditions and geometries. The
evolution of the lithospheric plate is followed dur-
ing finite deformation so that the continuum
mechanical equations are solved on an updated
version of the initial finite element grid. This al-
lows us to study the deformation of the plate
during a period of up to 35 Ma. Recent studies by
Tapponnier et al. (1982) on a plasticine model
confirmed the importance of following the finite
deformation during the indenting of the punch.
The finite elements formulation adopted is such
that all the assumptions about rheology are clearly
and explicitly introduced. We adopt a viscoplastic
incompressible averaged lithospheric rheology, and
we study only a plane strain model with a free
lateral boundary condition. For this particular
geometry Vilotte et al. (1982) demonstrated that
the differences with plane stress deformation are
not important. We study first a model with a
homogeneous lithosphere, that serves as a refer-
ence for the analysis of the results obtained for
lithospheres containing heterogeneities of different
contrasts of rigidity and size.

2. The geophysical problem

The importance of intercontinental collisions
on the geodynamic evolution and large scale defor-
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mation of the continental lithosphere has been
extensively discussed in recent years. The deforma-
tion of rather large intracontinental domains may
be traced back to the interaction between litho-
spheric plates. Such a geodynamically coherent
framework has been proposed for several recent
orogenic zones; for instance, for the alpine evolu-
tion of Asia (Tapponnier and Molnar, 1976) and
the Mediterranean (Tapponnier, 1977). Intercon-
tinental collision has also been considered for more
ancient orogenies, like the Precambrian evolution
of the Pan-African chain (Caby et al., 1980).

A number of different techniques to analyse
continental collision quantitatively have been pro-
posed; see, for instance, Tapponnier (1978),
Daigniéres et al. (1978), England and McKenzie
(1982, 1983), Vilotte et al. (1982). In all these
studies the lithosphere was assumed to be homoge-
neous within the scale of the model. It is clear,
however, that at these scales, of the order of 5000
km, the lithosphere may not be considered to be
mechanically homogeneous; some blocks of differ-
ent ages and structures should present different
rigidities. The nature of these blocks may be dif-
ferent, for instance there may be remanent oceanic
domains which were not subducted because of
complex geometry, great sedimentary thickness, or
age of the basins. These mechanical inclusions will
present a different rheology from that of the sur-
rounding lithosphere. These types of heterogenei-
ties seem to be common in the Mediterranean
(Tapponnier, 1977). They may also be of continen-
tal origin but of older ages. In fact, the continental
lithosphere seems to form by the successive accre-
tion of ancient blocks which may behave later as
rigid inclusions. An example of such an evolution
may be found in Asia, where the present continen-
tal plate appears to be the result of the accretion
of several continental fragments around the
Siberian platform. A particular example that will
interest us here is the Tarim basin which appears
to be an old shield, accreted during an older
collision probably of Palaeozoic origin (Molnar
and Tapponnier, 1981). The seismicity and recent
deformation of the Tarim basin are very small as
would be expected for a relatively rigid inclusion
inside a plate subjected to large, active deforma-
tion. This difference in rheology may be due to
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either strain hardening due to a complex history of
deformation, or to colder temperatures which re-
duce the deformability of the plate.

We do not consider here the micromechanisms
that lead to an increase rigidity of certain blocks
of the lithosphere. We simply assume the existence
of such blocks which we believe to be common,
and we then study their effect upon the deforma-
tion and the state of stress of the lithasphere
during the collision process.

3. The mechanical problem
3.1. Kinematics and rheology

We study the progressive evolution of the defor-
mation due to the plane indentation of a viscoplas-
tic incompressible plate. This plate is assumed to
contain an internal block of increased rigidity. The
mode of deformation is assumed to be plane strain.
The mechanical formulation of the problem was
discussed by Vilotte et al. (1982), where it was
stressed that the strain and stress are considered as
averaged over a certain volume of the lithosphere.
Therefore, the stresses and strains that we model
are not those that may be measured at a point but
are representative values for the average over a
finite block of the lithosphere. The elastic defor-
mations are considered to be negligible when com-
pared to the finite plastic deformations. We do not
consider either the curvature of the plates. Under
these approximations, we may write the transfor-
mation velocity gradient for a viscoplastic rheol-
ogy in the form proposed by Mandel (1971)

grad v = RRT + (o (F)) & &)

where v is the particle velocity vector, R is the
finite rotation of the point under consideration.
This rotation is the same that is usually calculated
during elastic deformation. While the elastic strain
may be considered to be negligible, the rotation of
an element in the vicinity of the current point may
not be neglected. The last term in (1) represents
the plastic strain velocity

er,=y<¢(F)>§§ )

where v is the mean fluidity of the lithosphere, the
angle brackets () mean that

(¢(F))=o(F) ifF>0
and
($(F)y=0 if F<0

F is the flow surface F(g, é7, €7), a function of the
stress g, the plastic strain velocity ¢” and the finite
deformation é°. Here, we adopt the von Mises
criterion )

F(g)=V3|h-o,(¢?, &) 3)

where J, is the second invariant of the stress tensor
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with s,; the deviatoric part of o;;. o, is the mean
flow limit of the continental lithosphere (Vilotte et
al., 1982). When F(g) < 0 there is no deformation,
the lithosphere is rigid while for F(g)> 0 it flows
plastically. The function ¢(F) is the creep law
which will be assumed to be of the power law
type: ¢(F)=F".

With the latter assumption we may define an
average viscosity (Zienkiewicz, 1977)

o, +(L/w3)""

pe DL @

where I, is the second ‘invariant of the strain
velocity tensor, which for an incompressible
medium is
N V2

I,= ﬁ(ii €ij
Note that I, is often written ¢ in the mechanical
literature. '

With the preceding definitions and approxima-

tions it may be shown that the symmetric part of
(1) is purely incompressible plastic, i.e.

{grad v} ;= éf=vF"(g, ‘;p";p)(%)su (5)

while the antisymmetric part of (1) yields
Jerad v{=RR" = (6)

where & is the vorticity. The notation {} and }{
for the symmetric and antisymmetric parts of the



gradient of the velocity was introduced by Mandel
(1971).

'3.2. Modelling

To carry out a systematic study with a mini-
mum number of free parameters we simplify the
geometry of the problem and the boundary condi-
tions. We study a rectangular plate (see Fig. 1)
indented by a rigid rectangular punch moving at a
constant speed u,. The boundary AD is always
rigid (v, = v, = 0) while DC is free to lateral slip
(v, =0, v, free). The AMNB and BC segments of
the boundary are free so that ¢ - # =0 where 7 is
the external normal of the boundary. Following
Tapponnier and Molnar (1976), the boundary con-
dition BC closely reproduces the conditions at the
subduction zones to the east of Tibet.

Two geometries are studied to establish the
effect of the free boundaries on the evolution of
the deformation. In the first model, shown in Fig.
la, we put the BC boundary at an initial distance
of 1.7 L to the right of the punch, where L is the
width of the indenter. In the second model (fig.
1b) this boundary is at a distance L from the
punch.

Given this initial geometry and the rheology as
described by eq. 5 we determine the velocity field
v(x, t) and the stress tensor o(x, ¢) from the
equations of equilibrium -

divg(x,t)=0 (7
The constitutive relationship
sij(x’t)=2p‘(x’t)éij(x’ t) ' (8)
where p is defined by (4). The flow is assumed to
be incompressible, so that

divv(x,¢)=0 9
The boundary conditions are:

v=1au(x) onT,(z)

and

g-fi=c onI(z) (10)

where I, and T, designate, respectively, those seg-
ments of the boundary where velocities or stresses
are specified.
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The problem posed above gives the instanta-
neous field at time ¢ for a given geometry of the
plate. Since we want to integrate the deformation
over several tens of million years, we also have to
calculate the rotation R(¢+ At) from (6) and up-
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Fig. 1. Geometry of the models. Side AD has a zero velocity
boundary conditions, DC is free to glide laterally and BC is
free of stress. On AM and NB, stress-free boundary conditions
are used, while the indenter is simulated by a fixed velocity
boundary condition. In all calculations ug=5 cm y~!, MN =
2400 km. In (a) NB=1.7 MN; (b) NB=MN; (c) NB=MN.
EFGH represents the rheological heterogeneity.
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date the geometry of the plate. The integration in
time may be done explicitly or implicitly, the
former procedure is simpler but requires a short
time step to insure stability. A discussion of differ-
ent ways to integrate the equation may be found in
Zienkiewicz (1977) or in Vilotte et al. (in prepara-
tion).

We assume plane strain incompressible flow
conditions i.e.

E')a:z = E.yz = €.zz =0 . (113)
and
o,=13(0,+0,)=0, (11b)

A geophysical justification of this approximation
when the role of gravity is neglected has been
proposed by Tapponnier (1978) and discussed ‘in

detail by Vilotte et al. (1982) who showed that for._ ’

free boundary conditions along BC, the plane stress
and plane strain solutions differ only in details.
The problem has been solved by a finite element
technique based on a reduced Galerkin formula-
tion of egs. 7-11. For details see Zienkiewicz
(1977) and Vilotte (1983).

3.3. Physical parameters and definition of the het-
erogeneity

To make a systematic study of the problem and .,

to establish the role of the different parameters we

have to make a dimensional analysis of the equa-

tions. Let L be the width of the punch, u, its
velocity of penetration, then we scale lengths by L,
velocities by u, and time by L/u,. All kinematical
variables are scaled in this form, for instance,
strain velocity scales like uy/L.

For the dynamical variables we have a choice,
either we scale stresses by the characteristic stress
related to creep flow or by the yield stress o,.. We
introduce the following non-dimensional numbers

K=oy(‘/§YL)l/

1?=( 2o )l/nl=1<-l (12)

so that in the first case (see Vilotte et al., 1982) we
have

5 =5y ”

and

p=(KI;'+5/") 4 (13)
or in the second one s

Sij = 81j/% ‘

and . 4

W= (1" + K1y ) oo e

where primed-quantities are non-dimensiona] The
choice of either normahzatloﬂ depends on the
phenomenon that one wants; xo stress. If the inter-
est is on the effect of creep o;'x the plastic solution,
the first formulation is to be preferred; while for
the study of the effect of the. yield stress on the
solution, the second normalization should be
adopted.

The heterogeneity that we have studied is indi-
cated in Fig. 1 by the quadrilateral block EFGH.
Since the block has a different rheology from that
of the rest of the plate, the non-dimensional analy-
sis has to be carried further. While the kinematic
scaling is not affected the dynamic scaling defined
by (13) or (14) has to be.reconsidered. Let 6, = uo/
V3 v, L be the characteristic stress corresponding to
the plate, and o, =,/ V3 3vy,L the charactenstlc
stress of the heterogeneity.

Under the first normalization, that of (13) we
adopt :

si,j = svij/t’l‘ :
and . : .
wi=(KL+ 577 (15)

"1 n
W= (L) (Kt 4 )

For the second normalization, that of (14), we
designate o and o® the yield stresses of the
plate and the heterogenextles respectively.

Then

_ a
5(j=5i;/0



and
pi= (I + K,/ (16)

o?

. _ -1, % yl/n-1

“2__0(1)(12 + K, " )
y

In (15) and (16) K, K;, K ,, K, define the values
of the non-dimensional parameters in (12) for the
plate and the inclusion, respectively.

The parameter y that defines the creep rheology
of the plate and the heterogeneity is given by an
average across the lithosphere

1 (H _
v g [ ez a7

where H is the lithospheric thickness. For a given
geotherm and fixed lithospheric depth

T,
-eglre e e (), o9
Here, v, is a constant, Q is the creep activation
energy, E, the exponential integral, 7; and T the
temperature at the base of the lithosphere and at
the surface, respectively.

As discussed by Vilotte et al. (1982), y changes
rapidly as a function of the geotherm that is
adopted. For an old shield, like the Tarim depres-
sion, we expect it to be colder and, therefore, that
y be smaller than for the surrounding lithosphere,
i.e., that the shield be less “fluid” than the sur-
rounding tectonically active areas. As an example,
for a difference of 200°C at the base of the litho-
sphere, we get (v,/7,)""=2.5x10? for a dry
dunite rheology. Similarly, the yield stress o, de-
pends on the history of deformation of the plate.
In fact, if the medium has already been subjected
to plastic flow it should contain large residual
stress heterogeneities which in turn reduce the
average yield stress for the new deformation period.
Then the shields appear more rigid than the re-
cently deformed, tectonically young areas that sur-
round it. Both effects on the fluidity of the litho-
sphere, thermal or mechanical, are closely related.
The two formulations (15) and (16) put the em-
phasis on either one of these effects.

Putting v, = v, in (15) we define the rheological
contrast

e

R =
@
9y

for n constant (19)
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Similarly, putting o = o{> we introduce

1/n
R,= (11) for n constant (20)
T2

The actual situation in a lithospheric het-
erogeneity should be intermediate between the two.
In the following we study the effect of a rigid
block for different values of the contrast R. To
better establish the order of magnitude of the
results we adopt the following physical dimen-
sions: L =2400 km, uy=5cmy~ ', n=3,0{" =30
GPa, v, =274 x107% 571 Pa~3, ie., the non-di-
mensional parameters K; =2.69 and K, =0.37.
The dimension of the heterogeneity may be de-
termined from Fig. 1 and its rheology is defined
by the ratio: R, = 10, 5, 2.5, 1 for v, = v, as in (19).
We have done a similar study of the effect of
differences in v,. We also calculated for o = 0@
and R, = 2.5 X 102. While the two types of hetero-
geneity are not entirely equivalent because of the
non-linear nature of the problem, we find that the
solutions differ only on details and that all the
essential features of the flow depend in fact on the
numerical value of R, or R,.

4. Results for the homogeneous plate

Finite elements technique is used to solve this
problem. The plate is divided into 88 quadratic
Lagrangian elements. At every time step a non
linear system of equations is solved using a New-
ton—Raphson technique and a frontal solver, when
the solution has converged, we used the velocity
field to update the mesh. The time step is chosen
to be less than the Courant number and we check
the mesh to avoid ill-deformed element.

We discuss the results of our numerical experi-
ments by means of contour plots of the octahedral
shear strain rate I, (the second invariant of the
shear strain rate tensor), the pressure p and the
vorticity . We prefer to plot these quantities
rather than the velocity field (Fig. 2) because of
the clearer information contained in the plot of
space derivatives of the velocity field (I, and &).
The localisations of shear strain, the curvature of
the deformation, etc. appear more clearly in these
contour plots. The finite elements formulation per-
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Fig. 2. Velocity field calculated for 2 of the numerical simulations. (a) Homogeneous model with NB = MN at 30 Ma; R, =1. (b)
Heterogeneous model with NB = MN at 30 Ma; R, =10. '
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Fig. 3.(a) Pressure field for the homogeneous plate model. Dashed contour lines are used for negative pressure. A,, B, C; are
solutions for the model of Fig. 1a at = 0, 15 and 30 Ma; A ,, B,, C, are solutions for the model of Fig. 1b at the same times. Contour
lines are plotted with a spacing of =1.1 non-dimensional units. Extreme values for the pressure are, for A; (P, =16.2, Py, = —4.7),
By (Ppax =18.3, Pyin = —8), C; (Ppax =16.15, Py, = —4.71) and for A, (Ppy =16.9, Py, = —5.8), By (P =18.35, Py, = —8)
and C, (P, =16.2, P.;, = —3.6). (b) Octahedral shear strain rates for the homogeneous plate model (see Fig. 3a for a definition of
each frame). Contour lines are plotted with a spacing of 0.6 non-dimensional units, and the extreme values for A, are (I;__ =10.9,
I, =033x107%), for B, (I =123, I,  =033X107%), C; (I, =118, I,  =033x107%), A, (I, =105, I,  =032X
10m'n"), B, (I, =11, 1, = 0.33%107%) and C, (L, =115 0L = 0.33x10~%). (¢) Vorticity for the homogeneous plate model,
negative vorticity is shown with dashed lines (see Fig. 3a for a definition of each frame). Contour lines are plotted with a spacing of
0.85 non-dimensional units. The extreme values for A; are (W = 9.7, Wmin = —8.2), B; (Wpax = 9.5, @pin = —8.2), C; (wpax =10,
@min=—82) and A, (@ = 9.3, ©Wpin = —6.5), By (Wmay = 9.03, @i = —6.5), C; (@pax = 9.9, Wpyin = — 6.5).
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mits a great flexibility in the plotting of I,, p and
.

All the isovalue contours are computed by di-
viding each element of the mesh into 6 or more

triangles, and a linear interpolation is used over -

each triangle.
We present results for the two geometries de-
scribed in Fig. 1a and b, respectively. The rheo-

logical contrast R, was taken as 1, 2.5, 5, 10 where
the case R, = 1 designates the homogeneous plate .
model. As mentioned above, results for the rheo-
logical contrast R, specified in terms of the o,’s
are not different from those obtained for ap-
propriately scaled values of R,. For this reason,
only the contour plots for R, = 2.5 X 10 are dis-
cussed, the results obtained in this case are close to

Fig. 3. (b)




those calculated for R, =35.

We present first a detailed discussion of the
results for the homogeneous case which is used as
a reference for the analysis of the results for the
heterogeneous models. An example of the velocity
field calculated for this case, is shown on Fig. 2a,
where we see that this kind of plot shows only the
main features of the solution which consist in the
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lateral flow of material pushed by the punch. Let
us discuss now the pressure, octahedral strain rate
and vorticity shown in Fig. 3a, b and 3, respec-
tively.

Contour plots at times 0, 15 and 30 Ma are
shown superimposed on the updated geometry of
the plate at these times.

N, . H
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Fig: 3. (¢)
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4.1. Pressure (Fig. 3a)

As the penetration of the punch increases, the
geometry of the pressure field changes slowly. We
note first a symmetric zone in front of the indenter
that tends to increase in size as it penetrates into
the plate. This symmetric form defines a plateau.
Near the corners of the indenter, on the other
hand, we observe the development of the singulari-
ties, i.e., large concentrations of pressure and pres-
sure gradient, that are naturally expected to form
in a mixed boundary value problem. The boundary
conditions on the punch are of the no-slip type,
while those outside are of the free surface type.
These concentrations tend to extend into the free
boundaries adjacent to the punch as the deforma-
tion proceeds.

In the vicinity of the free boundaries we ob-
serve the development of negative pressure areas.
These negative areas are different for the two
geometries of Fig. 1a. When the BC boundary is at
1.7L of the punch (Fig. 1a) the negative pressure
zone extends all along BC, the contour lines being
parallel to the boundary. The lateral boundary
plays a passive role in this case. For the initial
geometry of Fig. 1b, where the boundary is at a
distance L from the punch, the negative pressure
zone is more restricted in area, appearing only in
the lower right-hand corner of the plate. The iso-
bars are not parallel to the boundary anymore and
in fact the high pressures near the centre of the
boundary are associated clearly with the sharp
bend that it displays at 30 Ma (C2 in Fig. 3a).
Negative pressures are associated generally with
regions where there is an important change in the
stress deviator which may eventually lead to its
local disappearance. The close association of nega-
tive pressures with the free boundaries may also be
related to the development of back arc extension,
but this requires an analysis that takes into account
gravitational effects.

4.2. Octahedral shear strain rate (Fig. 3b)

The octahedral shear strain rate, or second in-
variant of the shear strain rate tensor, is a measure
of the absolute shear strain rate. Figure 3b shows
that it is concentrated sharply near the edges of

the indenter as a consequence of the mixed
boundary condition near this edge. The strain rate
concentration is larger on the left hand side of the
punch, near the fixed wall AB. As the indenter
penetrates, these shear zones propagate into the
plate in an asymmetric way. To the left of the
punch, the shear zone penetrates into the plate
turning progressively to the right. This curvature
of the shear zone is related closely to the presence
of the fixed boundary to the north of the punch.
In numerical experiments not reproduced here, we
have moved this boundary further to the north.
The effect of this change is to straighten the shear
zones that penetrate straight into the plate, as in a
snow-plow effect. Also to the left of the punch a
shear zone develops behind the edge of the punch
creating a sort of wake. To the right of the punch
the shear zone is less developed and its curvature
is in the opposite sense to that emanating from the
left edge of the punch. The difference between the
solutions for the initial geometries of Fig. 1a and b
are small, so that we conclude that the position of
the free lateral boundary does not affect the shear
strain rate. The shear zone development found in
our solutions is stable but it may be at the origin
of instabilities leading to the development of a
velocity discontinuity or fault of the type found by
Tapponnier et al. (1982) in their experiments with
plasticine.

4.3. Vorticity (Fig. 3c)

Vorticity is a measure of the instantaneous rate
of rotation at a point in the plate. The contour
lines present a clear asymmetric shape so that to
the left of the punch we observe a strong localiza-
tion along an elongated zone of positive vorticity
(anticlockwise rotation) associated with the left-
lateral shear zone that appears in the octahedral
shear strain rate. To the right of the punch the
contours are more spread and indicate negative
(right lateral) rotation rate. The free boundary
conditions to the right of the punch appear to
control the vorticity distribution because a roughly
rectangular block at the bottom left of the plate
rotates counterclockwise with an almost rigid mo-
tion. The rotation of this block increases as the
lateral boundary approaches the punch. Similar



observations were made by Tapponnier et al. (1982)
for their plasticine experiments. The sharp bend of
the right hand side of the plate in the case of the
shorter plate is clearly associated with the quasi-
rigid rotation of the block at the bottom right of
the plate.
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5. Results for a heterogeneous plate

In this section, we discuss the results obtained
for a heterogeneous plate containing an inclusion
of the shape shown in Fig. 1. The effects of the
inclusion on the flow field are extremely important
even for small contrasts of rheological properties.
The main effect that will be discussed is the devel-
opment of sharp shear zones in front of the hetero-
geneities. Figure 2b shows again an example of the
velocity field obtained for a particular realisation
of the numerical experiment. It is difficult to de-
termine from an analysis of Fig. 2a and b what are
the main effects of the presence of a heterogeneous
zone. This is the reason why we prefer to discuss

Fig. 4.(a) Pressure field for the heterogencous plate model
(R, =2.5x10?) with the initial geometry shown in Fig. 1c. A,
B, C are calculated at 1, 15 and 30 Ma, respectively. Negative
pressure areas are shaded. Contour lines are plotted with a
spacing of 0.62 non-dimensional units. Extreme values of A are
(Pyax =73, Ppyn=—44), B (Ppx=114, P =-69), C
(Ppax = 8.07, P, = —4.4). (b) Pressure field for the heteroge-
neous plate model (R, = 2.5) of initial geometry shown in Fig.
la, b. The frames are defined in Fig. 3a. Negative pressure
areas are shaded. Contour lines are plotted with a spacing 1.1
non-dimensional units. Extreme values are A; (Pp,, =15.6,
Poin=—1771), By (Ppax =16, Py, = —7.71), C; (Pyax =164,
Poin=—55) and A; (Ppa =154, Ppyn=—88), B, (Ppax =
15.6, Ppin= —8.8), Cy (Ppax =16.6, P, = —8.8). (c) Pressure
field for the heterogeneous plate model (R, = 5.0) of initial
geometry shown in Fig. 1a, b. The frames are defined in Fig,
3a. Negative pressure areas are shaded. Contour lines are
plotted with a spacing of 1.34 non-dimensional units. Extreme
values are A; (P, =171, Py, = —8.2), By (Ppax =16.8, Py,
==82), C; (Ppax =176, Pyyp=—9.5) and A, (Pray =16.7,
Prin=—82, B, (Ppay =16.5, Pyyn=—9.5), Cp (Prax = 22.8,
Pin=—9.5). (d) Pressure field for the heterogeneous plate
model (R,=10) with the initial geometry of Fig. la, b. The
frames are defined in Fig. 3a. Negative pressure areas are
shaded. Contour lines are plotted with a spacing of 2 non-di-
mensional units. Extreme values are A; (Ppo, = 40.5, Ppy, =
—14.6), B, (P, =399, P, = —17.4), C; (Ppax =398, Prin
= —17.4) and A ; (Pygx = 39.7, P = — 17.4), B; (Py, = 38.6,
Prin=—17.4), C; (Pupax =380, Py, =—17.4). (¢) Pressure
field for the heterogeneous plate model (R, = 2.5X102) with
the initial geometry of Fig. 1a, b. The frames are defined in Fig.
3a. Negative pressure areas are shaded. Contour lines are
plotted with a spacing of 0.45 non-dimensional units. Extreme
values are A (P = 5.7, Pin = —3.07), B (P =13.7, Prjn =
—5.77), C (Pryay = 6.4, Py, = —3.07).
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our results on the basis of the contour plots of
pressure, shear strain rate and vorticity.

5.1. Pressure (Fig. 4a, b, ¢, d, e)
The pressure field is affected drastically by the

presence of the heterogeneity as a comparison with
Fig. 3b will readily show. We notice a negative

v

N

s

pressure region that develops above and in the
immediate neighbourhood of the heterogeneity.
The size of this zone and its amplitude are con-
trolled naturally by the size of the heterogeneity
and its contrast. We present the result for five
numerical experiments: Fig, 4a is the pressure field
for the small heterogeneity narrower than the size
of the punch shown in Fig, 1c; Fig. 4b, ¢ and d are
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the results for the heterogeneity of Fig. 1 for three a case in which we change the creep fluidity y of
different contrasts of yield stress ie., R, =25, 5 the heterogeneity while o, does not change. In this
and 10, respectively. In this way we can appreciate example, R, =2.5X 10%. The results for this ex-
the effect of increasing the the rigidity of the periment are not very different from those of Fig,

heterogeneity. Finally, Fig. 4e shows the results for 4c for the case R, = 5. Similarly, the results of Fig.

Fig. 4. (¢)
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4d are close to those of Fig. 4c. For the strain rate
and vorticity fields only the fields corresponding
to 4a, b and c are presented.

In the case of a small scale heterogeneity (Fig.
4a) a negative pressure zone develops above the
inclusion behind a narrow zone of high positive
pressures. For the larger scale heterogeneity the
negative pressure area increases in size with in-

Fig. 4. (d)

creasing rheological contrast. In Fig. 4b, where
R, = 2.5, the negative pressure appears only be-
hind the right tip of the elongated positive pres-
sure anomaly. Thus, the leading edge of the inclu-
sion develops a large linear concentration of pres-
sure, shear strain and vorticity. This shear zone
would develop into a fault if we had included a
strain softening mechanism in the plastic rheology.
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Fig. 5. (a) Octahedral shear strain rates for the heterogeneous
plate model (R, = 2.5x10?) of initial geometry as shown in
Fig. lc. The frames A, B, C are for times 0, 15 and 30 Ma,
respectively. Contour lines are plotted with a spacing of 0.36
non-dimensional units. Extreme values are A (I, =70, I,
=011X107%), B (I, =176, I, =011x10~%), C (}, =
7.15, I, =0.11X10" 7). (b) Octahedral shear strain rates for
the heterogeneous plate model (R; = 2.5) of initial geometry as
shown in Fig. 1a, b. The frames are defined in Fig. 3a. Contour
lines are plotted with a spacing of 0.52 non dimensional units.
Extreme values are A, (I, =802, I, =08x10"%), B
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I, =98, I, =08%x107%), C, (L, =90, I, =08X%
10°% and A, (I, =90, I =8x10"*), B, (I, =106,
L =08x 1074, C, (5, =102,1,  =08X% 10“-):‘(c) Oc-
tahedral shear strain rates for the heterogeneous plate model
(R, =5.0) for the initial geometry shown in Fig. 1 a, b. The
frames are defined in Fig. 3a. Contour lines are plotted with a
spacing of 0.65 non-dimensional units. Extreme values are A;
(I, =119, I,  =0.7%x10"%), B, (I, =13.04.1,  =0.7X
1079),C, (I, =13.1, 1, =07x10 ) and A, (I,.. =112,
I, =07x10"%), B, (L, _=1223, I, ,=07X10"°), C,
(I, =120, I, =07x10" ).
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For the temperature independent exponential creep
law used in this study, the shear zone remains
stable. As the rheology contrast increases (Fig. 4c
and d) the negative pressure zone increases also in
size, eventually becoming slightly larger in area
than the inclusion. For R, =5 and 10 a negative

pressure zone develops to the left of the inclusion. |

The rotation of the inclusion as it is puskied by the
punch creates a suction on the fixed boundary.

The rest of the features of the pressure fields are
similar to those already discussed for the homoge-
neous case, ie., negative pressures near the free
boundaries and strong concentrations near the
edges of the punch. Thus, the main effect of the
inclusion is to drastically: modify the field in its
immediate vicinity creating a high pressure ridge
in its leading edge and negative pressures on its
surface.

~




5.2. Octahedral shear strain rate (Fig. 5a, b, c)

The presence of the heterogeneity creates two
zones of strong shear concentration. The first one
is at the leading edge of the inclusion, the other
one at the left hand side of it. The frontal shear
zone develops progressively and presents a maxi-
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mum shear concentration near its right end. As the
indention proceeds, it tends to bend and become
parallel to the punch front. This is due to a strong
clockwise rotation of the inclusion. As the rigidity
contrast increases (cf. Fig. 5b and c) the shear
zone becomes narrower and shear strain rate in-
creases. Comparing with the results for the pres-

Fig. 5. ()
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sure field shown in Fig. 4b and c one sees that the
narrowing of the shear zone and the development
of the negative pressure zone on the inclusion go
hand in hand.

The second shear zone, to the left of the inclu-
sion, has a geometry that changes with the rheol-
ogy contrast and the size of the heterogeneity. For
the small inclusion, Fig. 5a, the shear zone bends
sharply to the right and tends to develop behind
the heterogeneity, i.e., the flow tends to create
conditions of free slip around the heterogeneity
that becomes a rigid particle carried by the flow.
For the larger inclusions (Fig. 5b and c) the curva-
ture of the shear zone increases with the rheologi-
cal contrast R,. As for the homogeneous case the
position of the lateral boundary is not important
for the shear strain field.

5.3. Vorticity (Fig. 6a, b, c)

The shear zones described above are also clearly
marked in the vorticity maps with two vortex
sheets that coincide with the shear zones. Along
the lower boundary of the inclusion a positive
(counterclockwise) rotation is localized and devel-
ops progressively as the indenter penetrates into
the plate. This sense of rotation is coherent with a
left lateral motion along the boundary of the het-
erogeneity.

To the left of the inclusion, there is another
elongated high vorticity zone which becomes nar-
rower and more bent to the right as the heteroge-
neous block rotates clockwise under the pressure
from the punch. For the larger value of R, =5,
Fig. 6¢, the left-hand side zone separates into two
areas of high vorticity. One associated with the
left-hand boundary of the block where left lateral
(positive) rotation occurs and another zone trailing

Fig. 6. (a) Vorticity for the heterogeneous plate model (R, =
2.5%102) with the initial geometry shown in Fig, 1c. Dashed
lines indicate negative vorticity. A, B, C for 0, 15, 30 Ma.
Contour lines are plotted with a spacing of 1.0 non dimensional
units. Extreme values are A (wpe =8.7, wyn = —102), B
(Wmax =90, Wpin=—12), C (Wmax = 9.8, wpip, = —10.2). (b)
Vorticity for the heterogeneous plate model (R, = 2.5) with the
initial geometry shown in Fig. 1 a, b. The frames are defined in
Fig. 3a. Dashed lines indicate negative vorticity. Contour lines

are plotted with a spacing of 1.1 non dimensional units. Ex-
treme values are A (Wgpax = 94, @Wpin = —9.6), By (Wmax = 9.8,
Omin = —10.7), C; (@yax =10.9, @i =—10.7) and A, (@pmay
=8.3, Wyin=—8.5), By (@max =8.90, wpin=—8.5), C; (wrax
=9.6, Wynin=—9.6). (c) Vorticity of the heterogeneous plate
model (R, = 5.0) for the initial geometry shown in Fig. 1a, b.
The frames are defined in Fig. 3a. Dashed contours indicate
negative vorticity. Contour lines are plotted with a spacing of
1.0 non dimensional units. Extreme values are A (Wpay, = 9.05,
Wmin = —10.4), B; (@pax = 9.8, Wpin = —10.4), C; (Wpax = 9.1,
Wpin = —8.4), C3 (Wmax = 9.1, Wi, = —8.4).



behind the left hand edge of the punch. Two zones
of negative vorticity also are clearly distinguished,
one associated with the clockwise rotation of the
heterogeneity, the other with the lower right hand
corner of the plate which produces the sharp bend
of the right-hand boundary of the plate in the case
R, =5. As the right-hand boundary of the plate

255

gets closer to the punch the rotation of the lower
right hand corner increases.

5.4. Finite deformation

Our numerical technique allows for an integra-
tion of the strain rates as the deformation pro-
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Fig. 6. (b)
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ceeds. In this way we can recalculate the shape of
the plate as a function of time and obtain its finite
deformation. In Fig. 7 we present the deformation
of the borders of the plate and of the heterogeneity
as a function of time for four different contrasts of
rigidity R, = 1 (homogeneous), R, = 2.5, 5 and 10.

The finite rotation of the block as a function of
time appears clearly in these figures, as well as its
internal deformation into a dog bone shape. As R
increases we observe that the inclusion becomes
more and more undeformable and rotates as a
rigid body. Also, it is interesting to note that the

Fig. 6. (c)




-
!

_—_
e ——— e

~—

—————e e

—

————
-~

~—

{

257

—————-
I

————— e =2

S —

s
—

—~—

~

|
!
!
i
!
i
!
!
!
I

/
! /

/
J/

-~

T
]
I
|
i
|
]
]
!
I
!
]

Fig. 7. Finite deformation of the shape of the plate and the inclusion as a function of time. The initial model is that of Fig. 1b. The
position and shape are shown with full line for ¢ = 0, dashed line for ¢t =15 Ma, dot-dashed line for = 30 Ma. Each frame is for a

different rigidity contrast R;: (a) R, =1, (b) R, =25, (c) R, =5 and (d) R, =10.

bend of the righthand side of the plate increases
with increasing R,.

Discussion

We have presented the results of a study of the
finite deformation of a viscoplastic plate indented
by a rigid punch. Both a homogeneous plate model
and another one containing a heterogeneous inclu-
sion were analyzed assuming a plane strain mode
of deformation. According to a previous study
(Vilotte et al., 1982) the results for plane stress
should not differ much from those found here as
long as free boundary conditions are imposed on
the lefthand side of the plate. The numerical tech-
nique is an improvement on that used by Vilotte et
al. (1982) because we may now determine finite

deformation by means of a time integration of the
particle velocities of the finite element grid. This
allows us to calculate on the updated geometry of
the initially rectangular plate for times of up to 30
Ma. We have assumed a viscoplastic behaviour
combining a yield stress and a power law creep
rheology for the depth-averaged properties of the

lithosphere. Our numerical technique assumes a
continuous deformation field, so that we do not
allow for the formation of internal slip discontinu-
ities or faults. We may interpret, however the shear
zones developed near the heterogeneity as the ini-
tial stages of the formation of faults. In the in-
terpretation of results it may be assumed that
these narrow shear zones would eventually develop
into faults if a fracture mechanism was included in

the rheology.
The interpretation of the pressure field also
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requires some clarification. The zones where large
positive pressures develop may be interpreted as
areas where the plane strain approximation is in-
adequate, since for a finite depth plate these areas
would naturally tend to thicken. The negative
pressure areas are more delicate to interpret: Tap-
ponnier (1978) proposed that these areas would
tend to get thinner, and may eventually become
the site of active extensional tectonics. The de-
tailed analysis of such zones requires the introduc-
tion of buoyancy forces which may sometimes
modify this simple interpretation (Vilotte et al.
1984). For the purposes of the present discussion,
where buoyancy forces are absent, we assume a
perfect correlation between high and low. pressure
areas in plane strain and thick and thin areas in
plane stress.

Most of the results obtained for the homoge-
neous plate model are similar to those of Vilotte et
al. (1982) for the initial stages of the flow (1 <5
Ma), where the deformation of the plate does not
affect the strain velocity and stress fields. The
progressive development of the shear zones in Fig.
3b may be naturally related to the existence in the
Asian plate of 2 families of strike slip faults (Tap-
ponnier and Molnar, 1976). The asymmetric de-
velopment of the shear zones with a much stronger
one originating at the left hand edge of the punch
may also be related to observations in Asia since
this shear zone tends to bend clockwise in the
direction of the free lateral boundary. This may
explain the curved shape of the great strike slip
faults of western China which have frequently
been related to the geometry of. the slip lines for
the perfectly plastic model of the punch (Molnar
and Tapponnier, 1976). We believe, however, that
the curved shape of the shear zones is controlled
closely by the geometry of the plate and the
boundary conditions. When the northern boundary
of the plate is moved further away from the punch,
the curvature of the strain concentrations tends to
disappear and the punch penetrates more like a
snow plow along two straight shear zones per-
pendicular to the punch front. If this model is
applicable to Asia, then the curvature of the great
strike slip fault of China may be controlled by the
presence of the rigid Siberian platform and the
free boundary conditions at the West Pacific sub-
duction zones. The strong shear strain concentra-
tion on the wake of the punch to its left may be

also related to certain features observed in Asia,
like the Quetta—Chaman fanlt,

The presence of an inhomogeneous zone per-
turbs in a fundamental way the homogeneous
solutions even for small rheological contrasts and
sizes of the heterogeneity. This is due to the highly
non linear nature of the viscoplastic flow. We may
roughly describe the inclusion as a slightly defor-
mable raft drifting in the viscoplastic flow of the
surrounding plate. A clear shear zone appears in
front (the leading edge) of the inclusion which
delineates the transition between the main plastic.
flow in the plate and the inhomogeneity. This is a
sort of internal boundary layer with strong con-
centration of positive pressure (tendency to thicken
the plate), high shear strain rates and right lateral
(negative) vorticity. The inclusion becomes pro-
gressively detached from the main flow and even-
tually, if slip discontinuities were allowed in our
model, a fault zone would develop along this
boundary. The geometry and the direction of shear
along this boundary layer is similar to that of the
Altyn Tagh fault that separates the Tarim basin
from Tibet. In fact, the geometry of our inclusion
(described in Fig. 1) was chosen so that it roughly
approximates the position and shape of the Tarim
basin with respect to the Himalayan thrust. The
geometry and the amount of localization (narrow-
ness) of the shear zone depends directly on the
rheological contrast between the plate and the
inclusion, but it is present even for small rheologi-
cal contrast and small size heterogeneities. It ap-
pears to be a stable feature of flow around inho-
mogeneous inclusions. For a small rheological con-
trast R, = 2.5, the negative pressure zone behind
the shear zone is localized near its right end. These
negative pressures appear always near the tip of
faults or the ends of narrow shear zones. If we
accept that the negative pressures are associated
with a thinning of the lithosphere, these negative
pressure zones may be associated with the Shansi
in Asia. For greater rheological contrasts (R; =35
or 10) the negative pressure zone grows, eventually
becoming larger in surface than the heterogeneity
itself. This result is in good agreement with the
depressed nature of the Tarim and its northern
end (Molnar and Tapponnier, 1981), but it cer-
tainly deserves reexamination taking buoyancy
forces into account.

The rotation and lateral motion of the inclu-



sion, as shown in Fig, 7, is also closely related to
an important rotation of the lower right compart-
ment of the plate, which tends to get decoupled
from the rest of the plate. The strong bending of
the lateral boundary near its centre reflects this
rotation. As R; increases, the rotation increases
and the decoupling of this corner becomes more
effective as observed in the progressive bending of
the lateral boundary. For a plate model that incor-
porates a rupture mechanism we would expect that
eventually a fault would propagate from the end
of the shear zone in front of the inclusion, to the
lateral boundary. This is what is observed in the
plasticine models studied by Tapponnier et al.,
1982, who also noticed that the rotation of this
block is related to a rotation of Indo-China. Note
however, that in our numerical models the rotation
of the lower right hand corner is related to the
presence of a heterogeneity. Its rotation in the case
of the homogeneous plate model is small and we
could hardly expect the development of a fault like
F, in the Tapponnier et al. (1982) experiment.
Further analysis of the geophysical applications
of this model would require additional data on the
rotation of the Tarim block, for instance
palaecomagnetic directions, which are not available
at present. The goal of our study was to establish
some simple properties of the flow around the
inhomogeneity that could be used to analyze geo-
physical examples, and to determine the main
kinematical features of the flow. The most im-
portant result is that strong shear zones or internal
boundary layers develop in front and to the left of
the heterogeneity, tending to decouple it from the
viscoplastic flow in the plate. The fact that this
mechanism develops for small and large hetero-
geneities underlines the importance of inclusions
in the flow of the lithosphere. It also opens certain
questions about the way we can homogenize or
average the plastic behaviour of the lithosphere
over large areas; in particular, what are the mean
plastic properties of a plate segment that contains
inclusions of variable rigidity at all scales?
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