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DYNAMIC FAULTING STUDIED BY A FINITE DIFFERENCE METHOD 

BY JEAN VIRIEUX AND RAUL MADARIAGA 

ABSTRACT 

We have developed a finite difference method that is especially adapted to 
the study of dynamic shear cracks. We studied a number of simple earthquake 
source models in two and three dimensions with special emphasis on the 
modeling of the stress field. We compared our numerical results for semi-infinite 
and self-similar shear crar'ks with the few exact solutions that are avadable in 
the literature. We then studied spontaneous rupture propagation with the help 
of a maximum stress criterion. From dimensional arguments and a few simple 
examples, we showed that the maximum stress criterion depended on the 
physical dimensions of the fault. For a given maximum stress intensity, the finer 
the numerical mesh, the higher the maximum stress that had to be adopted. A 
study of in-plane cracks showed that at high rupture velocities, the numerical 
results did not resolve the stress concentration due to the rupture front from the 
stress peak associated with the shear wave propagating in front of the crack. 
We suggest that this is the reason why transonic rupture velocR,es are found in 
the numerical solutions of in-plane faulting when the rupture resistance Is rather 
low. Finally, we studied the spontaneous propagation of an initially circular 
rupture. Two distinct modes of nucleation of the rupture were studied. In the 
first, a plane circular shear crack was formed instantaneously in a uniformly 
prestressed medium. After a while, once stress concentrations had developed 
around the crack edge, the rupture started to grow, In the second type of 
nucleation, a preexisting circular crack became unstable at time t = 0 and 
started to grow, The latter model appeared to us as a more realistm simulation 
of earthquake triggering. In this case, the initial stress was nonuniform and was 
the static field of the preexisting fault. 

INTRODUCTION 

The rupture process at the source of shallow earthquakes may be approximately 
modeled by the spontaneous propagation of a dynamic shear crack. In dynamic 
models, the prestress field and rock mechanical properties determine the slip 
between the walls of the fault and the progression of the rupture front. A shear 
crack in a prestressed medium creates a shear-stress drop, and the propagation of 
rupture is controlled by a certain rupture criterion which depends on the strength 
of the rocks in the vicinity of the rupture front. A simplified model, in which slip is 
controlled by stress drop but the movement of the rupture front is prescribed as a 
function of time, is frequently used. In this paper, we shall deal mainly with fully 
dynamic, spontaneous rupture in two and three dimensions, and we shall compare 
our results with those of the simpler, fixed-rupture velocity models. 

Crack problems, especially fully dynamic ones, are very difficult to solve. For this 
reason, only a few simple geometrical models have been solved analytically, e.g., the 
elliptical self-similar crack studied by Kostrov (1964), Burridge and Willis (1969), 
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and Richards (1973, 1976). The antiplane dynamic shear crack was studied by 
Kostrov (1966), who gave a closed solution for a semi-infinite crack. Practically all 
the other available solutions have been obtained by numerical methods. The two- 
dimensional problem was solved both by Burridge (1969) and Das and Aki (1977) by 
a numerical solution of boundary integral equations and by Shmuely and Alterman 
(1973), Andrews (1976), Stockl (1977), and others by numerical finite difference 
methods. Archuleta and Day (1980) and Das (1980) have studied three-dimensional 
shear cracks by finite elements and boundary integral equations, respectively. 
Spontaneous three-dimensional solutions have been proposed by Day (1979), Das 
(1981), and Miyatake (1980). A major difficulty with three-dimensional numerical 
solutions is the need of a large computer capacity. Some authors avoided this 
problem by studying models possessing a certain symmetry, as Madariaga (1976) 
did in the case of circular cracks or by making some approximations (Mikumo and 
Miyatake, 1979) in order to reduce the three-dimensional problem to a two-dimen- 
sional one. 

In this paper, we present a new numerical finite difference method for the solution 
of spontaneous dynamic shear cracks. The method is similar to the one used 
previously by Madariaga (1976) for the solution of circular cracks. A modification in 
the way boundary conditions are imposed on the crack significantly improves the 
stability of the solutions, especially the stress on the fault plane. This allows us to 
use the maximum stress criterion of Das and Aki (1977) and Shmuely and Peretz 
(1976) in the study of spontaneous rupture. 

THE CRACK AND ITS NUMERICAL SOLUTION 

Let us consider an infinite, linear elastic medium subject to a static prestress, T~ 
= a0(x, y, z). At time t = 0, a crack starts to propagate on the plane (x, y) such that 
on the newly fractured area, the shear traction rx.. drops to the dynamic friction o r 
and, simultaneously, a displacement discontinuity, or slip, appears across the fault 
plane. Our purpose is to calculate the slip given oo and of as functions of position on 
the crack and time. 

We have to solve numerically the elastodynamic equations of motion for a uniform 
medium 

pll~ ~ 7q ' . ]  

r,j = k u k , k 3 , j  + g (u , , j  + uj, ,)  (1) 

where p, h, and # are the density and elastic constants of the medium, u, and % are 
the displacements and incremental stresses measured with respect to the initial 
prestressed configuration. 6,j is Kronecker's delta. Dots indicate time derivatives, 
commas partial differentiation with respect to the space component indicated by 
the index following the comma. 

We have found (Madariaga, 1976) that imposing boundary conditions is much 
simpler when the second-order partial differential equation (1) is transformed into 
the following system of nine first-order equations 

p l ) ,  = Tv.  j 

÷,j = kv~,k6,j  + g(v,,j + v/,) for t =J .  (2) 

Here, v, is the particle velocity. Crack problems are mixed-boundary value problems 
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since they require stress conditions inside the crack and fixed velocity outside the 
crack. These boundary conditions are easily found using symmetry properties about 
the crack plane. Let $1 be the crack at time t and $2 the rest of the fault plane 
outside the crack. The boundary conditions for a plane shear crack are 

v ~ = v y = 0  on $2 (3a) 

and 

~ ~  = - o 0  = o~ c o s ( C )  

Zy~ = -or  sin(~) 
on Sa 

(3b) 

where O'e = 0 " 0  - -  O'f is the effective stress, and ~ is the angle of slip with respect to the 
x axis, and 

~rzz = 0 on both $I and $2. (3c) 

In order to make explicit the dependence of the solution on the source parameters, 
we use nondimensional variables defined by 

Tq ~" oe Tq 

(x, y,  z) = L ( X ,  Y,  Z )  

t = L / c ,  t '  

v~ = ~ e c / m  V~ 

u, = aeL/mU~.  (4) 

L is a characteristic length of the problem, i.e., the grid step d for a self-similar or 
semi-infinite crack, or the length of a finite crack, c is either a, P-wave velocity, for 
three-dimensional and plane cracks, or fi, S-wave velocity, for antiplane cracks, m is 
either (h + 2/4,) for three-dimensional and plane cracks, or tt for antiplane cracks. In 
all of our calculations, we have assumed that h --/~. 

We find the following normalized system 

?~ = T~j~ + CV2Vz 

~'z] = ~/rnVk'kaz, + t t / m ( V o  + V],z) t ~ J  (5)  

where we have added a viscous dissipation term to the equation for particle 
velocities. C is a nondimensional attenuation coefficient chosen so as to dissipate 
spurious high-frequency oscillations in the numerical solutions, generated by abrupt 
stress drop on the crack. 

THE FINITE DIFFERENCE METHOD 

The main features of the numerical method were already exposed in Madariaga 
(1976): we try to build a grid to solve the normalized system of equations (5) by 
centered finite differences. Of the many ways to do that, we prefer the one that 
yields the simplest finite difference expressions. It turns out that this grid has also 
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the fewest number of grid points per finite difference cell. 
antiplane grid shown in Figure la. Introducing the notation 

Let us consider the 

F ( i h y ,  j&z ,  k A t )  = F ( i , j ,  k)  (6) 

where y = ihy ,  z = j h z ,  t = k h t ,  and F is any of the variables of the problem. We 
may write the finite difference equivalent of equation (5) 

z 
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• Vx 
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A Txz 

[-I Txv 

• ,l'-l. • Y 

ANTIPLANE GRID 

z 

• []  -0 • v~ 
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Z~ Txz 

[ ]  Txx a Tzz 

• [] • × 

PLANE GRID 
FIG. 1. (a) The numerical finite difference grid for antlplane elastodynamlc problems. Two different 

times are shown on the same spatial grzd: closed symbols are for time k and open symbols are for time 
(k + ½). (b) Same as (a), but for in-plane elastodynamm problems. 

At  [Txy(i + 3 ,J ,  k + 3) - Txy(i - ½,j,  k + 3)] Vx( i , j ,  k + 1) = Vx( i , j ,  k)  + ~ y  

A t  
+ -~z [Txz ( i , j  + 3, k + 3) - T . z ( i , j  - 3, k + 3)]- (7) 

The damping term has been eliminated for simplicity. Thus, the method is explicit 
since the velocity Vx at t - (k + 1)At is calculated from the velocity at t = k h t  and 
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the stress at t = (k + ½)At. In fact, an examination of the system (5) shows that 
stresses are needed only at half-times (k + ½)At and that, if we tried to calculate 
both stresses and velocities at the same time, we would have a system that would 
completely uncouple into several staggered schemes like the one we have just 
presented. We may now provide the equations for the stresses. 

At 
Txy(~ + ½,j, k + ½) = Txy(i + ½,j,  k - ½) + ~ y  [Vx(i  + 1,j, k) - Vx ( i , j ,  k)] 

T x z ( i , j  + 3, k + 3) = T x z ( i , j  + 3, k - 3) + At  [ V x ( i , j  + 1, k) - V~(i,j, k)]. (8) 
az  

The calculation is again explicit and we may combine the stress and velocity 
equations into a single explicit two-step finite difference method. The grid is 
completely staggered both in space and time and has a side-centered cubic sym- 
metry. 

Proceeding in the same way as above, we have found the grids for plane and three- 
dimensional elasticity shown in Figures lb and 2, respectively. Both have the same 
properties described for the antiplane problem. 

~7 ro 
0 ° ° 

y 

• Vx 0 Txx , Tyy , Tzz 

• vy /x Txy 

• Vz ~ Txz 

[]  Tyz 
Fm 2. The numermal flmte difference grid for three-dimensional elastodynamm problems. 
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Numerical stability may be found in the usual way (Alford et al., 1974) 

H + C < n-~/2 (9) 

where n = 2 or n = 3 for two- or three-dimensional problems, respectively. H = At /  
h x  = At~by = h t / h z  is the ratio between time increments and space grid steps. In 
most instances, we choose H = 0.5 for two-dimensional calculations and H = 0.25 
for three-dimensional calculations. Since the P-wave velocity a = 1 in the normalized 
equations, H = 0.5 means that the numerical information moves at a velocity h x /  
h t which is twice the P-wave velocity. His  closely related to the numerical dispersion 
created by the discretization of the wave equation. Precision, on the other hand, is 
controlled by the number of points chosen to model a fault of given length. This 
poses a problem at the beginning of rupture since the initial crack will be modeled 
by a very small number of points, and the precision of the solution will be 
correspondingly poor. As the fault grows the number of points inside the crack 
increases and so does precision. The most severe source of problems with the 
numerical method comes from the discretization of the rupture front. The damping 
term characterized by the coefficient C redu-es efficiently the oscillations coming 
from rapid stress changes; but the oscillations due to the propagation of the crack 
are not so well suppressed because they are continuously generated every time the 
rupture front advances by a grid step. 

As in the case of the grid selection, we have several possible ways of implementing 
the boundary conditions [(3a) to (3c)]. Since the boundary conditions are mixed, we 
cannot specify Vy, Vx on $2 and Tzx, Tzy on S~ on the same numerical plane. This is 
an intrinsic property of finite difference methods for mixed-boundary value problems 
and requires the introduction of a ghost plane to satisfy the boundary conditions on 
$1. In Madariaga (1976), the stress on the fault plane was specified via a ghost line. 
This method yields very stable estimates of slip velocity and is quite suitable to 
calculate seismic radiation from the fault by a representation theorem. Stresses on 
the fault plane are less reliable since we do not have stress directly calculated on the 
extension of the fault plane itself but on a plane slightly off (by h z/2)  from the fault. 
This smoothes the stress field in a way unsuitable for spontaneous rupture propa- 
gation. 

A different implementation of the boundary conditions was introduced by Virieux 
(1979). Here the symmetry or antisymmetry of the field variables about the fault 
plane are exploited and shear stress is computed directly on the fault plane. 
Referring to Figure 2 ~nd assuming that  this represents a grid cell on the z = 0 
boundary, the fault plane is taken as a plane normal to z through the center of the 
cell, i.e., a plane through Tzx, Tyz, and Vz. With this choice, the particle velocities Vy 
and Vy are calculated on a plane slightly off (by hz/2) from the fault plane, and they 
are less reliably determined. On the other hand, the stresses T,z and Ty~ outside the 
crack and their singularities are better resolved. Since we are interested in sponta- 
neous propagation, we have used this new procedure in the numerical calculation 
reported in this paper. The trade-off between stress and slip precision seems to be 
inherent in finite difference solutions to mixed-boundary value problems and stems 
from our inability to specify both velocity and shear stress on the same grid plane. 

ANTIPLANE CRACK WITH FIXED VELOCITY 

The first problem we shall consider is a semi-infinite antiplane crack that appears 
suddenly along the negative y axis at time t = 0, and then propagates at a constant 
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rupture velocity. This problem admits an exact solution that  may be found using 
the method developed by Kostrov (1966). Das and Aki (1977) used this model, with 
rupture velocity fi/2, as a test for their boundary-integral equation method.  We shall 
perform here a similar test of our numerical method.  

In Figure 3, a and b, we present the stress field and the displacement field at 
several positions along the crack axis. We see how the stress field grows as the usual 
inverse square-root singularity and drops abruptly once the rupture front arrives. 
Slip begins immediately after the passage of the rupture front and has a typical 
hyperbolic form. The exact solution is given by the continuous line, the numerical 
one is represented by the crosses. The crack slip is systematically underestimated; 
this comes from the fact that  we calculate velocities and displacements not  on the 
crack itself but half-a-space step away from the fault. This problem may not  be 

o b 

RNTIPLANE CRACK 

S E M I - I N F I N I T E  CASE 
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FIG 3. Stress and displacement history of a seml-mfimte antiplane crack growing with fixed-rupture 
veloc]ty v = 0.5 fi Crosses indicate numerical solution, lines the analytical one. A very good resolution of 
the stress singularity is seen while there is a clear delay of the displacement. All variables are scaled as 
m equation (4) w]th L equal to the grid spacing d. 

entirely eliminated since it comes from the way boundary conditions are applied on 
the grid; velocities and stresses are never calculated at the same points. 

DYNAMIC ANTIPLANE CRACK 

Spontaneous propagation from an instantaneously appearing semi-infinite 
crack. One of the goals of the development of numerical methods  to solve crack 
problems is to study spontaneous rupture propagation in which the rupture history 
is not  prespecified but is determined from material properties. Since we want to test 
the capabilities of our numerical method,  we shall first study the only dynamic 
faulting problem that  admits an exact solution: the semi-infinite, instantaneously 
appearing, antiplane fault model  of Kostrov (1966). This same problem was studied 
numerically by Das and Aki (1977). 
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A major problem with rupture criteria is that they are based on the local stress 
and velocity field near the crack tips, and both fields have inverse square-root 
singularities. In numerical solutions, we are limited to a discrete approximation of 
these fields. We are thus forced to use a few points near the tip to introduce a 
criterion that  will, hopefully, simulate the rupture criterion in the continuum. 
Several such criteria have been proposed in the literature; they may be classed into 
two types: the maximum stress criterion in which the node ahead of the crack tip is 
relaxed once the stress overcomes a certain maximum stress. This criterion has been 
used by Das and Aki (1977), Shmuely and Peretz (1976), and Owen and Shantaram 
(1977), among others. Alternatively, a numerical version of the energy release rate 
may be used; here, several of the points near the crack tip are used to calculate the 
energy flow into the rupture front (Owen and Shantaram, 1977; Popelar and Gehlen, 
1979). 

The stress field we have calculated for the fixed-velocity models presented in the 
previous section is sufficiently accurate and stable in order to attempt a simulation 
of spontaneous crack growth. We have tested both the maximum stress and energy 
criteria (Virieux, 1979) but we shall concentrate here on the maximum stress 
criterion as applied to a semi-infinite antiplane crack. The crack extends initially 
between - ~  < y < 0 and, at time t -- 0, it is loaded instantaneously with a uniform 
stress axz = --ae = Of -- a0. After a certain time t~, the load on the crack tip is enough 
to start rupture which accelerates eventually to the shear velocity. This problem 
admits an exact solution obtained by the method of Kostrov (1966). Assuming that 
the rupture criterion is that the stress intensity factor should be constant and equal 
to k t ,  we find that the crack tip position is given by 

y~ = O  t<=  t~ 

y~ = f i ( t  - re) - rite l o g ( t i r e )  t > t~ (10) 

where te = ~r2kt2/4fio~ 2. 
Das and Aki {1977) have proposed that the maximum stress criterion is related to 

the constant k t  rupture model. Let ou be the maximum acceptable stress and of the 
kinematic friction in the crack plane. Then, assuming that  the crack tip is at the 
middle between two grid points, they found 

Ou -- Of-~ 2 k t d  -1/2 (11) 

where d is the grid spacing. Since of and d are given, this is a linear relationship 
between Ou and k t .  Introducing normalized variables and noting that  k t  is normalized 
by oeL 1/2, we find 

au - of _ 2 K t ( L / d ) i / 2  (12) 
Oe 

where K t  is the nondimensional stress intensity factor. Using Das and Aki's notation 

au - -  O'0 
T u  ~ -  

Oe 

we find 

1 + T~, = 2 K t ( L / d )  1/2 (13) 
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where Tu is the nondimensional maximum stress increase measured from the initial 
stress. 

In order to interpret numerical results in terms of physical variables, we have to 
fix the length scale. For the semi-infinite crack that we study in this section, we 
choose L = d, the grid spacing. In this case 

1 + T. = 2Kt (14) 

with 

Kt = k t /  (aed l/z) 

as shown by Das and Aki (1977). It should be noted, however, that this semi-infinite 
crack problem does not have an intrinsic length scale. It is precisely this lack of 
scale that allows its exact solution. An alternative choice to L = d would be to take 
L = fi tc with tc defined by (10). 

In Figure 4, we present crack tip trajectories calculated for the semi-infinite, 
instantaneous antiplane crack. The results are labeled according to the nondimen- 
sional stress intensity factor Kt used in the numerical solution. We have recalculated 
the value of Kt adjusting the analytical solution to the numerical one by means of 
a least-squares fit. We obtain in this way an adjusted stress intensity factor Kc which 
is also given in the figures. The analytical solutions are given by the continuous 
lines while the numerical solution is marked by crosses. We have repeated the 
preceding calculation with another grid ratio H = 0.25. We find practically the same 
results which indicate that the numerical dispersion does not have a major influence 
on the determination of rupture propagation. 

From our numerical results, we have found a good agreement between analytical 
and numerical solutions for 

2 < K t < 4  or 3 < T u < 7 .  (15) 

The lower limit is probably due to the poor resolution of the stress concentration in 
the vicinity of the crack tip. The critical stress intensity is too low and the 
numerically computed stress intensity too high; as a result, the numerical solution 
accelerates faster than the analytical one. Let us note that this limit Tu = 3 is larger 
than the maximum stress increase allowed in most numerical simulations that have 
appeared in the literature (Das and Aki, 1977; Das, 1981; Day, 1979; Miyatake, 
1980). The upper limit of Kt corresponds to a high rupture resistance. In this case, 
the numerical solution seems to have some difficulty in building up the stress 
concentration. This is probably due to smoothing of the stress field near the crack 
tip. 

Since rupture propagation is controlled by the local stress field near the rupture 
front, we shall assume that the limits for Kt found above will also apply to finite 
cracks provided that a proper scaling of these limits is taken into account, i.e., 

2 ~ < Kt < 4 4cl /L (16) 

where as before Kt = kt/(aeL1/e). These limits to the applicability of the numerical 
rupture criterion are intimately related to the properties of our numerical method. 
It may happen that the other numerical methods proposed in the literature have 
different limits of applicability. 



354 J E A N  V I R I E U X  A N D  R A U L  M A D A R I A G A  

Spontaneous propagation from a finite initial crack. The  prob lem of crack 
nucleat ion is very impor tan t  in simulat ing ea r thquake  faulting. The  semi-infinite 
model  s tudied in the  previous  section is very  unsat isfactory in this respect  since it 
has  no coun te rpar t  in three  dimensions.  For  this reason we shall s tudy the nucleat ion 
of rup tu re  f rom a finite initial crack. Two models  shall be considered; in the first, 
the crack is loaded by  pres t ress  and has  reached  the  critical stress cri terion at  t ime 
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FIo. 4. The motion of the crack tlp during the spontaneous rupture of a seml-mfimte antlplane crack 
The crosses describe the numerical position of the crack tip for several values of the nominal stress 
intensity Kt. Lines are adjusted analytmal crack tip position for the recalculated stress intensity K~. 
Rupture velocity fi is shown for comparison. Scaling length is the grid spacing d 

t ---- 0. In  the  second case, the finite crack is loaded ins tantaneously  at  t ime t = 0 by 
a uni form initial stress. T h e  la t ter  model  is less physically sat isfactory than  the first 
one, bu t  it is cheaper  to solve and  has  been  used to s tar t  rup ture  in three  dimensions 
by  Das  (1981) and Miya take  (1980). The  first case is more  expensive to solve since 
it requires  calculating the  initial pres t ress  field. The  static pres t ress  is obta ined  
using the viscous damping  t e r m  to reduce oscillations. Once the velocity field is 
everywhere  negligible, we consider t ha t  we have  reached the  static limit. 
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In order to solve the preexisting crack model, we take an initial crack of 40 grid 
points. We use the initial crack half-length as the scale length: L = 20 d. From the 
static prestress solution, we find the nondimensional stress intensity factor 

Kt = 0.686 

which is well within the limits, 0.447 and 0.894 given by equation (16) since 
( d / L )  1/2 = 20 -1/2. The preexisting crack is initially in metastable equilibrium, and in 

order to start  rupture,  we relax the grid points just in front of the crack tips. The 
crack becomes unstable and propagates symmetrically until it triplicates its initial 
length; then it stops abruptly. We have assumed that  the interior of the preexisting 
crack is not  locked; we found that  a substantial amount  of slip takes place there. In 
Figure 5a, we show the propagation of the crack tip as a function of time. Rupture  

a b 
ANTIPLANE CRACK ANTIPLANE CRACK 

STATIC STARTING CRRCK INSTRNTRNEOUS STRRTING CRACK 

H~-O.SO, KT= 0 .68  H~O.SO, KT~ 0 . 6 8 ,  KC=.- 0 .68  
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CRRCK TIP POSITION CRACK TIP POSITION 

FIG 5 (a) Spontaneous rupture of a preexisting finite antlplane crack Numerical crack tip position 
is plotted against time The crack is loaded by static prestress and becomes unstable at t = 0 K~ is the 
static stress intensity factor. The crack stops when it triplicates Its initial length The scaling length is the 
Initial crack length (b) Spontaneous rupture of an instantaneously loaded finite antlplane crack. 
Numerical crack tip position is plotted against time. The crack waits for a time tc to overcome the critical 
stress intensity Kt and start propagating. It stops when it triphcates its initial length The line is the 
analytmal semi-infinite antiplane crack tip position for the recalculated stress intensity K~ Length scale 
is the size of the initial crack. 
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C3 
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g -  
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starts immediately at  t = 0 and, after a period of acceleration which is faster than in 
the case of the semi-infinite crack, the crack reaches a velocity of 0.66 fi just  before 
rupture arrest. 

The stress field T~ on the crack and its extension is shown in Figure 6a at equally 
spaced instants of time. The maximum stress T. related to K, = 0.686 by (13) is then 
Tu = 5.136. We see that  during propagation, Txz is usually lower than this value, 
except just  before the crack jumps by a grid step. After the crack stops growing, a 
much higher stress singularity develops in front of the crack tip. The slip inside the 
crack is given in Figure 6b at the same times for which Txz is shown in Figure 6a. 
Let  us note tha t  slip is measured from the initial state at t = 0 and not from a 
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completely relaxed state before the introduction of the preexisting crack. The slip in 
Figure 6b presents two distinct features: the large elliptical slip function due to the 
new rupture and the central slip deficiency due to the preexisting crack. If we added 
the preslip in the central part of the fault, we would find a simple elliptical slip. In 
this case, we would be measuring the total slip with respect to an initial completely 
relaxed stress field. We should remark that from purely seismological measurements, 
we would not be able to detect this initial preslip (or antidislocation in the terms 
introduced by Andrews, 1974). As the new crack becomes longer, the initial slip 
becomes smaller and smaller with respect to the total slip. 

In the second model that we shall discuss in this section, we consider a finite 
crack of half-length L = 20 d, appearing instataneously at time t = 0 and propagating 
spontaneously with the rupture criterion K t  = 0.686. Before interaction between the 
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Fro. 6. Numerical solution for the spontaneous antiplane crack of Figure 5a Stress and slip fields on 
the crack line are shown at 10 different normalized times starting from 0.75 w]th a step of 0.75 T. is the 
maximum stress associated with the static stress intensity Kt. Scale length is the initial length of the 
crack. 

two crack tips, this model closely corresponds to the semi-infinite crack studied in 
the previous section. The crack tip trajectory is shown in Figure 5b. As in the semi- 
infinite case, a certain time close to tc of equation (10) elapses before the rupture 
starts to grow. During this time, the stress concentration builds up in front of the 
crack tip until it reaches the rupture criterion Kt = 0.686. It is remarkable that the 
crack may start to grow with this value of Kt which corresponds to the stress 
intensity factor of the static crack. This indicates that the dynamic stress intensity 
for instantaneous loading overshoots the static stress intensity. After the initial 
acceleration, rupture velocity reaches 0.66 fi before the crack is stopped abruptly at 
L f  = 60 d. The stress field, shown in Figure 7a, is very similar to the stress field for 
the preexisting crack of Figure 6a. The slip shown in Figure 7b, on the other hand, 
is different from that in Figure 6b since the slip deficiency due to the preexisting 
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crack has  now disappeared.  After  the  crack has  s ta r ted  to grow, slip is very  similar 
to the  elliptical slip funct ion of the  serf-similar crack (Kostrov, 1964). Once the  crack 
stops, slip continues for a while until  the  arr ival  of  the healing phases.  Simul tane-  
ously, the  stress concentra t ion builds up outside the crack and, as expected, it 
reaches  a similar  value to tha t  of  the example  in Figure 6a. 

Return ing  to the case of the preexist ing crack, we see tha t  the final stress 
concentrat ion,  once the  crack has  ceased to grow, is much  higher t han  the  concen- 
t ra t ion  a t  the beginning of rupture.  This  shows tha t  for a fixed-effective stress drop 
~e, the stress intensi ty  depends  on the  square root  of the  crack length, i.e., 

kt  = 0 .686  oeL 1/2 (17) 
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maximum stress associated with the static stress intensity K, Scale length is the imtial length of the 
crack. 

in bo th  cases. Initially L = L0 = 20 d, while a t  the end of rup ture  L = L / =  60 d. 
When  normalizing length by  Lo = 20 d, the  stress intensi ty a t  the end of rup ture  is 
3½ t imes larger than  tha t  at  the beginning. I f  we renormal ized the final stress field 
with the new scale length, Lf  = 60 d, we would obtain  the same results  as in the 
initial preexist ing crack, except  t ha t  now we would have  a much  denser  grid and a 
be t t e r  resolut ion of the  stress field near  the crack tip. T h e  whole process m a y  be 
now restar ted,  and we m a y  repea t  the rup ture  simulation. This  clearly shows tha t  
the numer ica l  cri terion depends on the  n u m b e r  of points  used to model  the  crack: 
if we increase the n u m b e r  of  points  f rom L0 to L/, the rup ture  criterion has  to be 
correspondingly increased by  (Lf/Lo) 1/2. 

SELF-SIMILAR IN-PLANE SHEAR CRACK 

In-plane shear  crack problems are much  more  difficult to solve analyt ical ly than  
ant iplane p rob lems  because of the  coupling be tween P and S V  waves. The  only 
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prob lem for which a complete  analytical  solution is available is the self-similar in- 
plane shear  crack. In this model,  a crack appears  a t  t ime t = 0 a t  the origin of 
coordinates  and then  propagates  bi lateral ly with f ixed-rupture velocity along the x 
axis. T h e  crack plane is thus  the x - y  plane, and the crack extends indefinitely in the  
y direction. A uni form shear  pres t ress  field ao exists before rupture.  Once the rup ture  
starts,  the stress inside the cracked pa r t  of the x axis drops to the frictional stress 
of. A solution to this p rob lem for subsonic rup ture  velocities was found by  Kos t rov  
(1964) who showed tha t  the  slip inside the crack is given by  

(18) 

il 

where C is a numer i ca l cons t an t .  Using (18)as  a dislocation distribution, the  stress 
in the fault  p lane was calculated by  Cagniard-de Hoop ' s  method.  
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Le t  us now solve the  self-similar in-plane crack by  means  of our numerical  method.  
T h e  self-similar problem,  as evidenced by the slip function (18), has  no intrinsic 
length scale. For  this reason, we choose the grid spacing d as the  length scale in our 
solution. T h e  rest  of the variables  are scaled as described in "The  Crack and I ts  

Numer ica l  Solutions." 
We have  studied the  stress and d isplacement  field of the self-similar crack for a 

rup tu re  veloci ty v = 0.86 fi or v = 0.5 a. The  U~ componen t  of the d isplacement  field 
and the T~z componen t  of the stress field at  several  posit ions along the x axis are 
shown in Figures 8 as a function of time. The  cont inuous line shows the exact  
analyt ical  solution, while the  crosses represen t  the numerical  results. The  displace- 
m e n t  U, follows very closely the analytical  solution: it is zero before the  arrival of 
the rup ture  front  and then  increases hyperbol ical ly  as predic ted by the theoret ical  
result  (18)• T h e  numerical  solution is slightly delayed with respect  to the analytical  
one because displacements  are not  calculated exactly on the crack but  slightly off it. 

X= 24 



DYNAMIC FAULTING STUDIED BY A FINITE DIFFERENCE METHOD 359 

We consider that the numerical displacement U~ is very satisfactory and so is the 
slip function h U~. 

The stress field on the other hand is not so well modeled by the numerical 
solution. In particular, the peak associated with the S wave 1¢ not present in the 
numerical result. Only a slight bump begins to form at X = 24. In our opinion, this 
problem is due to the numerical smoothness of our boundary conditions, inducing 
an averaged representation of the elastic fields (especially the T~: field) around the 
crack tip, and so a rather smooth emission of shear waves. The numerical solution 
lacks enough resolution and, as seen in Figure 8, the stress field ahead of the crack 
only crudely approximates the exact stress field, averaging the stress concentration 
due to the rupture front and the S-wave peak. The numerical stress concentration 
is wider and more important than the analytical stress concentration. 

SPONTANEOUS IN-PLANE SHEAR CRACK 

In this section, we shall study the spontaneous growth of an in-plane crack under 
the same rupture criterion that we used for the antiplane case. First, we shall 
concentrate upon the validity of this criterion by studying the spontaneous semi- 
infinite crack. Then, we shall present results for a spontaneous finite crack. 

Let a semi-infinite crack appear instantaneously at time t = 0 along the negative 
x axis. The material is under an uniform prestress field o0. Inside, the crack stress 
drops instantaneously to or, the dynamic frictional stress. As in the antiplane case, 
the stress intensity factor ahead of the crack will grow until it reaches the critical 
value kt. At that time, t~, the crack will start to grow accelerating to a terminal 
velocity that depends on the value of kt, and the grid spacing through the expression 
of the normalized stress intensity factor Kt = ke/(o~dl/2). 

We do not have an analytical solution of this problem so that we shall only display 
numerical results. In Figure 9, we show the crack tip position as a function of time 
for four different values of K ,  Assuming that the results of the antiplane case do 
apply to the in-plane one, we restricted our study to 2 < Kt < 4. For Kt < 2.5, we 
found that the rupture velocity tends to the P-wave velocity; for instance, for Kt = 
2, the limit velocity was 0.86 a. At Kt -- 2.5, we encounter a transition zone in which 
the rupture front transverses very slowly the Rayleigh wave velocity and then goes 
supersonic. For values of Kt > 2.5, the limiting rupture velocity is always lower than 
Rayleigh's. We assume an upper limit exists for Kt due to numerical dispersion close 
to Kt = 4, just as in the antiplane case. Thus, as long as 2.5 < Kt < 4, the maximum 
rupture velocity is the Rayleigh wave velocity. For a finite fault of length L, the 
equivalent limits are 

2.5 d v Z ~ < K t < 4  x/'d/L 

where d is the grid spacing and Kt is normalized by o,~L x/2. 
For values of Kt < 2.5 (d/L) 1/2, the rupture front becomes transonic and ap- 

proaches the P-wave velocity. This occurs in our opinion because as we showed in 
the previous section, the numerical stress concentration represents the combination 
of the stress concentration itself and the S-wave stress peak. Theoretical solutions, 
on the other hand, separate the rupture front stress concentration from the S-wave 
peak. Only the rupture front stress concentration is used in the calculation of the 
maximum rupture velocity, which is invariably the Rayleigh velocity. In the numer- 
ical method, at high rupture velocities, the S-wave stress peak coalesces with the 
rupture front stress concentration. Strictly, then the equivalence between the "stress 
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intensity factor level criterion" and the "stress level criterion" based on an average 
of the elastic stress over the grid spacing d fails for values of Kt < 2.5. 

Alternatively, we may, as Das and Aki (1977) proposed, interpret the numerical 
result as being due to the presence of a finite cohesive zone at the rupture front, i.e., 
in the numerical methods,  the rupture front is not  a point but a finite zone a few 
grid spaces long, say d'. The only problem then is the relation between d and d', 
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necessary for a translation into physical terms. In terms of slip-weakening cohesive 
models  in which the stress singularity is removed, it may be argued, as Andrews 
(1976) did, that  for low values of stress level, the S-wave stress peak can break the 
material, allowing for transonic ruptures velocities. In any case, we conclude that  
the transonic rupture velocities are an intrinsic feature of our numerical method not  
related to oscillations or instabilities of the stress field but due to the numerical 
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coalescence of the strong S-wave peak ahead of the crack tip and the rupture front 
stress concentration. 

Let us consider now a finite crack of half-length L = 20 d under an initial static 
loading. At time t = 0, the static critical stress intensity is reached, and the crack 
starts to grow spontaneously. Rupture growth is controlled then by the critical 
stress intensity Kt = 0.59. We stopped the crack abruptly when it triplicated its 
initial length. We present the numerical propagation of the crack tip in Figure 10. 
We notice that the rupture velocity is lower than the Rayleigh one, as expected for 
Kt > 0.55. The slip field hUx and the stress field T:~z are presented in Figure 11 and 
show the same global features of the corresponding antiplane case. A strong S wave 
is emitted when the crack abruptly stops, inducing an S-wave peak in the stress 
field, in front of the stress singularity. 
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Fm 10. Spontaneous rupture of a preexisting finite in-plane crack. Numerical crack tip position is 
plotted against time. The crack is loaded by static prestress and becomes unstable at t = 0. Kt is the statm 
prestress mtensity factor. The crack stops when it triplicates its initial length. Rupture velocity slopes 
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DYNAMIC THREE-DIMENSIONAL SHEAR CRACKS 

Let us consider now the spontaneous propagation of a planar shear crack in a 
prestressed three-dimensional medium. The implementation of a rupture criterion 
poses a number of problems since we are now in the presence of a mixed-rupture 
mode, with mode II (in-plane shear) and mode III (antiplane shear) stress concen- 
trations. In order to translate a rupture criterion based on the stress intensities K~ 
and Km into a maximum stress criterion, it is necessary to average the stress field 
over those grid element d x d which contain the rupture front. While in two 
dimensions we assumed that the rupture front was at the center of a grid interval, 
here we would have to assume the shape of the rupture front. We proceeded as 
follows: first, in order to simplify the calculations, we assumed that only the Tx~ 
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component of the shear traction on the fault plane (x, y) presents a large stress 
concentration. Tyz should be small, a hypothesis that we have verified in our 
numerical calculations. If this hypothesis were not verified, we would have to 
decompose stress field near the rupture front into in-plane and antiplane shear 
components and apply a rupture criterion to each component. In fact, the rupture 
criterion for three-dimensional cracks is based on energy flow considerations, and 
there does not seem to be any easy way to express this criterion in terms of stress 
intensities. We shall therefore use a maximum stress intensity criterion on the Txz 
stress component exclusively. Let Kt be this maximum intensity. We shall assume 
that  the intervals of validity of the numerical criterion is the same as that determined 
for in-plane problem, i.e., 

2.5 ~/d/L < Kt < 4 , fd /L  

where L is a characteristic length. 
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Spontaneous growth of a preexisting circular crack. Let us consider a static 
preexisting circular crack on the (x, y) plane of radius equal to 10 grid spacings (L 
= 10 d). The crack has glided in response to a tectonic stress Txz applied at infinity. 
Slip inside the crack has the typical ellipsoidal shape associated with penny-shaped 
cracks. The stress field has inverse square-root concentrations around the crack 
edges; the maximum normalized stress intensity is Kt = 0.42 along the x axis. The 
stress intensity is lower in the y direction as expected from theoretical considerations. 
We shall use Kt = 0.42 as the maximum admissible stress intensity. The problem at 
hand is similar to those treated in the sections on "Dynamic Antiplane Crank" and 
"Spontaneous In-Plane Shear Crack" for the antiplane and plane cases, respectively. 
The crack at time t = 0 is in metastable equilibrium, ready to start growing. In the 
two-dimensional cases, rupture was started relaxing the node in front of the crack 
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tip, the crack was then slightly longer and became unstable. In the circular case, the 
crack is locally metastable only along the x axis, i.e., in the pure in-plane direction. 
It is, however, stable along the y axis (pure antiplane direction). Strictly then, 
rupture should start from the in-plane direction, creating a highly asymmetrical 
rupture. Instead of this, we overdrove the stress concentration around the crack 
edges forcing it to increase its radius by one grid space, and then we let it grow 
spontaneously. The crack, after a brief arrest, starts to grow faster in the x direction 
(pure in-plane mode) than it does in the y direction as shown in Figure 12. We stop 
rupture abruptly once the half-length along the x direction is twice the initial crack 
radius (Figure 12). Just  before crack arrest, the rupture velocity was v -- 0.45 a in 
the x direction and v = 0.31 a in the y direction. We did not verify whether the crack 
would go transonic in the x direction since we did not let it grow long enough. In 

Fm 12 Rupture front motion for a spontaneous mmally circular crack under stanc prestress loading. 
Dots lndmate the preexisting crack, while lines show the rupture front at 10 &fferent times starting from 
0.4 with a step of 0.4. Rupture velocities are shown m the x and y directions, at the stopping time, once 
the crack has duphcated Its initial length m the x direction 

order to study the terminal velocity, we would need a much bigger grid and a much 
more expensive computation. In Figure 13, we present both the slip inside the crack 
and the stress field Txz in the plane of the crack at several instants of time. h Ux and 
Txz are shown as a function of radius along three directions: 0 = 0 ° (x axis); 0 = 45°; 
and ~ = 90 ° (y axis) to emphasize the nonsymmetrical nature of our solutions. The 
overall features of the slip and stress are, however, the same as those for the 
equivalent antiplane and in-plane problems. There is a slip deficiency in the initial 
preslipped section of the fault and there are inverse square-root singularities in 
stress outside the crack edge. The model presented here corresponds to a preslipped 
circular fault patch or asperity. The rupture then evolves from this preslipped 
segment which acts as a seed or trigger for the rupture. This model deserves a more 
careful analysis, in particular of nonsymmetrical rupture growth. This will be the 
subject of future work. 
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Ins tantaneous ly  starting, spontaneous circular crack. Th e  model  we studied in 
the previous section is very  expensive to solve, since it is necessary to calculate the 
initial static solution before rupture  can start. Although we believe tha t  this is the 
most  realistic model  of rupture  nucleation, we shall s tudy now a model  of instanta- 
neous nucleation. Models of this kind have been studied by Das (1981) and Miyatake 
(1980). In this model, a uniform preexisting stress field Txz exists in the future fault 
zone. At t ime t = 0, a finite circular crack appears instantaneously with a radius L 
= 10 d. For  some time the stress intensity around the edge of the crack will increase 
until  it reaches the rupture  criterion which, as in the previous example, we shall 
assume to be Kt = 0.42. Rupture  starts at  normalized t ime tc = 0.12 and then  grows 
preferential ly in the x direction. This  is again a consequence of the stronger stress 
concentrat ion in the in-plane mode dominating in the x direction. Figure 14 shows 
the shape of the rupture  front  as a function of time. Rupture  is again stopped 

O (  

! . . . . .  

FIG. 14. Rupture  front motion for a spontaneous initial circular crack under instantaneous stress 
loading. Dots  indicate the inltml crack at  t ime t = 0, while hnes show the  rupture front at 10 different 
t imes starting from 0.5 with a step of 0.5 Rupture  velocities are shown in the  x and y directions, at  the  
stopping time, once the  crack has duphcated its initial length in the x d:rectlon. 

abrupt ly  once the crack has duplicated its half-length in the x direction; by that  
time, the crack has a clearly elliptical shape elongated in the x direction. 

In Figure 15, we present  the slip AUx and stress Txz at several instants of time. 
Cross section of slip and stress are shown as a function of radius in three azimuths: 

= 0 ° (x axis); ~ = 45°; and ~ = 90 ° (y axis). 
It  is interesting to note tha t  slip seems to stop at  the center  of the crack just  

before the crack starts  growing. This  occurs because the crack behaves as an 
instantaneous circular crack until  it s tarts  rupturing. For  the instantaneous circular 
crack, slip arrest  inside the crack starts with the arrival of the P waves generated at  
the edge of the crack at  t ime t = 0. Slip restarts  when the P waves generated by the 
star t  of rupture  arrive. Between the arrival of these two waves, the slip decreases 
almost to a halt. At the end of rupture,  once slip has s topped due to friction, slip 
inside the crack has the typical  elliptical shape of static shear  cracks. 
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CONCLUSIONS 

In this paper, we have presented a general numerical technique to model the 
dynamic shear cracks at the origin of most shallow tectonic earthquakes. We have 
studied systematically two-dimensional antiplane and in-plane cracks, and three- 
dimensional initially circular cracks. In all three cases, we studied first fixed-rupture 
velocity models (semi-infinite or self-similar) for which partial or complete analytic 
solutions exist. We use these exact results as tests of our solutions and then verify 
carefully the stability of the stress field on the plane of the crack. We found very 
satisfactory results in most cases, noting a systematic underestimation of slip, due, 
in our opinion, to the fact that  we do not calculate slip exactly on the crack but 
slightly off it. In the in-plane case, we verified that the numerical stress field cannot 
usually distinguish the rupture front singularity from the S-wave peak that closely 
precedes it at high rupture velocities. Once we were satisfied that  the numerical 
stress field was stable enough, we attacked spontaneous rupture growth. The main 
problem is to provide a numerical criterion that approximates--at least qualita- 
t i ve ly - the  absorption of energy at the rupture front that controls crack growth. 
After a number of tests (Virieux, 1979), we decided to use the maximum stress 
criterion of Shmuely and Perets (1976) and Das and Aki (1977). In this criterion, the 
stress at the grid points immediately in front of the crack front are tested for a 
maximum value; if the stress is larger than this threshold, the crack front is advanced 
by a grid spacing. Any other rupture criterion will use the numerical fields calculated 
at a number of grid points in the vicinity of the rupture front. This will inevitably 
introduce numerical transients due to the finite time of propagation through the 
numerical mesh. The maximum stress criterion is the closest to an instantaneous 
criterion in the sense that the only numerical transient introduced will be due to the 
unknown position of the rupture front inside a numerical cell. The maximum stress 
criterion has also been used by Mikumo and Miyatake (1979), Day (1979), Das 
(1981), and Miyatake (1980). The maximum stress criterion has to be carefully 
analyzed if we want to translate it into physical terms and compare it to rupture 
criteria for the continuum. Das and Aki (1977) pointed out that  the criterion is 
equivalent to a maximum stress intensity through a relation of the form 

au ~- af- t-  2 k t d  -1/2. (19) 

It is clear, then, that implicit in the definition of the maximum there is a scale 
length that Das and Aki (1977) took as the grid spacing. If we want to translate the 
criterion into physical terms we have to adopt a value for the grid spacing d. After 
a careful dimensional analysis for a finite crack, we found that the proper scaling 
relation for the maximum stress, in terms of the nondimensional maximum stress 
intensity factor Kt, should be 

a. = or + 2aeKt V ~ / d .  (20) 

This emphasizes the role of crack length in any physically reasonable rupture 
criterion, this is a well-established result in fracture mechanics. Equation (20) shows 
that for a finite crack, the maximum stress criterion depends on the number of 
points inside the crack (L /d ) .  The finer the discretization, the higher will be the 
value of Ou for a given maximum stress intensity kt. This property of the numerical 
solutions was not too evident in previous work on spontaneous rupture propagation 
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because of the way rupture was initiated. In these studies, rupture was initiated by 
an instantaneously appearing finite crack. In that case, the length scale is disguised 
in the time tc during which the stress concentration around the crack edge builds up 
until it overcomes the rupture criterion. In order to keep low calculations costs, most 
authors have chosen very low values of the maximum stress so that tc was very low 
and rupture accelerated very fast to transonic rupture velocities. Had they chosen 
larger values of the maximum stress, the crack would have waited a longer time to 
start growing, and it would (even) not have grown at all because the stress would 
have never overcome the rupture criterion. The maximum value of the calculated 
stress as shown in (20) depends on the number of points chosen inside the crack. 
The dependence on the fineness of the grid was clarified in this paper by the study 
of a more realistic form of crack nucleation: a finite preexisting crack becomes 
metastable at time t -- 0, i.e., the stress just in front of the crack edge is larger than 
the maximum admissible stress. Rupture then starts to propagate and accelerate. In 
this case, it is obvious that the maximum stress has to be chosen lower than the 
maximum calculated stress if we want the crack to grow; in other words, the rate at 
which we sample the stress field in front of the rupture front will strongly influence 
the maximum calculated stress. Crack length is intimately related to the rupture 
criterion, a result that is very satisfying because all rupture criteria in fracture 
mechanics depend both on the state of stress and the size of the crack. This is a 
fundamental feature of both Irwin's and Griffith's fracture theories. 
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