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Ray Tracing For Earthquake Location 
In Laterally Heterogeneous Media 

JEAN VIRIEUX, VERONIQUE FARRA 1 AND RAUL MADARIAGA 

/aboratoire & ,q/smo/o•/e 
Universi•d Paris 7 and InsPirit de Physique du Globe de Paris, Prance 

We propose a technique for the fast solution of ray tracing in three-dimensional laterally 
heterogeneous media. Analytical solutions for both ray tracing and paraxial ray tracing for a 
medium with an arbitrary gradient of the square of slowness are used to develop a systematic 
procedure to constamct exact solutions. Complex heterogeneous media are divided into tetrahedral 
finite elements inside which the square of the slowness has a simple linear distribution. Arbitrarily 
complex media may be studied by judicious choice of the elements. We develop appropriate 
boundary conditions for interfaces with seroth or first-order velocity discontinuities. Two-point 
ray tracing is performed by a Newton method based on paraxial ray theory. With a few iterations 
the ray trajectories through the source and the ob•rver are calculated with the same overall speed 
as with ray bending. The paraxial method has the additional advantage that it can be used to 
identify caustics and to separate travel time branches. We used the previously described method 
to replace the ray tracing algorithm of the HYPO?I program, probably the most commonly 
used earthquake location program. The ray tracing routine may be easily modified to adapt it 
to other earthquake location environments. With the modified HYPO?I program, we relocated 
the aftershock sequence of the November 23, 1980, Irpinia ( Italy ) earthquake. The introduction 
of a low-velocity zone proposed by different authors shifts aftershock locations to the NE. This 
horizontal displacement of hypocenters is not very sensitive to the thickness of the low-velocity 
zone. 

INTRODUCTION 

Earthquake location in three-dimensional laterally hetero- 
geneous structures requires the accurate and fast solution of 
two-point ray tracing. Most standard ray tracing techniques 
are just too slow or inaccurate for routine use in earthquake 
location programs. For this reason, several alternative ap- 
proximate methods have been proposed in which evaluation 
of ray trajectories is less accurate than that of travel times. 
Most of these techniques are based on ray bending, which is 
an iterative method for the calculation of travel times and 

trajectories that starts from a hypothetical trajectory and 
iterates it until Fermat's principle is satisfied. Recently, Um 
and Thu•be• [1987] and Prothero et al. [1987], have proposed 
to calculate only travel times by a sort of Galerkin method. 
These methods have the unsatisfactory feature that they 
converge to only one of the possible ray trajectories when 
there are multiple arrivals, a very frequent occurrence in 
three dimensions. In this paper we will explore a full ray 
tracing technique that is akin to finite elements in that the 
medium is divided into a set of tetrahedra with a simple 
slowness distribution law. In each tetrahedron, ray tracing 
is performed exactly. 

The methods that will be proposed here draw extensi- 
vely from recent work on ray methods for the calculation of 
synthetic seismograms. These are the Maslov method 
slov, 1965; Chapman and Drummond, 1982; Thomson and 
Chapman, 1985] and Gaussian Beam Summation as propc- 
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sed by Popov [1982] and •e,venl• eia/. [1082]. In exploring 
the foundations of these methods, Mariaflags [1984], Klimel 
[1984], Babich eg •. [1085], and r. rr. ..d M.d.•.g. [1087], 
showed that these techniques are in f•t b•ed on the use 
of partial ray theo•. This is a method to calculate the 
propagation of rays and beams in the vicinity of a ray that 
is used • a reference. Partial methods were intr•uc• in 

seismolo• for the calculation of geometrical spreading by 
Popov and P•en•ik [1978], who called their method dynamic 
ray tracing. OervenO and Pgen•ik [1984] and Beydoun and 
Keho [1986], among other, have used partial ray theo• 
for the calculation of synthetics in twodimensional media. 

As shown by Chapman [1985] in C•tesi• c•rdinates 
and by Farts and Madariaga [1987] in general coordinate, 
partial ray trying is b•ed on the application of •rturb• 
tion theo• to ray trying. In order to fully exploit p•ial 
ray theo• it is convenient to use Hamilton's methods. In 
this paper we use Hamiltonian techniques in order to dev• 
lop an efficient thre•dimensional ray trying method tha• 
is suitable for use in a general earthqu•e location p•kage. 
The most time consuming •pect of this problem is the need 
to pealors tw•int trying, i.e., to find a ray that p•s• 
through both the source and the o•e•er and to •rturb the 
source •sition. We propose to divide the medium into a set 
of tetrah•ral elements inside which the square of the slow- 
ness h• a simpler linear distribution. •th ray trying •d 
par•al ray trying may • pedo•ed •alytic•y in the• 
elements so that ray trying reduc• to connecting •ytical 
solutions at the sides of the tetr•rons. A linear velocity 
gradient also le•s to simple analytical ray trying [Chap- 
ma• 1985] but we believe that our solutions are simpler to 
tr•e. P•ial ray trying is u•d in order to connect pertur- 
bations at the source to those at the obeyer. • this f•hion 

we can move the source or the ray endpoints • required by 
the earthquake l•ation programs. 

Because of its wide applicabffi• throughout the geophy- 
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sics community we have chosen to modify the HYPO71 pro- 
gram so that it can locate earthquakes in a laterally hetero- 
geneous medium. This program was originally written by Lee 
and œahr [1975] for earthquake location in vertically layered 
media. With very little change in the preparation of data, 
our program allows for lateral heterogeneity. The method is 
used to relocate a group of selected aftershocks of the Irpinia 
earthquake of 1980 in •outhern Italy [Detchampt and King, 
1984]. Following a proposition by P. Bernard and A. Zollo 
(The Irpinia (Italy) 1980 earthquake: Detailed analysis of a 
complet normal fault, submitted to Journal o! Geophydcal 
Research, 1988; hereafter referred to as BZ88), we introdu- 
ced a shallow low-velocity sone to the NE of the main fault. 
The effect upon locations is quite important. For instance, 
the main aftershocks activity moves from the foot wall to- 
ward the hanging wall. 

A SIMPLE HAMILTONIAN FORMULATION 

OF P,•Y TRACING 

Ray Tracing 

Let us consider the scalar equation of wave motion in a 
heterogeneous medium ß 

- o V 2• v20t • - 
where 4(x, t) iz some scalar wave field. • shown b• Oerven• 
et •. [1977], ra• tracing in el•tic media does not differ 
zubstantiall• from that in •oustics, eo that we will onl• 
di•c,• the •imphr equation (1). When the velocit• v(x) is 
slowly yawing inside the medium, we seek an •mptotic 
solution of the form: 

(2) 

which is the approximation of geometrical optics. A(x) is 
the amplitude, 8(x) the eikonal or travel time function, •0 
i. reqnc, i. .orc 
is the first term of the expansion of amplitude A(x, co) with 
respect to the inverse powers of co (see Oervenl• [198S], for 
example). Introducing this ansat= in (1) and collecting terms 
of the same order in co, we get 

(v•)•: u2: •,-2 

known as the eikonal equation (u is slowness), and a tran- 
sport equation 

AV• + 2VA.Ve: o (4) 

for the amplitude. 
In order to perform ray tracing we introduce the slowness 

vector p = V8, which is perpendicular to the surfaces of 
equal phase 8, or wave fronts. Let t be the arc length 
and x(t) the position along a ray. Rays are tangent to 
the slowness vector, so that this vector can be written as 
p = udx/ds. Introducing, following Thon•on and Chapman 
[1985], a ray parameter r by the relationship udr = dz we 
get p = 4, where the dot denotes derivation with respect 
to r. Parameter r plays a role that is similar to time in 
analytical mechanics, but it does not have any particular 
physical meaning in ray theory. Introducing the HamiltonJan 
proposed by Burridge [1976], 

1 

n(x, p;,): [p2 _ .2(x)] 
we observe that the eikonal equation implies that H -- 0 
along a ray. Using Hamilton's canonical equations, we find 
the ray tracing equations 

1 u2 j•=-VxH=•Vx =uVxu 
(s) 

where Vx or Up denote the gradient with respect to vec- 
tom x and p, respectively. Ray tracing consists in solving the 
nonlinear system (6) for x(r), p(r) for given initial condi- 
tions (shooting) or boundary value conditions (the two-point 
boundary value problem). 

It is important to note that the six equations of the system 
(6) are not really independent. In the first place, the modulus 
of the slowness should satisfy 

II p II- ,, (7) 

as implied by the eikonal equation. This reduces the system 
(6) by one equation. A further reduction of the system (6) 
is possible because the ray parameter r may be determined 
implicitly from the position vector x(r). The proper way to 
reduce the system (6) is to use a "reduced" HamiltonJan (see 
Farra and Madariaga, 1987, for further details}. This reduc- 
tion of variables, which is very attractive for computation, 
is at the expense of a more complex structure of the Hamil- 
tonJan, and the associated phase space which is now curved 
and requires the introduction of scale factors. Because we 
are interested in obtaining analytical solutions, we will keep 
the simpler ray tracing system (6), but we should remember 
that the equations are not really independent. 

Paragial Ray Tracing 

Suppose a ray has been traced and that we need to 
trace another one in its vicinity. Can we benefit from the 
•lready traced ray? The paraxial approximation provides 
a systematic approach to this problem [Luncberg, 1944; 
Oerven;j et al., 19s2]. Around the alre•iy traced ray, called 
the central ray, we can trace other neighboring rays by 
means of time dependent perturbation theory as explained 
by Farra and Madax4aga [1987]. 

Let us denote the position of the central ray xc(r) and its 
slowness vector pc(r). The position of the paraxial ray and 
its slowness vector are given by 

x(,-) = + = + 

The perturbations of position and slowness vector x and p 
verify the paraxial ray tracing equations 

•/, = -V•H -V,VpH 5p (9) 
where H and its derivatives are computed on the centrM ray 
at r. This equation is obtained by first-order perturbation 
of the full ray tracing system (6). For our choice of the 
HamiltonJan (5), we deduce the simple linear system 

0 (10) 
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where I is the identity matrix and V is a matrix of second 
order partial derivatives of the square of slowness defined by 

1 •2• 

= 2 i 
The structure of system (10) is the same as that obtained 
by Tllomzon and C'hapman [1985] in Cartesian coordinates. 
The paraxial ray tracing system (10) is linear, so that any 
of its solutions may be written in terms of a propagator P: 

•P •Pc = P1 P2 •Pc 

where we have adopted the now classical notation for the 
submatrices of the paraxial ray propagator [see Oerven•, 
1985]. The initial ray vector is noted [Sxc,Spc]. The pro- 
pagator P may be built from a linear combination of ele- 
mentary trajectories. 

Just as with the full nonlinear ray tracing system (6), 
the six equations of the paraxial system (10) are not really 
independent; in other words, not every solution of the system 
(10) represents a paraxial ray trajectory. As with the full ray 
tracing system, a first additional condition that system (10) 
has to satisfy comes from the perturbation of the eikonal 
equation or HamiltonJan. To first order, when position and 
slowness vector are perturbed as in (8), the perturbation of 
the Hamiltonian ($) is given by 

5H = pc ß •p- •VxU- •x = 0 

The perturbation of the HamiltonJan must be sero in order 
that a solution of (10) is a legitimate paraxial ray. 

In order to find a valid solution of the system (10) we 
impose the additional condition that the paraxial rays be- 
long to a certain family of rays (a beam) centered around 
the reference ray. Without this condition the paraxial rays 
would cross each other in random ways. This condition is 
then equivalent to that of continuity of the wave front. Fol- 
lowing a notation introduced by Popov [1982], we require 
that for every value of r 

5p(r) = M(r)Sx(r) (14) 

tions (13) and (14), the rank of the linear system (10)is 
reduced to four in a three-dimensional medium. The trajec- 
tory of a paraxial ray belonging to a certain ray pencil or 
beam depends only on four initial conditions. 

ANALYTICAL RAY TRACING• IN A SIMPLE MEDIUM 

We want to divide the medium into a set of finite elements 

with simple velocity distributions. After exploring different 
distributions of the velocity, the slowness or the square of 
the slowness, we concluded that a constant gradient of the 
square of the slowness gives the simplest analytical solutions 
both for ray tracing and paraxial ray tracing. 

Consider the following linear distribution of the square of 
slowness: 

= ,o + = ,o + 

where 7 defines the gradient and the index i equal to 1 for z, 
2 for y (noted also z2 ) and 3 for z ( noted also z3). In a two- 
dimensional medium, the index 2 can be omitted. In order 
to perform ray tracing we replace the slowness distribution 
(17) into the ray tracing equations (6): 

dx dp 1 
d• = p d-• = •'7 (18) 

Solving (18), we find the simple expressions 

1 

p = •r + Po 
1 2 

x=•7r +por+xo 
(19) 

where xo and Po are the initial position and slowness vector 
of the ray. As expected, (19) yields a parametric equation for 
the ray that depends only on its initial position and slowness 
vector. The parameter r may be eliminated in order to find 
the actual equation of the ray, but it is preferable to use the 
parametric expression (19) in the computer implementation. 

Finally, we calculate travel times. Recalling the relation 
dz = udr, we find 

d• de = u2 aW = = IIplI2 (20) 

where M(r) is a 3x3 matrix. With this relationship we can 
write the second-order expansion of the travel time around 
the central ray in the form 

Sx'M(,)Sx r) ---- + Pc' 5x + 

Condition (14) is a linear relation between the components 
of slowness and position perturbation vectors for a given 
value of r. The matrices M for successive values of r may 
be obtained from their initial value at the source 

M(O) = •- 1 (16) 

where • is a matrix that determines the initial shape of the 
ray beam ( see •erven• [1985] and Farts and Madar4ava 
[1987] for further discussion ). For the point sources consi- 
dered in this paper, • = 0 the null matrix. With the condi- 

which may be euily integrated using (19). The total travel 
time is obtained in the compact form 

• = p•r + •7'Po + 72r s 
an expression which is equivalent to that obtained by 
•erven•' [1987]. 

Let us now solve the paraxial ray tracing. Because the 
square of the slowness hu only linear terms, the matrix of 
second derivatives ¾ defined in (11) is sero, and the solution 
of system (10) is straightforward 

5x(r) -- 5pot + 5xo 5p ----- 5p0 (22) 

In this medium, matrix M(r) hu the simple expression 

M(O = + (23) 
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so that travel times in the vicinity of the central ray are 
calculated immediately from (15). The •olution of (22) has to 
satisfy the additional condition (13) which for the slowness 
distribution (17) becomes 

1 

p•. •p = •. • (•4) 

Thus there are only four independent perturbation parame- 
ters to choose. 

Both ray tracing and paraxial ray tracing in media with 
consta•.: gradient of the square of the slowness are thus 
extremaly simple in Cartesian coordinates, and this is the 
reason we will use it in our ray tracing method. 

INTERNAL BOUNDARY CONDITIONS 
FOR RAY TRACING 

The presence of interfaces with sero-order discontinuity 
of the square of the slowness, as well as boundaries with 
first-order discontinuity between the elements of the dis- 
crete medium (•e the next section), requires the introduc- 
tion of appropriate boundary conditions for ray and paraxial 
ray tracing. The phase matching method [Dez½hampz, 1972; 
•erven•,1985] may be used to obtain the boundary condi- 
tions. These may be obtained expanding the travel time 
around the central ray as in (15) and then imposing the 
continuity of the wave fronts across the boundary. The ze- 
roth order term of the phase expansion around the central 
ray implies the continuity of the travel time along the central 
ray. The first-order term in ix gives Snell's law for the cen- 
tral ray, while the continuity of the •econd-order term yields 
the boundary condition for the paraxial ray vector 
Alternatively, this boundary condition may be obtained by 
perturbation of Snell's law [C'hapma•,1985; Farra, 1987]. In 
the following we present the formulation of De•champz [1972] 
because it has a very simple geometrical interpretation. In 
order to avoid complex notation, the two-dimensional case 
will be described, but the three-dimensional case can be sim- 
ply deduced because we are working in Cartesian coordi- 
nates. 

Let us consider an already traced central ray that inter- 
sects an interface at point O. In the vicinity of this point O, 
the interface can be approximated by the quadratic equation 

• Paraxial ray 

•.. 

Central ray •-•. 

Interface 

Fig. 1. Geometry of the linear transformation at the curved 
interface between two heterogeneous media. The central ray 
intersects the interface at O, while the paraxial ray arrives at 
R. A local coordinate system with base vectors n, ß is defined at 
the interface. 

shown in Figure 1. To first order, this point M is also the 
projection of P, defined by OP equal to ix, parallel to the 
slowness vector p at point O. This particular projection is 
the first-order continuation of (6) at point P. The local Car- 
tesian coordinates of M are 

+ = = t 
+ = = o 

(26) 

where t r is the increase or decrease of the ray parameter r 
between points P and M. The new initial conditions for the 
transmitted/reflected paraxial ray are obtained from (26). 
In (26) we set tZt = 0 so that vector txt is taken along 
the tangent to the interface. Eliminating t r from the two 
equations in (26), we find tX• = t in terms of tX and 

Finding the boundary conditions for tp is slightly more 
involved. Following De•½hamp• [1972], we express the conti- 
nuity of the differential phase d8 = p(R). dr, across the 
interface. Linearising (25), we get 

r=te-•C' n 

where t is the distance from the point O along the tangent 
to the interface, r is a point on the interface, e is the unit 
tangent vector, and n is the unit vector along the normal, 
as shown by Figure 1. A local Cartesian coordinate frame 
is defined at point O with axes X along the tangent and Z 
along the normal. These coordinates will be written with 
capital letters in order to distinguish them from the global 
Cartesian reference frame. 

We consider now a paraxial ray of the incident ray. 
Its perturbation in position and slowness vector expres- 
sed in local coordinates is [tX, tZ, tpx,tpz], while that 
of the corresponding transmitted/reflected paraxial ray is 
[tX•,tZ•,tptx,tpt,]. The problem is to find the latter in 
terms of the incident paraxial ray coordinates. Following Fi- 
gure 1, let the paraxial ray intemect the interface at a point 
R. Its projection into the tangent to the interface is M, as 

dr =dt e - Ctdt n (27) 

The slowness vector at R is related to that at P by the first- 
order Taylor expansion 

so that using definition (8), we get 

OP(o) = + + (2s) 

Finally, the differential phase can be split in two terms 

d8 = dt pc' e + xdt (29) 

The first term is the variation of the travel time around point 
O of Figure (1), while the second includes effects from both 
the paraxial ray and the interface curvature. The latter is 
given by 
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Fig. 2. Illustration of paraxial rays and their tramformation at the crossing of an interface. A paraxial ray is 
obtained by drawing its vector •x from the central ray. The two gaps in the distribution of paraxial rays come 
from their transformations at the interface. A final transformation is also performed at the free surface in order 
to get a horizontal •x. 

x = .. +.. - 
which using (26) may be written in local coordinates as 

x = •vx -Cvz •X•- •---Vx• •Z (3•) 
•z 

• homoceneous m•i• i• i• e• •o •how • expre•ion 
(30) reduces to that obt•ned by Deschamps [1972]. This 
expre•ion is • equivalent to tho• obt•ned by 
[1985] or W f•rr• [1987] by other means. 

A •imilu expre•ion may • obt•ned for the trakmit- 
tS/reflected ray. The continuous quantity X i• given by 

Fi.ally, let u, im•a co.ditio. (13) 
ted/refitted p•al trajecto• 

dHt = mx•mx + p•s•ms - utVx• •Xt = 0 (33) 

where •t is the slowness of the medium where the transmit- 

ted/refi•t• ray propsate, 
Using (•5) through (•), we find the foaming expr•ion 

for the •unda• conditions of a par•i• ray •ross the 
cu• inteff•e 

•Xt :• •X- Px •Z 

• :•0 

• := •vx + c(•, - •)•x, - •Vx, •z (a4) 
pz 

8p, r := • Vx• 8x,-•x 8•x 

The order of computation is ve• important in these expre• 
.ion.. Thi. tran•fo•ation T might • rewritten in 
fo• in order to emph•i•e its •nearity 

8X, 1 Q•xZ 0 0 •X 

• 0 0 0 0 •z 8•x = P•xx P•xz 1 0 8Px 

where the different elements of the matrix may be calculated 
from (34). Finally, using the rotation matrix R from global 
coordinates to local ones, we get the linear transformation 
for the transmitted/reflected paraxial ray R-l T R, which 
might be obtained easily for media without interfaces. 

In order to test paraxial ray tracing, we considered two 
media with different velocity gradients and a curved inter- 
face between them defined by B-splines (see Figure 2). We 
perform ray tracing and paraxial ray tracing with a Runge- 
Kurta solver, and we represent the perturbation vector Jx 
of one of the paraxial rays by straight lines drawn from the 
central ray. When the central ray hits the interface, we per- 
form the local transformation defined by (34) and continue 
paraxial ray tracing starting with a perturbation vector pa- 
rallel to the local tangent to the interface as explained above. 
This produces a jump in Jx at every point of intersection of 
the central ray with the interface, as is clearly observed in 
Figure 2. The •econd jump in Jx is particularly noticeable. 
The first jump at the interface is a forward extrapolation 
(•r) 0), in which the paraxial• seem to leave a gap, while 
the second jump is a backward extrapolation (• < 0) and 
the paraxials overlap. This is only a consequence of the par- 
ticular choice we made to restart the tracing of the paraxial 
ray across the interface. Following the tip of the paraxial 
ray vectors one observes that this is continuous acros• the 
interface. 

A FINITE ELEMENT APPROACH TO RAY 

TRACING IN A COMPLEX MEDIUM 

In order to take into account more complex velocity distri- 
butions, we divide the medium into elementary cells: trian- 
gles in two dimensions and tetrahedrons in three dimensions 
(see Figure 3). Inside each cell, a constant gradient of the 
square of slowness is a•umed. Therefore the square of the 
slowness is continuous in the medium but presents first-order 
discontinuities at edges of each element. Inside each cell, ray 
tracing and paraxial ray tracing are performed analytically. 
Usually the most difficult numerical problem for ray tracing 
is to find the intersection between a ray and the internal 
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cells 3-1) cells 

Fig. 3. The geometry of the elements used to discretiree a hete- 
rogeneous medium. Two triangles •re drawn inside a rectangle, 
while five tetrahedrons are defined inside a parallelogram. 

boundaries. This is where the linear law of the square of 
slowness is particularly interesting: the intersection of a ray 
with a plane border may be calculated very easily. Let, for 
instance, 

=, 

be the equation of a straight line (in two-dimensions) or a 
plane (in three-dimensions) of unit normal n. The intersec- 
tion of the ray (19) with this edge may be found solving 

•n'7 +n-po ß +n.xo = q (37) 
for •. This simple quadratic equation may be solved ana- 
lytically. Similar simple expressions may be found for the 
intersection of a ray with boundaries described by piecewise 
parabolas or cubic splines. Once ß is found, it is an easy 
matter to obtain x(•) and •(•) from the results of the 
tion on analytical ray tracing. We ob•rve that the parabola 
(19) intersects a plane bounda• at two, one, or sero points 
depending on the discriminant of (37). It is this property 
that led us to prefer this parameterisation of the media in 
order to perform aa'alytical ray tracing inside finite elements 
of the medium. For elements with constant gradient of the 

velocity, rays are arcs of circles, whose intersection with a 
plane boundary is somewhat more difficult to solve than (37) 
[ Ghapman, 1985]. 

In order to illustrate the •ccur•cy of our ray tr•cing 
method we consider a simple two-dimensional medium with 
a const•ut vertical gradient of the velocity. l•ys in this 
medium are the well-known circular trajectories. Three of 
them are shown in Figure 4. We calculate ray tr•cing using 
our technique. First, the medium is divided into a mesh of 
regular rectangular elements as shown in Figure 4, which are 
in turn subdivided in triangles along the negative diagonal 
(Figure 3). In order to avoid cluttering the figures, only 
the rectangular cells are shown in the following figures. 
The velocity field was computed at e•ch node of the mesh, 
and a linear gradient of the square of slowness inside every 
triangle was calculated. Taking the same initial conditions 
as for the three exact rays shown in Figure 4, we performed 
numerical ray tr•cing with our method. Instead of showing 
the result by continuous lines, the crosses in Figure 4 show 
the points where the numerical rays intersect the internal 
boundaries of the elements. Let us remark that the crosses 

are either on a vertical border, or on a horisontal border or 
on the negative diagonal. These are in f•ct the only points 
on the ray that are calculated in our numerical method. 
The agreement between these crosses and the exact rays is 
excellent. Using expression (21), the travel time is evaluated 
with a relative error that is lower than 10 -•. 

Filling the three-dimensional sp•ce with arbitrary tetra• 
hedra is a more di•cult task than that of building a trian- 
gular mesh in two dimensions. We choose to define elemen- 
tary parallelograms subdivided into five tetrahedrons: four 
right tetrahedrons •nd one internal element with the shape 
of a diamond (see Figure 3). Unfortunately, this structure 
is asymmetric with respect to the vertices of the parallelo- 
gram: four of the six vertices of the parallelogram coincide 
with the rectangular vertex of each tetrahedron. The other 
two vertices of the parallelogram define the axis of the in- 
ternal diamond. There are thus three possible directions for 
the internal diamond. In order to avoid the introduction 

OFFSET IN KM 

-- 

Fij. 4. A ex•ple of ray tr•inj in m t••l• mesh. The medium h• • veloci• distriCtion, •(•) = •.00 + 
0.0• ß •m/8. It is discr•im• usinj m t•m•l• mesh, •,d rm• are tr•ed usinj our finite element te•nique. The 
continuous lines are the exit rays. The c•s•s indica• the •ints where the n•e•cal rays intersect the sides of 
the elements. 
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Fig. $. Example of ray tracing in a three-dimensional medium 
with velocity distribution, v(z) = 3.00 + 0.02 z km/a. The me- 
dium is discretised using tetrahedral finite elements. The conti- 
nuous lines are the exact rays while the crosses indicate the points 
where the numerical ray intersects the sides of the tetrahedrons. 

of numerical anisotropy we alternate the three diamonds in 
neighboring cells. 

In order to test the three-dimensional routines, we consi- 
der again a medium with a vertical gradient of the velo- 
city. This medium is divided into parallelograms and tetra- 
hedra as described in the previous paragraph. In Figure 5 we 
show three exact circular trajectories on each of two verti- 
cal planes with different azimuth passing through the source 
at the origin of coordinates. We perform numerical ray tra- 
cing starting with the same initial slowness vectors as for 
the exact rays. The intersections of the numerical rays with 
the sides of the tetrahedrons are represented by horizontal 
crosses in Figure 5. They fit perfectly with the theoretical 
solution. 

Elements with linear variation of the square of slowness 
present first-order discontinuities at the internal boundaries 
between elements. Paraxial ray tracing requires the appli- 
cation of the continuity conditions derived in the previous 
section (equation (34)). Let us assume that a paraxial ray 
has been traced up to a boundary and let ix be its pertur- 

bed position vector (8). In general there is no reason that 
ix lies along the element boundary that we are conside- 
ring. In order to resume ray tracing across the boundary, we 
transform the ray vector using expression (34). Since the in- 
ternal boundaries between elements are flat, the curvature 
of the interface C is sero, and (34) simplifies accordingly. 
Considering that there might be a large number of internal 
boundaries, this is not a minor advantage of the method 
that we propose. The transformed ix, lies now along the 
boundary, and the propagation of the paraxial ray may be 
easily performed using (22). 

In Figure 6 we present the result of paraxial ray tracing 
around each of the rays calculated numerically in the me- 
dium with constant vertical velocity gradient presented in 
Figure 4. The numerical mesh is not represented in Figure 6, 
where the central ray is drawn as wen as ix at each intersec- 
tion with internal boundaries between elements. Although 
the direction of ix changes abruptly at every boundary, one 
can easily follow the paraxial ray tube. In fact, three dif- 
ferent ways of representing the ray tube are possible: by 
horizontal, vertical, and diagonal paraxial vectors ix. These 
three representations are equivalent to first order, and they 
are also equivalent to the more usual paraxial ray tracing in 
ray centered coordinates [(•erverq} and P•er, t'ik, 1984]. Using 
the formulation presented in this paper, we can easily move 
from one to the other as it fits the problem at hand. This 
flexibility in the choice of paraxial ray vectors greatly faci- 
litates the finding of the paraxial ray pa•ing through any 
point in the vicinity of the central ray. This facility to per- 
turb rays without changing ray tracing equations is what 
convinced us that it was preferable to work with the full 
Cartesian formulation rather than reduced ray centered co- 
ordinates, as is more frequently done in the literature ( see 
•'erven•} [1985] for a review of paraxial ray theory in ray 
centered coordinates ). 

Two POINT RAY TRACING 

Two-point ray tracing is a very nonlinear problem. Let 
us note xe the source position, x, the station position and 

O:FFSE• I'C• ?p.oo ,,p.oo ,.po.oo o OrOO , xp.oo, ep.oo, :,p.oo, ,p.oo , ep.oo, , , , 

.,, I..--' 

Fig. 6. A demonstration of paraxial ray propagation in a triangular mesh. In each cell, paraxial ray propagation 
is solved analytically. Because the velocity field has first-order discontinuities at the edges of the triangles, we must 
apply boundary conditions at each boundary. The vector ix is drawn at these boundaries, showing the pattern 
of the ray tube. 
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Fig. 7. Geometry of the shooting angles and two initial pertur- 
bations of the slowness vector used for paraxial ray tracing in a 
three.dimensional medium. 

Pi an initial slowness vector. Two-point ray tracing may be 
formulated as follows: ' find Pi such that 

In the following we shall use paxaxial ray tracing to solve 
this problem. Let us assume that a ray has been traced that 
does not quite hit the station at x,. In order to improve the 
fit we lineaxize the ray tracing equations around the previous 
ray and we solve the approximate problem 

x(pi ,xe )+ Vp, x Api = x, (38) 

where Api is the perturbation of the initial slowness vector 
we want to estimate. The only difficulty in (38) is estimating 
the gradient Vmx , but this is calculated immediately from 
paraxial ray tracing. This technique has been called the 
paraxial ray method by previous workers [B½itdoun and 
Kcho, 1986; Corm•er and Bcroza, 1987]. This may be a little 
confusing, since paxaxial ray theory can be used to build 
Gaussian beams, Snell waves, perturb the structure, etc. 

In order to solve the two-point ray tracing we need an 
initial guess for the ray from the source to the station. We 
obtain this guess by two-point ray tracing in a vertically 
stratified structure that is sufficiently close to the laterally 
heterogeneous one. The vertically layered approximation 
to the structure is not difficult to define, since in mo•t 
earthquake location problems one starts using a stratified 
model and then perturb• it to take into account known 
or assumed lateral heterogeneitie•. From this initial ray 
tracing, we take the slowne• vector at the source. Let us 
consider that this initial slowness vector makes an angle 
with the vertical axis and has an a•imuth •; with respect to 
the the horizontal Caxte•ian axis z as shown in Figure 7. By 
differentiating the slowness vector with respect to 
we define two paraxial rays with initial conditions 

6q•o =0 

= ( , - ,in, ),,o 
6qeo = 0 

6pq, o = (-,in•b,in•, ½o,•b, in•, O)•to 

as shown in Figure 7, *•o is the slowness at the source. The 
central ray intersects the free surface at the point (zy, It/) 
missing the station located at (z,, It,). Solving paraxial ray 
tracing with initial conditions (39a) and (39b), we obtain 
the paxaxial vectors along the free surface measured from 
the exit point of the central ray. Let these two paraxial 
ray vectors be 6q• and 6q• k. Since paraxial rays form a 
linear system, any lineax combination of the two independent 
paraxial trajectories (39a) and (39b) is also a paraxial ray 
(at least as long as the first-order approximation is valid). 
Combining these solutions, we can write (38) in the explicit 
form 

It, - It! = 6q•6• + 6qv, v6V, 

from which 6• and 6•, may be solved, because all other 
quantities in (40) axe known. Since the lineax approximation 
(40) may not be used very far from the central ray, we iterate 
with the new initial slowness vector 

61>0 (41) 

until we reach the station with the desired precision. As an 
example of two-point ray tracing, we show in Figure 8 the 
iteration procedure for a source at depth in the Irpinia area 
that will be studied in the following sections of this paper. 
For each station indicated by the labels at the exit point 
of the rays, we performed two-point ray tracing staxting 
with an initial shooting angle estimated for a simple layered 
medium. The ray hits the free surface at some distance of the 
station; a small cross is drawn at this intersection point in 
free surface. We iterate the ray tracing with a new shooting 
angle obtained solving (40). The ray hits the free surface 
at a smaller distance to the station, as' shown by a new 
cross. Starting again, we define a series of crosses at the free 
surface that approach closer and closer toward the station. 
When the station is reached within a certain precision, the 
final ray is traced in the medium. 

The procedure just described might fail for several rea- 
sons. The most obvious one is that the initial point (zl, It/) 
may be too fax from the station and the maximum number of 

.lOO 

km , • 
,• CtOT• 

- -•y source 

Fig. 8. M •mple of twe•int tmhg for em•u• l•mtion 
in the I•i•m •em of centr• It•y. The cro• on the .u•e 
indi•te the e•t point. of the .uccedve rm• tracd in the iter•ive 
molufion of •we•int rmy tr•hg. The final re.ult i. indicted by 
continuoum rmy.. The well-khan levding line tr•.ve.ing the 
•ea i. plot•d for referee, • well • the •und• bb' •t•n 
the higkve•ity •d the l•-vel•i• 
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rays set by the user is reached before convergence. Another 
possibility is that at a certain iteration, the predicted shoo- 
ting angles might be over-estimated, producing a ray which 
does not hit the free surface anymore. Or the discretization 
of the medium might be too rough and produce artificial 
shadow zones never reached by any ray. Numerical strate- 
gies can be set up to partially solve these problems: speeding 
up the convergence with numerical algorithms, fixing upper 
limits in the perturbation of shooting angles, and smoothing 
the medium by increasing the number of elements and by 
smoothing the square of the slowness. These problems will 
appear in any method that performs three-dimensional ray 
tracing because they are due to the instability of ray tracing 
in three-dimensional heterogeneous media. This is inherent 
to the nonlinear nature of the ray tracing problem. 

EARTHQUAKE LOCATION IN LATERALLY 
HETEROGENEOUS MEDIA USING HYPO71 

The earthquake location problem is an even more nonli- 
near problem than the two-point ray tracing. Let us note 8,, 
the travel time observed at a station. Using the notation of 
the previous section, the problem can be posed as follows:' 
find xe such that 8(xe, x(pi,xe) = x, ) = 8, ,' at all stations. 
This problem includes two-point ray tracing and might be 
linearized in the same way around a given source position 

0(x•,xo) + V•.0 Ax• = 0o 

where Axe is the perturbation of the source position we want 
to compute. Using the definition of Po and the reciprocity 
theorem, 

po = 

we find 

s (x,. x. ) - poax, = s, (43) 

Although a nonlinear search has been proposed recently for 
earthquake location [Rabino,t,4•t., 1988], linearization is used 
by most programs. 

We start by locating an earthquake in a predefined stra- 
tified medium by the standard HYPO?I program [Lee and 
I, ahr, 1975]. The subroutine TRVDRV computes the travel 
time 8 at station x, and the gradient of the travel time with 
respect to source position xe. We use this location and the 
computed initial slowness vector as our initial guesses for 
starting two-point ray tracing in a laterally heterogeneous 
medium that is not too different from the vertically stratified 
medium used for the first guess. As previously explained, we 
define a mesh of tetrahedrons inside the medium; the square 
of the slowness is evaluated at the nodes of the mesh, and a 
constant gradient of the square of the slowness is calculated 
for each element of the mesh. A new travel time and new 

initial slowness vector are obtained for each station using 
the paraxial ray tracing method explained in the previous 
section. From the paraxial ray tracing for the last iteration 
for each source station ray path, we easily obtain the travel 
time gradient. In this form, we solve the same problem in 
a laterally inhomogeneous medium as the subroutine TRV- 
DRV does in stratified media. The standard procedure of 
inversion in HYPO71 is reassumed, and a new location is 
obtained. The procedure may be started all over again from 
the current source position and the gradient (4It) estimated 

by paraxial ray tracing. We may note in passing that the 
ray tracing procedure that we propose leads to a better cor- 
rection for station elevation than the usual constant time 

corrections. 

As long as the predefined stratified medium does not 
violate the first-order assumption of the paraxial ray (40), 
the new location is independent of the assumed stratified 
medium. In case of failure of two-point ray tracing for any 
of the reasons presented in the previous section, we use the 
following procedure: if the distance between the horizontal 
position of the central ray and the station is 5 times the 
required precision, we take the travel time of the paraxial 
ray. If not, we cancel the station for this iteration of the 
inversion procedure. When the station is missed three times, 
we attempt to shoot it from the nearest station reached. 
When too many stations are missed, we might end up with 
insufficient data for locating this particular earthquake. 

THE IRPINIA EARTHQUAKE OF NOVEMBER 1980: 
RELOCATION OF A SEQUENCE OF AFTERSHOCKS 

The November 23,1980, Irpinia earthquake in southern 
Italy is one of the best studied earthquakes in the Medi- 
terranean region [Descha,nt,• and King, 1983, 1984; Wes•a- 
wall and Jackson, 1987; BZ88]. De•champt and King [1984] 
remarked that the travel time residuals of aftershock loca- 

tion with the HYPO71 program, showed systematic posi- 
tive time residuals for stations east of the fault and negative 
time residuals for stations west of it. Although the diffuse 
shape of the aftershock distribution observed for this event 
might refiect the complexity of the fault geometry (see BZ88 
for discussion and further references), we decided to explore 
the possibility that it was due to lateral heterogeneity of 
the source region. The presence of a low-velocity zone in 
the NE part of the source has been suggested by several 
authors. Although its existence is well supported by geolo- 
gical and geophysical data, travel time inversion [Dei Pezzo 

_ 

etal., 1983] and accelerogram analysis (BZ88), its exten- 
sion in depth (3 km up to 8 kin), and the amplitude of the 
velocity perturbation are unknown. We adopt the velocity 
model (Table 1) derived by P. Bernard and A. Zollo from 
unpublished work done by M. Martini of Osservatorio Vesu- 
viano. This velocity structure is similar to the one obtained 
by Dei Pezzo et al [1983] from one-dimensional travel time 
inversion and therefore might still overestimate the veloci- 
ties. The high-velocity area has a velocity close to the one 

TABLE 1. P Wave Velocity Structure 

Depth of nodes, High-Velocity Low-Velocity 
km Zone, km/s Zone, km/s 

O. 4.50 2.27 

3. 4.50 2.27 

3.1 5.32 5.32 

7. 6.03 6.03 

10.0 6.28 6.28 

20.0 6.54 6.54 

The S wave velocity is deduced by dividing the P 
wave velocity by 1.79. 



6594 VIRIEUX ET AL.' EARTHQUAKE LOCATION 

, 

OFANTo 
ß . . 

. 
ß . 

I 2 $ 4 5 • 
0 I0 2:0 km 

Fig. 9. Schematic geostructural map of the Irpinia area from P. 
Bernard and A. Zollo (BZ88). I Campano Lucanian carbonate 
uit a uit (Olio 
of the internal unit (Miocene-Pliocene);•4 Plioquaternary depo- 
slats; 5 volcanic unit (quaternary); 6 reported fault trace for the 
earthquake of November 25, 1980. One might notice the contra•t 
between the NE low-velocity zone and the SW high velocity zone. 
The SW zone ha• a somehow more complex pattern which is not 
considered in this study. Surface trace corresponds to the boun- 
dary between the two compartments. 

determined by Detchampt and King [1984] from the best fit- 
ting model for aftershock location. The surface trace of the 
main active fault of this event was identified by Wetta•valt 
and Jac•on [1987]; it dipped toward the NorthEast with 
an angle of 60 ø , and had a NW-$E strike at the surface 
(Figure 9). The trace of the fault coincides with the verti- 
cal boundary between the two proposed compartments with 
different velocity. 

Before studying real data, let us first look at a few syn- 
thetic examples in order to investigate the effect of the ve- 
locity distribution on the location of earthquakes. First, we 
computed synthetic travel times in the previously described 
heterogeneous medium for a •et of events distributed on a 
T-shaped region near the center of the network. We then 
tried to relocate these events using the synthetic travel time 
data set. The results are shown in Figure 10. At the top is 
shown a perspective view of the hypocenters, in the center a 
plan view, and at the bottom a cross section. The larger dots 
in the leftmost plan view denote the stations used in the lo- 
cation. The second column shows results when the velocity 
distribution used to locate the aftershocks is the •ame as 

the heterogeneous medium used to compute synthetic travel 
times. The third column gives standard results of HYPO71 
for the layered velocity distribution used by P. Bernard and 
A. Zollo (BZ88), while the fourth column shows the locations 
in the layered medium used by Detchampt and King [1984]. 
Using the same heterogeneous medium for locating earth- 

quakes as for the synthetic travel time computation, gives 
a good precision of the horizontal locations. Use of a laye- 
red medium moves the epicenters to the SW whatever the 
stratified structure. For the heterogeneous medium, depth 
precision reduces rather quickly below 12 km. For stratified 
media, the error in depth determination increases drama- 
tically, but the relative horizontal shape of the aftershock 
distribution is preserved (Figure 10, center). 

What happens when we modify the low-velocity struc- 
ture? Two numerical experiments were conducted. They are 
presented in Figure 11, which is similar to Figure 10 with the 
perspective view omitted. The first two columns of Figure 
10 are the same as those of the preceding figure; they cor- 
respond to (a) the distribution of events we want to locate 
and (b) its relocation using the same heterogeneous medium 
as for the travel time calculation. 

In the first experiment, we moved the southern part of 
the boundary between the two blocs 10 km to the NE, 
so that stations BL8 and BAS were displaced from the 
low-velocity side to the high-velocity one. We recomputed 
synthetic travel times for this structure, and we relocated the 
events using the heterogeneous medium used in Figure 10. 
Results are presented in the third column of Figure 11. We 
find that the horizontal shape of the aftershock distribution 
is remarkably stable, without any lateral motion, while the 
depth is very sensitive to the difference in lateral structures. 
A more dramatic change is observed by increasing the 
thickness of the sedimentary bloc from 3 km to 5 km. In 
the fourth column of Figure 11, the large horizontal line 
of the T-shaped distribution of events is still well located, 
confirming the compensation of errors in a well-distributed 
set of stations. The hypocenters that form the NS part of 
the T-shaped distribution of events are very affected by the 
change in velocity model as shown in the last column of 
Figure 11. The events of this group are controlled by the 
two stations that were moved into the high-velocity zone. 

At this point, two main conclusions can be drawn. In 
the central part of the network, the epicenter is almost 
independent of the vertical structure used for location, 
while the depth is not well constrained. When a lateral 
velocity anomaly exists, the hypocenter locations might be 
displaced by distance much larger than the estimated error 
given by HYPO71. This optimistic estimation of the error 
comes from the assumption of perfect knowledge of the 
velocity structure. Taking into account the lateral variation 
of the velocity structure in ray tracing reduces the horizontal 
displacement of the hypocenters, but vertical resolution 
remains poor. Adding normally distributed random errors 
to the data set will introduce scattering in the locations but 
not a systematic bias [Paylit and Hokanton, 1985]. 

We analyzed aftershocks from December 7 to 15, 1980, 
using the data set obtained cooperatively by several French, 
Italian and British institutions [Detcharnpt and King, 1983]. 
The aftershock arrival time data come from Detchampt and 
King [1984], who estimated an accuracy of about 0.1 s for 
P wave arrival times. $ wave arrival times were used in 

the locations with half the weighting of P waves in order 
to constrain the depth determination. A constant P-to-$ 
wave velocity ratio of 1.79 wu assumed. The distribution of 
large-magnitude aftershocks found by Derchain, pt and King 
[1984] defines an almost vertical trend in the central part of 
the fault. This locates a substantial part of the aftershock 
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Fig. 10. A synthetic example where a T-shaped set of hypocenter• is defined in a heterogenous medium. 
Original data. (b) Locations obtained using the same heterogeneou• medium as used to calculate synthetic travel 
times. (½) Using the stratified medium of P. Bernard and A. Zollo (BZSS). (d} Using the stratified medium of 
Deachampa an•/fifi• [1984]. Three projections are shown in every column: stereo projection at the top, plan view 
projection at the center, and vertical projection at the top. 
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Fig. 11. Deformation of the T-shaped •et of hypocenters shown in Figure 10 as the synthetic "real" medium 
differs more and more from the one used in the location program. (a) Initial geometry. (b) The earthquakes are 
relocated using the original medium. (½) The horizontal boundary is more complex for the "real" medium. (d) The 
thickness of the low-velocity bloc is increased from 3 km to 5 km for the previous "real" medium. In each column 
two projections are shown: plan view at the top and vertical projection at the bottom. 
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activity in the footwall. Let us now study whether the 
introduction of the low-velocity zone to the NE of the fault 
reduces the dip of the aftershock trend, as suggested by P. 
Bernard and A. (BZ88). 

Close to 450 earthquakes were relocated which had at least 
four P wave, two $ wave readings, and nominal locating 
errors lower than 4 kin. De•champ• a•sd Kirsg [1984] obtained 
more than 500 locations using this criterion. Figure 12 
presents their result and compares it to ours. The pattern of 
epicenters is nearly the same, with the expected translation 
toward the northeast. Three segments may be observed in 
the seismic activity, as already noted by De•champ• arsd Kirsg 
[1984]. Although the SE segment might be subdivided in 
two parts for the heterogeneous model, its position slightly 
outside the network does not justify such detail. 

A cross section of 5 km on each side of line AA' in 

Figure 12 demonstrates the change in vertical distribution 
of hypocenters when the laterally heterogeneous model is 
used. The central zone around this line is the area best 

controlled by the seismic network; this is also the area where 
the two main events of this sequence occurred. Shallow 
earthquakes, although existing, are not shown in the cross 
section of Figure 13 because their location error is greater 
than 4 kin. In any case, they are deeper than the location 
obtained with the standard version of HYPO71, because 
stations in the high-velocity compartment are reached by 
refracted rays, a result that is strongly dependent on the 
geometry of the low-velocity zone. Subvertical planes defined 
by aftershocks are still observed, but they are translated to 
the NE with respect to the surface fault traces. The more 
or less vertical plane of activity below the fault trace is not 
observed anymore. The main activity is concentrated now in 
the hanging wall as hypothesized by We•tawalt arsd Jac•on 
[1987], who argued that the footwall of the fault is expected 
to return to equilibrium after the main shock, and thus to 
be less active. 

The presence of the low-velocity zone does not generate 
any obvious structure with a dip of 60 ø corresponding to 
the main fault plane inferred for the main shock. We have 
no indication that other velocity distributions might change 
this. Taking into account the location of the surface fault 
traces, we may conclude from the hypocenter distribution 
shown on the right of Figure 13 that the fault plane dips to 
the NE. This is more coherent with the fault plane solution 
for the main shock than the vertical plane deduced from 
locations in a layered medium. However, the dip of the fault 
remains unknown, because of the poor depth resolution that 
depends on the details of the low-velocity zone to the NE of 
the fault. 

It is interesting to note that two vertical parallel lines 
plunging down to 15 km are observed with a quiet area of 5- 
km width between them. This separation is larger than any 
location errors. This particular geometrical structure of the 
hypocenter distribution might be guessed in the standard 
HYPO71 results. Although verification with other velocity 
models is necessary, these features may be related to two of 
the main events in this area [We•tawall arsd Jackzo• 1987; 
zss]. 

DISCUSSION 

Classical ray tracing is usually considered too slow for 
routine use in earthquake location programs in laterally 
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Fig. 13. X c•ss •tion of h•ent• alo• the di•ion •' defied in Fibre 12 near the central part of the 
acti• fault. H•ente• within a •x of •km width o• e• side of the profile were plotted in this figu•. The 
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m•ium. The NW displ•ement of the h•ente• is cle•l• seen. Shall• afterhocks are removed from the 
•ght-hand fi•re •cause of their large e•r in depth. Two dist•ct plan• are obs•ed in the locations in the 
heter•eneous medium: their dip angle is not Ye• well constr•ned, but their parallelism might be a real feat•e. 

heterogeneous media. The lack of speed is due to the use 
of a finite difference approach for the integration of the ray 
tracing equations. In the classical Runge-Kutta technique 
the most time consumming routine in three dimensions is the 
determination of ray intersections with internal boundaries. 
In order to accelerate ray tracing, several authors [ C'/tapma• 
1985] have proposed a finite element approach in which the 
medium is divided into a set of elements with simple velocity 
distributions. This is the approach we adopted in this paper. 
After an extensive search we came up with a medium 
in which all the elements of ray tracing are calculated 
analytically, including intersections with parabolic or cubic 
boundaries. This is a medium with constant gradient of the 
square of slowness. Using the expressions derived in this 
paper, initial value ray tracing in three dimensions reduces 
to solving a number of polynomial equations for the value of 
the ray parameter ß at the boundaries. Since these equations 
may be solved exactly for polynomials up to degree 4, our 
method is much faster than Runge-Kutta ray tracing. 

Two-point ray tracing is usually an order of magnitude 
more expensive than initial value ray tracing, except when 
very simple media are assumed for ray tracing [T/turber, 
19831 . Again, the simple medium adopted inside the indivi- 
dual elements yields analytical expressions for paraxial ray 
tracing which can then be used very e•ciently for the cal- 
culation of the gradients needed in Newton's method for the 
solution of two-point ray tracing. Again our method is fast 
enough for ray tracing to be used in solving the two-point 
ray tracing problem. In general, however, the shooting an- 
gle is _not a single valued function of station position. There 
might be several rays that connect the station to the obser- 
ver. Multipathing is a pervasive problem in three dimensio- 
nal laterally heterogeneous media. If we wanted to find all 
the ray paths between a source and an observer, we would 

have to locate the separate branches where the travel time 
is single-valued. These different branches are bounded by 
caustics that describe very complex figures (umbilics, swal- 
low tails, etc.) which can be described by catastrophe theory 
[•Y•/e, 1985]. Unfortunately, locating the caustics in three 
mensions is still an open problem and, certainly, a much 
more di•cult one than ray tracing. For this reason, starting 
from a given initial slowness vector, the paraxial method 
might not converge to the ray with the true minimum travel 
time. Nevertheless, as many other authors have implicitly 
done, we will assume that lateral variations of the medium 
are such that starting from a ray traced in the initial verti- 
cally stratified medium will converge to the correct solution. 
Obviously this problem requires further work, especially if 
three dimensional ray tracing is used in tomography. 

How is the paraxial method connected to other methods 
for solving the two-point ray tracing problem? Paraxial ray 
tracing can be interpreted in three ways. In the method 
adopted here a ray is traced in the medium with a given 
initial slowness vector. If this ray misses the observer, the 
initial conditions defined by (41) yield a new estimation of 
the initial slowness vector by first-order perturbation. The 
procedure can be iterated until the ray hits the receiver with 
a given precision. From another point of view, we might 
consider also that the source and the receiver are always 
connected by some trajectory that does not exactly satisfy 
the ray tracing equations (6). Considering that this trajec- 
tory is a paraxial.ray of the real trajectory, we may 'bend • 
the paraxial ray until it coincides with the exact ray joining 
the two endpoints. The equations for bending and paraxial 
ray tracing are the same as can be easily verified comparing 
our results to those of JuI•a• •d •ub•g• [1977]. Finally, 
the paraxial ray can be considered as an exact ray in a very 
particular medium expanded quadratically around a certain 
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central ray. By continuous modification of this medium, we this ray tracing in the HYPO71 program, we were able to 
obtain the ray in the correct medium to a given precision locate earthquakes in more complex media than the layered 
[Keller and Perozz•, 1983]. Using perturbation theory [Farra structures for which HYPO71 was originally designed. The 
and Madadaga, 1987], we can show that again in this case 
the equations that are actually solved are equivalent to (40). 
The equivalence between the three methods is not surpri- 
sing, since they are all based on Newton's method for the 
iterative solution of nonlinear problems. The actual paths 
in parameter space followed by the three solutions are dif- 
ferent, but at every iteration step they use a linearization 
of the ray equations (6) that may be solved by paraxial ray 
tracing. Paraxial ray tracing provide• a simple but power- 
ful method for the unification of these apparently different 
techniques. 

Although many other iterative methods have been propo- 
sed in the literature, HYPO71 is still the most widely used 
program for earthquake location. For this reason we decided 
to maintain its procedures for source determination, and 
we adapted our paraxial ray tracing technique to replace 
one of the subroutines in that program. In our method we 
start locating the earthquake with classical HYPO71 using 
an approximate vertically layered medium. We use the ray 
trajectories in this medium as a starting point for iterative 
ray shooting and earthquake location. 

Because we start by locating the earthquake in a stra• 
rifled medium, total computer time include• the standard 
computer time of HYPO71. For vertically varying media, a 
maximum distance error of 2 km is enough to guarantee a 
precision of 5 ms in travel time for a total length of the ray 
around 50 km, when the quadratic interpolation of travel 
time (15) is used. For this geometry, we multiply the stan- 
dard computer time of HYPO71 by a factor of 25, which is 
still acceptable for an interactive use. More complex struc- 
tures, which are defined by the number of nodes of the tetra• 
hedral structure, might increase the computer time dramati- 
cally, and a conservative approach is necessary for choosing 
input parameters of the program. For our simple application 
to the sequence of aftershocks of the Irpinia earthquake, an 
average 1 mn CPU time was necessary to locate a single 
event on a Prime 9950. 

CONCLUSIONS 

We proposed a simplified ray tracing algorithm for three 
dimensions that is fast enough to be used for the relocation 
of earthquakes in laterally heterogeneous structures. The use 
of tetrahedral elements with constant gradient of the square 
of slowness greatly simplifies ray tracing. Analytical results 
inside the tetrahedral elements may be used in order to ac- 
celerate ray tracing. The solutions inside the tetrahedrons 
may be easily connected across their walls by simple boun- 
dary conditions. Complex media with lateral variations of 
elastic wave velocity are modeled dividing the medium into 
a series of tetrahedrons with the simple velocity law propo- 
sed above. Ray tracing reduces in this case to the solution of 
a series of polynomial equations in one wriable. Our techni- 
que accelerates ray tracing in three dimensions by more than 
an order of magnitude compared with classical Runge-Kutta 
techniques. 

We apply ray and para•Aal ray tracing in heterogeneous 
structure• to the solution of the two point ray tracing pro- 
blem: we accurately compute the travel time and its deri- 
vatives at different stations for a given source. By including 

sequence of •ftershocks of the Irpinia, central Italy, earth- 
quake of November 23, 1980, is a good example of a region 
that needs the use of a lateral variation of the velocity struc- 
ture because of a simple systematic pattern of time residuals. 
Hypocenter relocation with our method shows, as expected, 
a general displacement of the aftershocks toward the NE 
where there is a low-velocity zone. Unfortunately, depth re- 
solution is still very poor and prevents any refinement on 
the fault plane activity. 
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