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Earthquake Dynamics

1. Introduction

Earthquake source dynamics provides key elements for the
prediction of strong ground motion and for understanding the
physics of earthquake initiation, propagation, and healing.
Early studies pioneered our understanding of friction and
introduced simple models of dynamic earthquake rupture,
typically using homogeneous distributions of stress and friction
parameters. Classical examples of such models are the mech-
anical spring-and-box models proposed by Burridge and
Knopoff (1967), the rectangular dislocation model proposed
by Haskell (1964), and the self-similar circular rupture model
introduced by Kostrov (1966). Extensive research then fol-
lowed to advance our understanding of seismic rupture propa-
gation and stress relaxation. It became clear that the correct
mathematical formulation of the problem of propagation and
radiation by a seismic rupture was that of a propagating shear
crack as proposed by Kostrov (1964, 1966). Very soon it
became clear that friction also played a fundamental role in
the initiation, the development of rupture, and the healing of
faults. The classical Coulombian model of a sudden drop in
friction from a static to a dynamic coefficient led to an impasse,
with infinite stress singularities and many other physical pro-
blems. The reason is that this model lacks an essential length
scale needed to define a finite energy release rate near the
rupture front.

Better models of friction at low slip rates were studied in the
laboratory by Dieterich (1978, 1979) and Ruina (1983), who
proposed the model of rate- and state-dependent friction. Slip
weakening friction laws were introduced in dynamic rupture
modeling by Ida (1972) and Andrews (1976a,b) for plane (2D)
ruptures and by Day (1982b) for 3D fault models. These
authors showed that slip weakening regularizes the numerical
model of the rupture front, distributing stress and slip con-
centrations over a distance controlled by the length scale in the
friction law. Ohnaka and Kuwahara (1990), Ohnaka (1996),
and Ohnaka and Shen (1999) concluded that their experiments
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could be explained with a simple slip weakening friction
law. In fact, for many practical purposes, the rate-and-state
and slip weakening friction laws can be reconciled by rating
that both models contain a finite length scale that controls the
behavior of the rupture front (see Okubo, 1989; Dieterich and
Kilgore, 1996). Extensive reviews on rupture dynamics up to
1990 have been published by Kostrov and Das (1989) and
Scholz (1989).

Recent studies of rupture processes for selected earthquakes
have shed new light on our understanding of earthquake rup-
tures. These models suggest a complexity of the rupture pro-
cess that the early models of rupture in a uniformly loaded
medium were unable to explain. Although, in the late 1970s,
Das and Aki (1977b), Mikumo and Miyatake (1978, 1979),
Madariaga (1979), and Andrews (1980, 1981) pointed out the
deficiencies of the classical dislocation and crack models, it
was not until the late 1980s that good-quality near-field
accelerometry became available for some large earthquakes.
Simultaneously, new sophisticated and efficient numerical
methods, such as boundary integral equations (BIE) and finite
differences (FD), provided the tools to study realistic dynamic
rupture propagation in a fault subject to a heterogeneous stress
field and spatially varying friction.

Heaton (1990) noticed that rupture of large earthquakes was
typically characterized by pulselike behavior, where only a
small part of the fault would rupture at a given instant. This
result has been confirmed by a number of inversions of the
slip-rate field for large earthquakes, such as the 1992 Landers
earthquake in California (Cohee and Beroza, 1994; Wald and
Heaton, 1994; Cotton and Campillo, 1995a). Cochard and
Madariaga (1996) found that, at least for a simple velocity
weakening friction law, heterogeneity could arise sponta-
neously in a two-dimensional homogeneous fault model as
found earlier by Carlson and Langer (1989) for the Burridge
and Knopoff model of sliding blocks connected by springs.
Other authors studied complex fault models from a theoretical
point view (Harris and Day, 1993, 1997). Beroza and Mikumo



(1996) found that dynamic models with heterogeneous fault
parameters tend to generate short slip duration.

In a direct modeling approach, Olsen et al. (1997) and
Peyrat et al. (2001) showed that rupture propagation in a
dynamic model of the 1992 Landers earthquake, would follow
a complex path, completely controlled by the spatial variation
of the initial stress field. Ide and Takeo (1997) estimated the
constitutive friction law parameters for the 1995 Kobe earth-
quake from their kinematic inversion results. Computations
of dynamic stress changes for the 1992 Landers, 1994
Northridge, and 1995 Kobe earthquakes (Bouchon, 1997; Day
et al., 1998) showed highly variable distributions of stress
drops. Spudich et al. (1998) detected coseismic changes in the
slip direction for the 1995 Kobe earthquake. Nielsen et al.
(2000) indicated that such complexity inherently arises as a
result of many recurrent earthquakes on a single fault over
along time span.

In this chapter we review what we believe are the important
results obtained to date in the field of earthquake rupture. In
Section 2 we review the early models of earthquake rupture and
discuss the elastic shear fault model and fundamental friction
laws. We also briefly describe the BIE and FD numerical
methods for numerical modeling of dynamic rupture. In Section
3 we illustrate the most important phenomenology of simple
rupture models with a single length scale for circular and rec-
tangular fault models, including anisotropy and scaling of
growth, generation of sub-shear and super-shear rupture speeds,
and the numerical resolution of these models. Scaling laws
for earthquake rupture are described in Section 4, including
the complementary roles of friction, strength, and geometry.
Section 5 shows the results of modeling the 1992 M 7.3 Landers
event, including computation of a heterogeneous initial stress
field and estimation of the frictional parameters. We compare
the dynamic modeling results to those from kinematic models
and strong motion data. Finally we discuss the importance of
heterogeneity in the rupture process, including the necessity of
multiple length scales, generation of self-healing pulses, and the
origin of rupture complexity, and discuss the possibility of
estimating friction from observations.

2. Fault Models and Friction

In this section we review some of the simpler models that have
been used to model seismic ruptures: the Burridge—Knopoff
(BK) model; one of its modern versions, the cellular automata
(CA) model; and what is still the most useful kinematic
description of an earthquake—the dislocation model. Then we
introduce the theory behind the elastic shear fault model and
basic friction laws. Finally, we briefly describe the concepts of
the two numerical methods that have dominated the field of
modeling of dynamic rupture: the boundary integral element
(BIE) and finite-difference (FD) methods.
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2.1 Classical Dynamic Model Assumptions:
Burridge=Knopoff and its Successors

Burridge and Knopoff (1967) pioneered dynamic rupture beha-
vior by studying a mechanical model composed of a chain of N
blocks coupled by horizontal springs of stiffness x sliding on a
frictional surface that delays the motion of the blocks. The one-
dimensional array of springs is connected by individual leaf
springs of stiffness & to a rigid driving bar that moves horizon-
tally with a constant velocity. For all reasonable friction laws in
which friction decreases once slip starts, the blocks in the BK
models move by stick—slip with long periods of stress accumu-
lation and sudden jerky displacement. This model is an analogue
or “toy” model of an earthquake fault that is loaded by slow plate
motion and locked by friction except in brief intervals when the
loading stress overcomes friction at the interface. When this
model is loaded at sufficiently high stresses, rupture starts by slip
on one of the blocks of the chain and spreads rapidly to neigh-
boring blocks. Until the 1980s this model was a simple and
curious analogue to an earthquake rupture, and most seismolo-
gists believed that slip episodes would always spread to all the
blocks of the system. However, Cao and Aki (1984) and Carlson
and Langer (1989) found numerically that this was not the case.
Instead, they discovered that very complex rupture histories
would develop in this model starting from a nominally homo-
geneous system. Actually, the BK model has two types of rup-
tures: local events that tend to smooth the system; and long
events that propagate along the whole chain and wrap around it
when cyclic boundary conditions are used. These large, soliton-
like events roughen the system, as shown by Schmittbuhl et al.
(1996). Small events in this system obey a Gutenberg—Richter
type power law for the number of events with respect to the
number of sliding blocks that participate in any individual event.
Large, macroscopic events have a completely different dis-
tribution centered around the total number of events in the chain.
This model has become a paradigm for the dynamic origin of
complexity on a fault, although several authors pointed out a
number of reasons why this was not a very realistic model of
earthquakes. The most serious problem is that it does not radiate
and dissipate seismic energy. Rice and Ben Zion (1996) sug-
gested that small event complexity in this system was probably
due to the lack of continuum limit of this model.

An interesting class of models inspired from the BK model,
but much simpler to compute, consists of the cellular automata
models (see, e.g., Wolfram, 1986). Using different versions of
cellular automata, it is possible to reproduce the power law
distribution of earthquake statistics (Gutenberg and Richter law).
More interestingly, certain interacting dynamical systems may
spontaneously evolve into a critical state, producing earth-
quakes of all sizes. This is the so-called self-organized critical
state (see, e.g., Bak et al., 1987). A major problem with cellular
automata models is that they lack scales for time and/or length.
Time evolution occurs by discrete quasi-static steps so that—at
least in the version known to us—they do not include dynamic
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effects. As will become apparent in a later section, length and
time scales are essential for physically correct modeling of the
forces underlying the dynamic behavior. Although these models
are for the moment too simple for simulating the observed
radiation from a real earthquake, there is no doubt that these
concepts will play a major role in future earthquake studies.

In order to understand the physics of the dynamic behavior,
we turn to the theory of an elastic shear fault, starting from the
simplest approximation.

2.2 The Dislocation Model

In spite of much recent progress in understanding the dynamics
of earthquake ruptures, the most widely used models for
interpreting seismic radiation are the so-called dislocation
models. In these models the earthquake is simulated as the
kinematic spreading of a displacement discontinuity (slip or
dislocation in seismological usage) along a fault plane. In its
most general version, slip in a dislocation model is completely
arbitrary and rupture propagation may be as general as desired.
In this version the dislocation model is a perfectly legitimate
description of an earthquake as the propagation of a slip episode
on a fault plane. It must be remarked, however, that not all slip
distributions are physically acceptable: as shown by Madariaga
(1978), most dislocation models present unacceptable features
such as interpenetration of matter, release unbounded amounts
of energy, and so on. For these reasons, dislocation models must
be considered as a useful intermediate step in the formulation of
a physically acceptable dynamic fault model.

Dislocation models are very useful in the inversion of near-
field accelerograms (see, e.g., Cohee and Beroza, 1994; Wald
and Heaton, 1994; Cotton and Campillo, 1995a; Mikumo and
Miyatake, 1995; and many others). Radiation from a disloca-
tion model can be written as a functional of the distribution of
slip on the fault. In a simplified form a seismogram u(x, f) at an
arbitrary position x can be written as

u(r, 1) :/0 : Au(€,7)G(x — &t —T)dEdT (1)

where Au(&, 7), the slip on the fault, is a function of space and
time, and G(x, f) is the Green tensor that may be computed using
simple layered models of the crustal structure, or more complex
numerical (for example, FD) simulations. Functional (1) is
linear in slip amplitude but very nonlinear with respect to
rupture propagation, which is implicit in the time dependence
of éu. For this reason, in most inversions the kinematics of the
rupture process (position of rupture front as a function of time)
is assumed to propagate at constant rupture velocity from the
hypocenter. Different approaches have been proposed in the
literature in order to invert approximately for variations in
rupture speed about the assumed constant rupture velocity (see,
e.g., Wald and Heaton, 1984; Cotton and Campillo, 1995a). The
slip history on the fault can then be used to compute the history

of stress on the fault by a procedure originally proposed by
Mikumo and Miyatake (1979). This method has been used
extensively in recent years to estimate the state of stress on
a fault (see, e.g., Bouchon, 1997; Ide and Takeo, 1997; Olsen
et al., 1997; Day et al., 1998; Guatteri and Spudich, 1998a,b;
among many others).

The most important dislocation model was introduced by
Haskell (1964). In this model, shown in Figure 1, a uniform
displacement discontinuity spreads at constant rupture velocity
inside a rectangular-shaped fault. At low frequencies, or
wavelengths much longer than the size of the fault, this model is
a reasonable approximation to a seismic rupture. In Haskell’s
model, at time =0 a line of dislocation of width W appears
suddenly and propagates along the fault length at a constant
rupture velocity until a region of length L of the fault has been
broken. As the dislocation moves, it leaves behind a zone of
constant slip D. The fault area L x W times the slip D and the
rigidity p of the medium defines the seismic moment
My = uDLW of this model. Haskell’s model captures some of
the most important features of an earthquake and has been used
extensively to invert for seismic source parameters from near-
field and far-field seismic and geodetic data. The complete
seismic radiation for Haskell’s model was computed by
Madariaga (1978) who showed that, because of the stress sin-
gularities around the edges, the Haskell model fails at
high frequencies, as was noted by Haskell (1964) himself.
All dislocation models with constant slip will have the same
problems at high frequencies, although they can be improved by
tapering the slip discontinuity near the edges of the fault,
as proposed by Sato and Hirasawa (1973). Even better dis-
location models can be obtained by taking into account the
kinematics of rupture front propagation as proposed by Spudich
and Hartzell (1984) and Bernard and Madariaga (1984). Kine-
matic models have played a mayor role in the quantification of
earthquakes and in the inversion of seismic data, a subject that
we cannot develop in depth in this chapter.

FIGURE 1 The Haskell kinematic earthquake model, probably the
simplest possible earthquake model. The fault has a rectangular shape
and a linear rupture front propagates from one end of the fault to the
other at constant rupture speed v. Slip in the broken part of the fault is
uniform and equal to D.



2.3 Elastic Shear Fault Model

Let us now study the main features of a properly posed source

model in a simple homogeneous elastic model of the Earth.

Expansion to more complex elastic media, including realistic

wave propagation media, poses no major technical difficulties

except, of course, that computation time may become very long.

Consider the 3D elastic wave equation:
62
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where u(Xx, ) is the displacement vector field, a function of both

position x and time 7, and p(x) is the density of the elastic

medium. Associated with the displacement field u the stress

tensor o(X, ) is defined by
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where \(x) and p(x) are Lamé elastic constants, I is the identity
matrix, and superscript T indicates matrix transpose. We can
transform this system into a more symmetric velocity—stress
formulation (Madariaga, 1976; Virieux and Madariaga, 1982;
Virieux, 1986):
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where v(x, ) is the particle velocity vector; and f(x) and m(x)
are the force and moment source distributions, respectively.

2.3.1 Boundary Conditions on the Fault

Assume that the earthquake occurs on a fault surface of normal
n in the previous elastic medium. Due to frictional instability, a
rupture zone can spread along the fault; let I'(f) be this rupture
zone at time ¢. In general, I'(7) is a collection of one or more
rupture zones propagating along the fault.

The main feature of a seismic rupture is that, at any point x
inside the rupture zone I'(¢), displacement and particle velo-
cities are discontinuous. Let

D(x,t) =ut(x*, 1) —u (x7,1)

(5)

be the slip vector across the fault, i.e., the jump in displacement
between the positive and the negative side of the fault. The
notation x* indicates a point immediately above or below the
fault, and u™ are the corresponding displacements.

Slip D is associated with a change in the traction T =
o+e.= 0.y, 0y.,0..] across the fault through the solution of the
wave equation (4):

AT(x,7) = AX[D] for x € T'(¢) (6)

where AX[D] is a shorthand notation for a functional of D
and its temporal and spatial derivatives.
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2.4 Friction

The main assumption in seismic source dynamics is that trac-
tion across the fault is related to slip at the same point through a
friction law that can be expressed in the general form

T(D,D,6;) = Ta for  xeTI(r) (7)

such that friction T is a function of at least slip, but an increasing
amount of experimental evidence shows that it is also a function
of slip rate D and several state variables denoted by 6,
i=1,...,N. The traction that appears in friction laws is the total
traction T\, on the fault, which can be expressed as the sum of
preexisting stress T°(x) and the stress change AT due to slip on
the fault obtained from Eq. (6). The prestress is caused by tec-
tonic load of the fault and will usually be a combination of purely
tectonic loads due to internal plate deformation, plate motion,
etc., and the residual stress field remaining from previous seismic
events on the fault and its vicinity.

Using Eq. (6), we can now explicitly formulate the friction
law on the fault [Eq. (7)]:

T(D,D,6) = T’(x) + AT(x,r)  for xeT(r) (8)

Friction as defined by Eq. (8) is clearly a vector. For the
appropriate study of a shear fault we need to write Eq. (8) as a
system of two equations. Archuleta and Day (1980), Day
(1982a,b), and Spudich (1992) used a very simple approach that
will certainly have to be refined in the future, assuming that slip
rate and traction are antiparallel, i.e.,

T(D,D,6;) = —T(D, D, 6;)ey )

where ey = D/||D|| is a unit vector in the direction of instan-
taneous slip rate. With this assumption, the boundary condition
reduces Eq. (8) to the special form

—T(D,D,6)ey = T'(x) + AT(x,t) for xeT(r) (10)

Figure 2a shows the vector diagram implied by this equation.
The only fixed vector in this diagram is the prestress, which is
assumed to be known. Friction and slip rate are collinear but
antiparallel. Stress change AT is in general collinear neither
with prestress nor with friction. Recently, Spudich (1992),
Cotton and Campillo (1995b), and Guatteri and Spudich
(1998b) analyzed expression (10) and studied several recent
earthquakes, showing that slip directions were not always
parallel to stress drop. These rake rotations may also have
information about the absolute stress levels (Spudich, 1992;
Guatteri and Spudich, 1998b).

In most rupture models the above “vector” friction is sim-
plified to a “scalar boundary condition,” in which slip is only
allowed in the direction of the initial stress, which is every-
where parallel to the x axis, ie., T°(x) = [T%(x),0] and
D(x,t) = [D,(x,1),0]; then the scalar components are simply
related by

AT (x,t) = T(D,D,6;) — T°(x) for  xeTI(r) (11)
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FIGURE 2 Diagram showing the relation between initial stress, slip rate, friction,
and traction change for the vector (a) and scalar (b) approximations to friction on the
fault plane. In the scalar case, traction change corresponds to the usual definition of
stress drop. (Reproduced with permission from Madariaga et al., 1998; fig. 1, p. 1185.)

This boundary condition, which may be graphically described as
if the fault had “rails” aligned in the x direction, has been applied
in most 3D source models, starting with Madariaga (1976).

2.5 Friction Laws

Both boundary conditions (10) and (11) require a friction law
that relates scalar traction T to slip, its derivatives, and possible
state variables. For more details, see Dieterich (1978, 1979)
and Rice and Ruina (1983), but see also Ohnaka (1996) for an
alternative point of view.

Let us first discuss the simple slip weakening friction law
introduced by Ida (1972). It is an adaptation to shear faulting
of the Barenblatt—Dugdale friction laws used in hydro-
fracturing and tensional (mode I) cracks. In this friction law,
slip is zero until the total stress reaches a peak value (yield
stress) that we denote by T,. Once this stress has been reached,
slip D starts to increase from zero and T(D) decreases linearly
to zero as slip increases:

D
T(D)=T, <1 — D) + T for D < D,

&

T(D) =1 for  D>D. (12)

where D, is a characteristic slip distance and TFis the residual
friction at high slip rate, sometimes called the “kinematic”
friction. There is a lot of discussion in the literature about how
large this residual friction is. Many authors, following the
observation that there is a very broad heat flow anomaly across
the San Andreas fault in California, have proposed that faults
are “weak,” meaning that T is close to zero. Other authors
propose that kinematic friction is high and faults are strong. We
cannot go into any detail about this discussion here: interested
readers may consult the papers by Scholz (2000) and Townend

and Zoback (2000). For most applications of earthquake
dynamics, only stress change is important, so that without loss
of generality we can assume that 7y =0 in much of the fol-
lowing. Let us remark, however, that Spudich (1992), Guatteri
and Spudich (1998a), and Spudich et al. (1998) have found
some evidence for absolute stress levels from nonparallel stress
drop and slip of the 1995 Kobe earthquake in Japan.

The slip weakening friction law (12) has been used in
numerical simulations of rupture by Andrews (1976a,b), Day
(1982b), Harris and Day (1993), Fukuyama and Madariaga
(1998), Madariaga et al. (1998), and many others. Slip weak-
ening at small slip is absolutely necessary for the friction law to
be realizable, otherwise stress would become unbounded near
the rupture front, violating energy conservation so that seismic
ruptures could only spread at either S, Rayleigh, or P wave
velocities until they stop. Of course, in numerical imple-
mentations stress is never infinite, so that rupture velocity is
numerically limited. In many earlier studies of earthquake
dynamics, a simpler version of Egs. (12) was used in which D..
was effectively zero. This numerical version of slip-weakening
has been called the Irwin criterion by Das and Aki (1977a) and
has been widely used by many authors although it is obviously
grid-dependent (see, e.g., Virieux and Madariaga, 1982).

Once slip is larger than the slip weakening distance D,
friction becomes a function of slip rate D and one or more
state variables that represent the memory of the interface to
previous slip. A very simple rate-dependent friction law was
proposed by Burridge and Knopoff (1967) and has been used
extensively in simulations by Carlson and Langer (1989) and
their colleagues and by Cochard and Madariaga (1986):

: v
T(D) = Ty———+T;

13
Vet D (13)



where V is a characteristic slip velocity and T < T, is the limit
of friction when slip rate decreases to zero. The applicability of
rate weakening to seismic ruptures is much more controversial
than slip weakening, although there is plenty of indirect evi-
dence for its presence in seismic faulting. Heaton (1990) pro-
posed that it was the cause of short rise times; rate-dependence
at steady slip velocities is also an intrinsic part of the friction
laws proposed by Dieterich (1978) and Ruina (1983), which
will be reviewed in the following.

The slip weakening and slip rate weakening behavior
described above can be combined if for any value of D and D
the larger of expressions (12) and (13) is selected. Instead of
writing a complex expression, it is simpler to show the
friction law graphically in Figure 3 in the form of a law
where friction depends on the two state variables slip and slip
rate. The friction law described above allows rupture pro-
pagation that is completely controlled by the complex non-
linear interaction of

1. The initial stress field T° in (8).

2. The distribution of yield frictional resistance T, in
Egs. (12) and (13).

3. The parameters D., T,, and V, of the friction laws in

Egs. (12) and (13).

As mentioned earlier, most recent work on friction has been
concentrated in a class of friction laws that depend both on slip
rate and state variables. These laws were developed from
laboratory experiments at low slip rates by Dieterich (1978,
1979) and Ruina (1983).
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Typically, a rate-and-state dependent friction law can be
expressed by

T(D,0) = 0+ 7(D) (14)

where 7(D) is the instantaneous response of friction to slip rate
changes (“the direct effect”). The state variable 6 represents
the weakening of the interface with time and in general it is
considered to satisfy an evolution equation of the form

(15)

Here L is a weakening distance that measures how much slip
will occur before the friction weakens to the steady state
value; V), is reference slip rate. There are many versions of
these friction laws, but the main features are not very different
from slip weakening, at least at the high slip rates that occur
near the rupture front. Computations by Dieterich and Kilgore
(1996) show that the slip weakening distance for rate-and-state
dependent friction is roughly D.~4L, an approximation
also found by Gu and Wong (1991). Although rate-and-state
dependent friction is very important for the study of rupture
initiation and repeated ruptures on a fault surface, its features
are indistinguishable from simpler slip-dependent and rate-
dependent friction laws during the dynamic part of seismic
ruptures.

N
=2G6D
b= G(D.)

2.6 The Boundary Integral Element Method

An essential requirement in studying dynamic faulting is an
accurate and robust method for the numerical modeling of wave

Friction

FIGURE 3 Slip- and slip rate-dependent friction law. For values of stress less than the
peak static friction (7,,), slip and slip rate are zero. Once slip begins, stress is a function of
both slip and slip rate described by the friction surface T (D, D). Slip weakening is measured
by D, rate weakening by V. The continuous curve shows the typical stress trajectory of a
point on the fault. (Reproduced with permission from Madariaga et al., 1998; fig. 2, p. 1185.)
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propagation that can also accurately handle the nonlinear
boundary conditions on the fault surface. One of the important
methods is the boundary integral equation (BIE) method. The
BIE method was pioneered in 2D by Das and Aki (1977a,b) in
the so-called direct version. It was later extended to 3D by Das
(1980, 1981) and improved by Andrews (1985). A new version
of the BIE method, the so-called indirect, or displacement
discontinuity, method, was proposed by Koller et al. (1992).
The indirect method was improved by the removal of strong
singularities by a number of authors (e.g., Fukuyama and
Madariaga, 1995, 1998; Geubelle and Rice, 1995; Cochard and
Madariaga, 1996; Bouchon and Streiff, 1997). Following
Fukuyama and Madariaga (1998), the integral equations for a
shear fault can be expressed as

Ty (x1,x2,1)

// / ™Dp (&1, &, ||t — vr/erl) dr déy dé,
S+
+ E//S+ I,:_;Dﬂﬁ(fl,ﬁz, It —r/cr|]) d&1 d&;

K/Z I o
S [ st el ds e

;
*%// ’—fDmﬂ(fl,fz,

/ Dy o(6r. o e — r/erl) s s

t—r/er|)dé dé

4cT7T

—%Da(xl,)@,l) (16)
where g is rigidity, ¢, and ¢y are P- and S-wave velocities,
respectively, k=cy/c;, p is density, r= , Ii=

—&)/r,and || a|| is a shorthand notation meaning that the
slip functions D are evaluated only for positive values of a. S
represents the upper surface of the crack. The Greek indices «
and [ can be either 1 or 2. Each term in this system of boundary
integral equations has a simple interpretation. The first four
terms are near-field effects due to the horizontal gradient of slip.
The fifth term represents “far-field” or high-frequency S-wave
radiation. The last term is the radiation damping due to the
emission of S-waves in the direction normal to the fault. In
order to solve the integral equation (16) numerically for shear
faults, a discretization using interpolation functions has to be
introduced. Traditionally in BIE high-order spatial interpola-
tion and very low-order interpolation in time are adopted (see,
e.g., Hirose and Achenbach, 1989; Koller et al., 1992). This was
the method adopted for antiplane cracks by Cochard and
Madariaga (1996) or by Fukuyama and Madariaga (1995, 1998)
for 3D faulting. Since high-order spatial interpolations lead to
implicit equations in time that are almost impossible to solve in
the presence of nonlinear friction on the fault, several imple-
mentations use simpler piecewise constant interpolation of slip
velocity. This leads to a formulation of crack problems that
Cruse (1988) calls the displacement discontinuity method. With

this interpolation, the slip gradient D g, is sharply localized at
the boundaries of the grid elements.

BIE methods are excellent for the study of earthquake
initiation and the transition from accelerated fault creep to
fully dynamic rupture propagation. A problem with the BIE
method for the simulation of dynamic earthquake ruptures is
the relatively large requirement for computer memory (though
not of computer time) and a need for explicit computation of
the operator AX. Also, at least in their current implementa-
tions, BIE methods cannot be used in heterogeneous media,
but can be used for complex fault geometries and homo-
geneous half-spaces. Aochi et al. (2000) have recently
extended the BIEM to handle complex faults with noncoplanar
segments. They studied rupture propagation for the 1992
Landers earthquake and showed that rupture can jump
between segments under some restrictive conditions.

2.7 The Finite Difference (FD) Method

The other numerical method widely used for numerical mod-
eling of dynamic wave propagation is the finite difference (FD)
method. The finite difference (FD) method was introduced by
Madariaga (1976) and Andrews (1976a,b) for the study of
seismic ruptures and was developed by numerous authors (e.g.,
Miyatake, 1980, 1992; Day, 1982a,b; Mikumo et al., 1987,
Harris and Day, 1993; Olsen et al., 1997; Madariaga et al.,
1998). The method can be used to study rupture propagation in
heterogeneous elastic media and is very efficient. An advantage
of finite differences is that the operator AX in Eq. (6) does not
to have to be computed explicitly. In the FD method, all that is
needed is a numerical procedure that computes the stress
change AT given the slip D distribution at earlier times.

Numerous different implementations of the FD method have
been presented in the literature, and it is beyond the scope of
this chapter to cover them all. In general, FD methods used to
model earthquakes can be divided into two types. The first type
derives from the direct discretization of the second-order PDE
obtained by substituting Eq. (3) into Eq. (2). Methods of this
kind were derived and greatly developed by Mikumo and
Miyatake (1979), Miyatake (1980), Mikumo et al. (1987), and
Mikumo and Miyatake (1993). The other approach, the stag-
gered grid velocity—stress formulation, was developed by
Madariaga (1976) to study dynamic rupture problems and is
based on the discretization of the system of Eq. (4). The stag-
gered grid method is characterized by low numerical dispersion
and the fact that no derivatives of media parameters are needed.
The latter is a strong advantage over FD implementations of the
second-order displacement formulation of the wave equation
where accuracy is lost in the computation of derivatives of
media parameters near significant gradients in the model. Olsen
et al. (1995a) and Olsen and Archuleta (1996) demonstrated the
efficiency of the fourth-order formulation of the velocity—stress
method by computing wave propagation around a kinematically
defined rupture in a large-scale 3D model.
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FIGURE 4 A cubic element of the 3D finite difference grid used in
the dynamic modeling of a planar shear fault. o and v depict the
components of the stress tensor and particle velocity, respectively.
(Reproduced with permission from Madariaga et al., 1998; fig. 9,
p. 1192))

The velocity—stress FD method is illustrated in Figure 4;
stress and velocities are defined at alternating half-integer time
steps. At time ty =N At, particle velocity v is computed from
previously calculated stress components. At the next half-time
step fy11/2 = (N +1)At, stress o is updated using the velo-
city field computed at time ty. Thus as time increases, velo-
cities and stresses are computed at alternate times. Because
stress and velocities are computed from Eq. (4) using centered
fourth-order finite differences, the grid is also staggered spa-
tially as shown in Figure 4. Madariaga et al. (1998) extended
the FD method presented by Olsen (1994), Olsen et al. (1995a),
and Olsen and Archuleta (1996) in order to study dynamic
rupture propagation on a planar shear fault embedded in a
heterogeneous half-space. We will use their “thick fault”
boundary condition to illustrate important dynamic rupture
phenomenology in this section, although alternate imple-
mentations exist. Current developments include the coupling
of a BIE solution for slip and stress on the fault to a finite
difference computation of radiated waves (Olsen et al., in
preparation).

3. Phenomenology of Rupture
Models with a Single Length Scale

We start the study of seismic ruptures from a very simple
earthquake model that is a sort of classic test model inspired by
Kostrov’s (1964) study of a self-similar circular shear crack.
We study the spontaneous propagation of a seismic rupture
starting from a circular asperity that is ready to break. The
asperity is surrounded by a fault surface uniformly loaded at
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a stress level that is less than the peak stress in the slip weak-
ening friction law [Eq. (12)]. These are very similar conditions
to those used by Day (1982b) and Das (1981) to start rupture.
There are two main reasons to proceed this way: First, if the
asperity is too small, rupture will start and stop immediately.
For rupture to expand, stress must be high over a finite zone,
sometimes called the minimum rupture patch. The other reason
why rupture has to start from a finite-size asperity is that, if the
stress field were uniform, rupture would occur instantaneously
or grow at the maximum possible velocity from an arbitrary
point on the fault. This is unrealistic and not supported by
observations. Finally, it is assumed that fault rupture must occur
at stress levels that are below the yield stress except for a small
number of isolated asperities. In the following examples there is
only one such asperity, even though rupture starting from
several locations is possible (e.g., Day, 1982b; Olsen et al.,
1997).

3.1 Dimensional Analysis

The following discussion uses nondimensional variables. This
has the advantage of clearly showing how different variables
scale with stresses and distances. We choose the following
dimensional variables:

o Distances along the fault are measured in units of Ax, the
grid interval.

e Wave velocities are measured in units of 3, the shear
wave velocity.

e Stress is measured in units of T,, the peak frictional
resistance (yield stress) in the friction laws described in
Egs. (12) and (13).

All other dimensions are determined by the previous three. In
particular:

e Time is measured in units of At=H Ax/(3, where (3 is the
shear wave velocity. H is the so-called CFL (Courant—
Friedrich-Lewy) parameter that controls stability of the
numerical method. In our simulations it was usually
taken as 0.25 in order to insure stability and sufficient
accuracy.

e Displacement is measured in units of T, /u x Ax.

e Particle velocities are measured in units of T,/u X (.

Slip and slip rate are normalized by 27T,,/u x Ax and 27T, /u X .
The factor of 2 is not really necessary but follows a tradition in
seismological publications. It is also assumed that the P-wave
velocity « is equal to v/33. Finally, D,, the slip weakening
distance in Eq. (12) is measured in units of slip (i.e., 2T,/
X Ax), and Vy, the rate weakening parameter, is measured in
units of slip rate (i.e., 2T, X ). We have followed seismolo-
gical tradition and used the grid length, Ax, to scale fault
length, instead of a physical length such as the slip weakening
distance D.. The reason is that until recently most simulations
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of 3D seismic ruptures used a grid-dependent fracture criterion
introduced by Das and Aki (1977a) and attributed to Irwin.

3.2 A Circular Fault Model

In our first model we study rupture propagation where the initial
stress distribution is symmetric about the origin. We force
rupture to stop once it reaches a circular distance R. Rupture
resistance, represented by T, and D, is perfectly uniform. We
initiate the rupture from a finite asperity of radius R,,. Rupture
velocity is not constant but is determined from the friction law.
Our solutions are not self-similar and, as already illustrated by
Das (1981), Day (1982b), Virieux and Madariaga (1982), and
others, spontaneous ruptures do not maintain simple elliptical
shapes as they grow.

The circular fault has a radius R =50 x Ax, starting from a
concentric asperity of radius R,s, =6 x Ax, D. =4, and stress
inside the asperity was T,y =12xT, and Te =08 xT,
outside. Snapshots of the slip rate are shown in Figure 5 at

several successive instants of time. Time is measured in units
of At=H Ax/3, where H=0.25 as discussed earlier. From
time steps t=17.5 to 35, rupture is taking place inside the
asperity, and is propagating away from the asperity for
t>52.5. We observe that rupture becomes spontaneously
elongated in the vertical direction, which is also the direction
of the initial stress. Thus, as already remarked by Das (1981)
and Day (1982b), rupture tends to grow faster in the in-plane
direction, which is dominated by mode II.

At time r=287.5, rupture in Figure 5 has reached the
unbreakable border of the fault in the in-plane direction, and at
time ¢ =105 the stopping phases generated by the upper and
bottom edges of the fault are moving toward the center of the
fault. The snapshots after +=122.5 show stopping phases
propagating inward from all directions. The slipping patch in
darker shading is now elongated in the antiplane direction,
which is due to slower healing. At time 7= 140 the in-plane
stopping phases (moving in the vertical direction) have already
reached the center of the fault and crossed each other. In the

17.5 35.0 52.5
70.0 105.0
122.5 140.0 157.5

FIGURE 5 Snapshots of slip rate at successive instants of time for the spontaneous rupture of an
overloaded asperity inside a circular fault (solid line). The nondimensional time for each snapshot is
shown below each picture. (Reproduced with permission from Madariaga et al., 1998; fig. 9, p. 1192.)
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last two snapshots, rupture continues in a small patch near the
center of the fault that coincides with the initial asperity.
However, slip rate has decreased to such small values that it is
very likely contaminated with numerical noise.

3.3 Rectangular Fault

Now we turn to a model that starts in the same way as the
circular fault from an overloaded asperity. However, here the
unbreakable barrier forces rupture to expand in essentially one
direction along a rectangular fault. We build this model as a
prototype of rupture along a shallow strike-slip fault and use the
same values for the friction laws as those for the circular crack
simulation (H=0.2; slip weakening distance D.=4; initial
stress inside and outside the asperity T, =1.2xT, and
Text=0.8 X T, respectively; radius of the initial asperity
R,p =06 x Ax; for the rate-weakening simulations we used
Vo =0.03 and T, =T,). Unfortunately, as pointed out by Heaton
(1990) and discussed by Cochard and Madariaga (1996), there
is no information about velocity weakening at high slip rates.

150

(a) 150

150

() 150
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The value chosen for Vy is arbitrary and corresponds to rapid
healing when slip rate becomes about 3% of the peak slip rate.

Color Plate 3 shows snapshots of the slip rate on the fault
plane for simulations using slip weakening and slip weakening
and rate weakening friction, respectively. The prestress on
the fault is directed along the vertical (long) axis of the fault.
In the simulation of part (a) with slip weakening but no rate
weakening, we see the rupture emerging from the asper-
ity with relatively slow healing (long “tail” trailing from
the front). Rupture starts out slowly, accelerates toward the
S-wave speed and, at a mature stage near time ¢ = 80, suddenly
“jumps” to the P-wave speed. The transition to supershear
rupture speeds is an instability that develops from the in-plane
direction and spreads laterally along the rupture front, pro-
ducing a “bulge” observed in the snapshots after 7= 80.
Stopping phases emitted from the sides of the fault clearly
control the duration of slip, as shown in snapshots at =
120 through 160. In the snapshot at =160, the stopping
phases have reached the center of the fault just below the time
label 160.
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FIGURE 6 Final stress without (a) and with (b) rate weakening, and final slip without (c) and with (d) rate weakening, for the
simulations shown in Color Plate 3(a) and (b). The plots clearly show a decrease in slip as well as the development of stress
heterogeneity inside the fault due to rate weakening. (Reproduced with permission from Madariaga et al., 1998; fig. 12, p. 1195.)



Earthquake Dynamics

The situation is quite different with the use of a rate-
dependent friction law, where the slip rate tends to concentrate
in narrow patches (Part b). Compared to Part (a), the rupture
front is narrower and clearly delineated. Well before the arrival
of stopping phases from the sides of the fault, slip rate has
become very small near the center of the asperity. Rupture
takes the shape of a band. As time increases and rupture is
controlled by the edges of the fault, the rupture front becomes
narrow and localized. This is similar to the behavior predicted
by Heaton (1990).

The other major difference introduced by rate-dependent
friction is that, behind the rupture front, stress becomes
heterogeneous. It appears that the rupture leaves a wake of
complexity after its passage. This complexity is apparent in the
distributions of both slip (Fig. 6¢,d) and stress drop (Fig. 6a,b).
The development of stress heterogeneity in the wake of the
rupture front is an essential feature of rate weakening as pro-
posed by Carlson and Langer (1989) for the BK model. It was
shown by Cochard and Madariaga (1996) that stresses become
complex because rate weakening promotes early healing of the
fault. When the fault heals rapidly, all heterogeneities become
frozen on the fault and cannot be eliminated until the fault slips
again. This process of generating heterogeneity was the similar
to what Bak et al. (1987) had in mind when they proposed that
earthquakes were an example of self-organized criticality.
Finally, note that the faster healing caused by rate weakening
friction decreases the slip significantly.

3.4 Numerical Resolution and Scaling with
the Slip Weakening Distance

An essential requirement for an accurate numerical method is
that the numerical solution becomes independent of grid size
beyond the use of a certain number of grid points per wave-
length. The shortest physical distances are the radius of the
asperity R and the width of the rupture front. The latter depends
on the slip weakening distance D, as shown by Ida (1972),
Andrews (1976b), and Day (1982b). For 2D faults and for the
slip weakening law (12) this width, L., is

Ap T,

c— 72 _ o “c
3m Ty

(17)

We have assumed that the residual friction at high slip rates in
Eq. (12) (Ty=0) is zero. This expression is valid for a constant
stress level T,y outside the asperity.

In order to describe the convergence of the numerical
method as the grid size is refined, consider a simple circular
asperity, keeping all the parameters constant except the grid
size and D.. Stress inside the asperity is Top,=1.8 X T},
Texc=0.8 x T,, and H=0.20. Replacing Ty, in Eq. (17) gives
L.=1.36 x D.Ax. Figure 7 shows snapshots of the slip rate
as a function of position on the fault at equivalent instants
of time. Since Ax is used as the scaling distance, both the
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FIGURE 7 Scaling of rupture at constant load for spontaneous
rupture starting from an overloaded asperity. The four snapshots show
the distribution of slip rate on the fault at equivalent times for four
different values of D.. The initial asperity radius R as well as the
instant of time of the snapshot all scale with D... (a) D. =2, R =3, and
T=140; (b) D.=4, R=6, and T=280; (c) D.=6, R=9, and
T=420; (d) D,=8, R=12, and T=560. (Reproduced with permis-
sion from Madariaga et al., 1998; fig. 6, p. 1186.)

radius of the asperity R as well as the time of the snapshot
have to be increased for increasing values of D.. The four
parts of the figure show snapshots for (a) t=140 (D.=2,
R=3),(b)t=280(D.=4,R=6),(c)t=420(D.=6,R=9),
and (d) t=560 (D.=8, R=12). The external rectangles
define the size of the grid, 256 x 256 for D from 2 to 6 and
300 x 256 for D.=38. Note the scaling of the figures—the
snapshot for D. =38 is precisely twice as large as as that for
D.=4. Clearly, the degree of resolution improves as D,
increases.

From a close examination of these snapshots and several
others, we concluded that fourth-order finite difference
simulations are contaminated by numerical noise when
D.<4Ax, and that numerical simulations are stable and
reproducible for D,.>6Ax (L.>7Ax). For 3D simulations,
this is a rather large number that requires the use of very dense
grids for accurate simulation of spontaneous rupture.

4. Earthquake Scaling Laws

In the previous section we illustrated spontaneous rupture
starting from a circular asperity of radius R, that is ready to
break (with stress T),) and is surrounded by a fault surface. For
convenience in numerical modeling, we scaled all physical
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quantities by the grid interval Ax. Obviously this is not satis-
factory in actual applications to earthquakes. The first earth-
quake scaling law was proposed by Aki (1967), who pointed out
a relation between magnitudes at 1 Hz and at 20 sec, assuming
that all earthquakes have a similar spectrum that depends on
a single scaling variable, the size of the fault. This scaling
law was later reformulated by Brune (1970) in the form of a
universal shape for the spectrum of S-wave radiation.

The scaling laws can be derived by a simple dimensional
analysis of the boundary value problem for an earthquake
source in a uniform, infinite elastic medium. In such a simple
medium there are only three independent physical dimensions:
a length or geometric scale, a stress or dynamic scale, and the
time scale. In elastodynamics the time scale is not independent
of the length scale, since the two are connected by the speed of
elastic waves. Adopting the shear wave speed (3 as the scale
for velocities, and a measure of stress drop Ao as the stress
scale, the only other free dimension is a length scale for the
fault. The appropriate choice for the length scale is the overall
size of the fault, its radius for a circular fault, or a character-
istic dimension of stress distribution for complex sources.
Once these variables are fixed, all other parameters can be
scaled with respect to them. Thus, for instance, slip on the
fault must scale like the characteristic length L times the ratio
of the characteristic stress drop Ao to the elastic constant p.
Similarly, slip rate on the fault scales as the same ratio Ao/u
times the wave speed (3. All other physical quantities can be
derived from these as shown in Table 1.

Studies of many earthquakes under completely different
tectonic conditions, for shallow and deep sources, show that
stress drop varies over at most two orders of magnitudes, while
L varies over a wide range. As a consequence, seismic moment
M, scales roughly with the cube of the fault size L for
moments 10'°-10*'Nm (moment magnitude My, =8.0).
Beyond this magnitude there are serious uncertainties in the

TABLE 1 Scaling of Different Physical Quantities from a
Simple Fault Model as a Function of the Three Fundamental
Parameters Length, Stress Drop, and Shear-wave Speed*

Variable Symbol Expression
Length L

Stress drop Ao

Shear wave speed I}

Slip D Ao/ x L
Slip rate D Ao/ux 3
Fault surface So L?
Duration of radiation T L/3
S-wave corner frequency s BIL
P-wave corner frequency il ofL
Seismic energy E Acd?fu x L?
Seismic moment M, AcL?
Fracture energy G AoD..

# Other groups of three fundamental units can be chosen, but
this is the standard choice in seismology.
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scaling law, but it is likely that very large earthquakes scale
differently, in particular where ruptures are limited to a narrow
zone near the surface of the Earth.

4.1 Other Length Scales

We have already seen in the discussion of numerical modeling
that overall fault size is not the only length scale that is
important in understanding earthquakes. The minimum slip
patch—the minimum coherent zone of the fault that may
rupture dynamically—is an important independent char-
acteristic size of earthquake sources. Like all other length
scales, this minimum patch size scales directly with the slip
weakening distance D, the minimum slip necessary for fric-
tion to reduce to the kinetic friction on the fault. The exact
nature of D, is subject to debate, but the existence of such a
length is absolutely necessary for the rupture problem to be
physically well posed. Estimates of D, and its associated
minimum patch length scale / = (u/Ao)D,. vary widely, but it
must be a small fraction of the overall length L. According to
some authors, D. is a property of the friction law to be
determined from experiments on rock friction (see, e.g.,
Dieterich, 1978, 1979; Ruina, 1983); for others, D, scales with
the roughness of the fault surfaces, which in turn scales with
earthquake size (Ohnaka and Kuwahara, 1990; Ohnaka and
Shen, 1999). These two very opposite views emphasize dif-
ferent properties of earthquakes. For those authors who
believe that D, is a property of the fault zone, a universal
friction law that describes the tribology of the fault must exist
independently of the final size of the earthquake. This is
consistent with most friction experiments carried out by the
school of Dieterich, Ruina, and others.

For other authors, D.. is the result of rupture scaling over a
broad range of magnitudes. Large earthquakes can occur
only if D. becomes large; otherwise they simply stop as first
proposed by Aki (1979). Unfortunately it is not possible to
settle this argument from seismic data alone because of the
lack of high-quality near-field strong motion records. The
current resolution of near-field observations is about 0.5 Hz,
which translates into a shear wavelength of the order of
6—7 km and a slip weakening distance of D, ~ 10*>cm (Ide and
Takeo, 1997; Olsen et al., 1997; Day et al., 1998; Guatteri and
Spudich, 1998b). This is too coarse to detect any scaling of D,
with earthquake size at the present time.

4.2 Scaling of Energy and Rupture Resistance

The previous discussion indicates that earthquake phenomena
cannot be characterized by a single length scale unless, of course,
the slip weakening distance scales with the size of the earth-
quake. Let us explore some of the consequences of small-size
scaling for rupture dynamics through a simple fracture model.
Let us define rupture resistance, or energy release rate,
which for the simple slip weakening friction model (12) is
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given by

G= lT,,DL. (18)
2

This is the amount of energy that is needed to produce a unit
area of slipping fault. In most fracture studies this number is
assumed to be a material property. However, Ohnaka and Shen
(1999) present strong evidence that this may not necessarily be

the case.

4.2.1 Rupture Initiation

A sensitivity analysis of the effect of changing rupture resis-
tance on rupture propagation made by Madariaga and Olsen
(2000) shows that there are two regimes that are controlled by a
single nondimensional number:

o T? Ry
puTy D

(19)

where R, is the radius of the minimum asperity size
(Madariaga and Olsen, 2000). This parameter can be derived
from Andrews’s (1976a) relation (17). As shown by Madariaga
and Olsen (2000), using the calculations of Andrews (1976a), k
is a measure of the ratio of available strain energy AW to energy
release rate G defined in Eq. (18). The strain energy change in a
zone of radius R, uniformly loaded by an initial stress 7, is

2
~ Te

1
AW = — (DT, ~ ~<

(20)

where (D) is the average slip on a fault of radius R and stress
drop T,. Thus k ~ AW/G. An essential requirement for rupture
to grow beyond the asperity is that x > k., where the critical
value of k for the circular asperity can be derived from the
study by Madariaga and Olsen (2000), who computed num-
erically the critical radius R, for fixed T,, T,., and D.. They
found that

ke = 0.60 (21)
k. defines a bifurcation of the problem as a function of para-
meter k. Another estimate of . was obtained earlier by Day
(1982a,b), who found k.=0.91. The reason Day’s estimate is
larger than ours is that Day assumed that rupture could start
only when energy balance around the whole perimeter of the
asperity allowed rupture to start. As shown by Das and Kostrov
(1983), however, rupture may start from the edge of the asperity
and then surround the fault before breaking away from the
asperity. For k < k., rupture does not grow beyond the initial
asperity. For k> k., rupture grows indefinitely at increasing
speed. This is a simple example of a pitchfork bifurcation.
There is a complication, however: as shown by Andrews
(1976b), the rupture front makes a sudden jump to speeds
larger than the shear wave speed if Ty, is larger than a certain
fraction of the peak stress drop T,. Transition to super-shear
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speeds is a complex bifurcation that needs much further study.
Andrews (1976b) found that the jump to super-shear speed
was due to the formation of a stress peak that runs at the shear
wave speed ahead of the rupture front. This mechanism does
not seem to operate for the transitions observed in 3D by
Madariaga and Olsen (2000). In any case, super-shear ruptures
in mode II (in-plane shear) are well documented by a number
of experiments made by Rosakis et al. (1999). Madariaga and
Olsen showed that the jump to super-shear speed occurs for a
value of k> 1.3k.; further discussion of this issue may be
found in their paper. A final important remark is that the
problem of rupture propagation from an initial asperity in a
homogeneous medium under uniform stress has no other
nondimensional control number than x because this problem
has exactly the five independent parameters that appear in the
expression for k. Andrews (1976b) used a different way of
plotting the condition for rupture propagation and for super-
shear speeds. It can easily be shown that his diagram can be
reduced to a single nondimensional number k.

4.2.2 Sustained Rupture Propagation

To characterize the conditions for sustained rupture propaga-
tion in a heterogeneous initial stress field, we consider a very
simple rectangular asperity model. It consists of a homo-
geneous initial stress field that contains a long asperity of width
W loaded with a longitudinal shear stress T,. The asperity is
surrounded by an infinite fault plane where stress is low, only
0.1T,, where as before T, is the peak frictional stress. At time
t =0, rupture is initiated by forcing rupture over a circular patch
of radius R >R, where R is computed from Eq. (19) using
A.=0.42. Depending on the values of T, and the width W,
rupture either grows along the asperity or stops very rapidly.
We are again in the presence of bifurcation with a critical value.
Similarly to Eq. (19), we define a nondimensional number

2 W

where we have replaced the relevant length scale W in the
denominator. We then verified numerically that ruptures stop
for low values of k¥ < k. and grow indefinitely for x > &, where
k. 1s a numerically determined bifurcation point. As shown by
Madariaga and Olsen (2000), x.=0.76 for sustained rupture
along a rectangular asperity. This value is slightly larger than
k.= 0.6 for rupture initiation, a logical result explained by the
fact that it is easier to propagate rupture on a uniformly loaded
fault than on a fault loaded along a narrow asperity. Again, for a
certain value of x> 1.3x,, rupture grows initially at very high
speeds and then jumps to a speed higher than the shear-wave
velocity.

Color Plate 4, part (a) shows rupture propagation along the
long rectangular asperity for three values of «. Left and right
panels show simultaneous snapshots of shear stress and slip.
The top row shows snapshots for x < k.. Rupture in this case
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starts near the asperity and then stops immediately. D.. is large
relative to the value of W. The second row shows stress and
slip rate when « is slightly supercritical. A rupture propagates
along the asperity at sub-shear speeds. As the rupture propa-
gates, the rupture zone extends slightly outside the asperity,
leaving an elongated final fault shape. Finally, the bottom row
shows snapshots when x is about 1.2 times critical. Now the
rupture front is running faster than the shear wave producing a
wake that spreads somewhat into the lower prestress zone.
Thus we are again in the presence of a bifurcation: It is not
enough to initiate a rupture, the stress field has to be high
enough to maintain the continued rupture propagation.

5. Dynamic Model of a Major
Earthquake: The 1992 M 7.3
Landers, California, Event

The 28 June 1992, magnitude 7.3 Landers earthquake occurred
in a remotely located area of the Mojave Desert in Southern
California (Figure 8), but the rupture process has been exten-
sively studied due to its large size, proximity to the southern
California metropolitan areas, and wide coverage by seismic
instruments. Several studies inverted the rupture history of this
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event from a combination of seismograms, geodetic and geologic
data, and the overall kinematics of the seismic rupture are
thought to be understood (Campillo and Archuleta, 1993;
Abercrombie and Mori, 1994; Cohee and Beroza, 1994; Dreger,
1994; Wald and Heaton, 1994; Cotton and Campillo, 1995a),
making the Landers earthquake an appropriate test case for
dynamic modeling. The work described in this section is a
summary of work by Olsen et al. (1997) and Peyrat et al. (2001).

5.1 Estimation of Initial Stress and
Frictional Parameters

The fault that ruptured during the Landers earthquake can be
divided into three segments: The Landers/Johnson Valley
(LJV) segment to the southeast where the hypocenter was
located; the Homestead Valley (HV) segment in the central part
of the fault; and the Camp Rock/Emerson (CRE) segment to the
northwest. For the numerical simulations, the three segments of
the fault were replaced by a single 78 km long vertical fault
plane extending from the surface down to 15 km depth. A free-
surface boundary condition was imposed at the top of the grid.

The most important parameter required for dynamic mod-
eling is the initial stress on the fault before rupture starts; all
other observables of the seismic rupture, including the motion
of the rupture front, are determined by the friction law. An
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FIGURE 8 Topographic map showing the surface rupture from the 1992 Landers
earthquake. The fault trace is depicted by the black lines.
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initial stress field was estimated by Olsen et al. (1997) from
the slip distribution inverted by Wald and Heaton (1994).
They simply computed the stress drop from the slip distribu-
tion; the initial stress was the sum of a stress baseline of 5 MPa
plus the stress drop reversed in sign. The method of computing
the initial stress field is similar to that introduced by Mikumo
and Miyatake (1995) and used by Beroza and Mikumo (1996)
and Bouchon (1997) to study the stress field of several
earthquakes in California.

The simple slip weakening friction law discussed in an
earlier section was used in the dynamic simulations. Slip was
assumed to occur only along the long dimension of the fault,
and it was found that a constant yield stress level of 12 MPa
and D.=0.80m produced a total rupture time and final slip
distribution in agreement with kinematic inversion results.
Before the simulation the initial stress T® on the fault was
constrained to values just below the specified yield level
(12MPa) in order to prevent rupture starting from several
locations. The same regional 1D model of velocities and
densities as in Wald and Heaton (1994) was used in the
numerical simulation. Rupture was forced to initiate by low-
ering the yield stress in a small patch of radius 1 km inside a
high-stress region near the hypocenter toward the southern end
of the LJV fault strand, as inferred from the kinematic results.

5.2 Rupture Propagationina
Heterogeneous Stress Field

Olsen et al. (1997) presented the first study on spontaneous
rupture propagation in a realistic heterogeneous stress field on
the Landers fault. They found that the rupture propagated along
a complex path, predominantly breaking patches of high stress
and almost completely avoiding areas of low or negative stress.
The general rupture pulse resembles the fast, almost instanta-
neous self-healing phase with a finite slip duration proposed by
Heaton (1990) for large earthquakes. However, the healing of
the pulse was controlled by the local length scale of stress
distribution, and not by slip rate weakening or fault width.
Olsen et al. (1997) also succeeded in reproducing the main
features of the low-frequency ground motion for amplitude and
waveform at four strong-motion stations. These results sug-
gested that considerable new information could be obtained
about rupture dynamics through studies of spontaneous rupture
propagation in estimates of the heterogeneous stress field for
well-recorded large earthquakes.

5.3 Inversion of Strong Motion Data

In a recent dynamic inversion, Peyrat er al. (2001) used the
stress field constructed by Olsen et al. (1997) to start the
inversion of accelerograms for the initial stress field. Peyrat
et al. used the strong motion data recorded in the vicinity of
the Landers fault to invert for the details of the rupture process
by trial and error. For every initial stress distribution they
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computed the spontaneous rupture process, starting from the
same initial asperity at the southwestern end of the fault. During
the iterations, the geometry of the fault and the slip weakening
friction law did not change, so that T, = 12 MPaand D. = 0.8 m
for all the models they tested.

The preferred initial stress from the Peyrat et al. (2001)
study is shown in Color Plate 4(b), and Color Plate 3(c)
compares the rupture propagation for the dynamic model to
that for the kinematic model computed by Wald and Heaton.
In the case of the dynamic model, soon after initiation rupture
propagates slowly downward. After 7 sec it appears that the
rupture almost dies but, soon after, it suddenly accelerates
upward. It again slows down at 11sec before jumping to a
northern part of the fault and continuing onward. Finally, the
rupture finished on the shallow northwest part of the fault after
about 21 sec, in agreement with the kinematic inversion. The
rupture shows a confined band of slip propagating unilaterally
toward the northeast along the fault, as pointed out by Heaton
(1990). The finite width of the fault promotes the formation of
a pulse by confining the rupture laterally, preventing the
development of a cracklike rupture. The main differences
between the kinematic and dynamic models occur within the
first 10 sec of propagation. The slip rate peak at 5—6 sec for the
kinematic model appear later (at 9 sec) for the dynamic model.
Nevertheless, the main part of the rupture history (13—17 sec)
is very similar for both models. Part (c) of Color Plate 4 shows
the final slip distribution on the fault. The dynamic rupture
model reproduces a smooth version of the slip pattern used to
compute the initial stress distribution.

Accelerograms at the recording stations were computed
using a frequency—wavenumber summation method that is
more economical than using finite differences to propagate
waves from the source to the stations. Figure 9 shows a
comparison of the synthetic seismograms generated by the
best model of Peyrat et al. (2001). Both synthetic and observed
seismograms are low-pass filtered to frequencies below 0.5 Hz.
The main features of the low-frequency ground motion for
amplitude and waveform are reproduced by the synthetic
seismograms for the relatively stronger ground motion recor-
ded in the forward rupture direction. The fits for the back-
azimuth stations were not as good because the effects of
propagation and fault geometry are enhanced at these stations.

The dynamic rupture model of the Landers earthquake is
controlled by several friction parameters that are not measured
but that may eventually be determined by inversion of seismic
and geodetic data. For instance, the rupture speed and healing of
the fault are critically determined by the level of the yield stress
and the slip weakening distance. If the slip weakening distance
is chosen less than about 0.6-0.8 m, the rupture duration and
therefore rise times are much shorter than those obtained
from kinematic inversion (Campillo and Archuleta, 1993;
Abercrombie and Mori, 1994; Cohee and Beroza, 1994; Dreger,
1994; Wald and Heaton, 1994; Cotton and Campillo, 1995),
while larger values produce a rupture resistance that prevents
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rupture from propagating at all. While the rupture duration and
rise times are strongly related to the slip weakening distance,
the final slip distribution remains practically unchanged for slip
weakening distances that allow rupture propagation.

6. Earthquake Heterogeneity and
Dynamic Radiation

Initial models of dynamic rupture propagation (e.g., Burridge
and Knopoff, 1967; Andrews, 1976a,b) studied the frictional
instability of a uniformly loaded fault. Very rapidly it was rea-
lized that heterogeneity was an essential ingredient of seismic
ruptures and that the simple uniformly loaded faults could not
explain many significant features of seismic radiation. Two
models of heterogeneity were proposed in the late 1970s, the
“asperity” model of Kanamori and Stewart (1978), based on a
study of the Guatemalan earthquake of 1976, and the barrier
model of Das and Aki (1977b) and Aki (1979). The differences
between the two models were discussed in some detail by
Madariaga (1979), who pointed out that it would be very difficult
to distinguish between these two models from purely seismic
observations. This remains true today. In the asperity model, it is
assumed that the initial stress field is very heterogeneous because
previous events have left the fault in a very complex state of
stress. In the barrier model, heterogeneity is produced by rapid
changes in rupture resistance so that an earthquake would leave
certain patches of the fault (barriers) unbroken. It was quickly
realized that barriers and asperities were necessary in order to
maintain a certain degree of heterogeneity on the fault plane that
could explain the properties of high-frequency seismic wave
radiation, and to leave highly stressed patches that would be the
sites of aftershocks and future earthquakes. Andrews (1980,
1981) went much further and suggested that this heterogeneity
was absolutely necessary, otherwise earthquakes would become
dominated by very low frequencies and could not produce
observed accelerograms. Heterogeneity was studied in many
ways by a number of authors during the early 1980s (e.g., Day,
1982b; Das, 1980; Kostrov and Das, 1989).

6.1 Generation of Cracks Versus
Self-Healing Pulses

Heaton (1990) noticed that the instantaneous rupture area for
large earthquakes is seldom larger than about 10% of the total
fault area, so that seismic ruptures look more like a patch
propagating across the fault compared to Kostrov’s (1964)
model of a self-similar shear crack. Heaton explained the
pulselike behavior with a self-healing mechanism due to
velocity weakening friction. Similar pulselike behavior has
been reported from modeling a rectangular fault with a large
aspect ratio due to stopping phases from the edges of the fault
(Day, 1982a; Cotton and Campillo, 1995a). More recently,
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Beroza and Mikumo (1996), Ide and Takeo (1997), and Day
et al. (1998) have shown that short rupture pulses may also be
generated by the so-called geometrical constraint in which
these short durations may simply reflect the stress heterogeneity
on the fault. If stress is concentrated in small areas of the fault,
the rupture process will reflect this heterogeneity and produce
rupture pulses controlled by the size of these stress asperities.

Zheng and Rice (1998) characterized the conditions for
generation of self-healing pulses in terms of the steady-state
strength relative to the background stress in a velocity-weak-
ening regime. They found that pulselike rupture occurs only
for rather restrictive conditions of rate dependence. They
furthermore suggested that the reason why most earthquakes
fail to grow to a large size may be that the crustal stresses are
too low on average to allow cracklike modes and continued
rupture. In other words, most earthquakes fail to maintain
rupture propagation because the driving stresses are too low
and stop before producing a significant moment release.

6.2 Memory of Earthquake Rupture:
Recurrent Events on a Fault

In this chapter we have concentrated our attention on the study of
a single event without concern about earthquake recurrence or
earthquake distributions. One of the main results obtained by
Carlson and Langer (1989) is that for certain friction laws stress
heterogeneity will be self-sustained, i.e., every event initiates in a
complex state and leaves the fault loaded with a complex stress
distribution. Cochard and Madariaga (1996) showed that this
mechanism could also occur on two-dimensional shear faults but
for a limited set of rate dependent friction laws. Only if healing
were fast enough could heterogeneity develop spontaneously.
The mechanism studied by Cochard and Madariaga (1996)
produced heterogeneity but could not explain the Gutenberg—
Richter distribution of events as a function of moment (or
moment magnitude).

Nielsen et al. (2000) found that recurrent ruptures for a
single planar fault with aspect ratio close to 1 and sufficiently
low rupture resistance tended to produce a periodic cycle,
always breaking the entire fault. However, if the dimension
of the fault was increased with the same aspect ratio and
friction, the regime became more complex and periodicity was
lost. In the case of a long and narrow fault, i.e., L/W > 10, the
pulse width /, ~ W was smaller than the maximum fault length
L, and a degree of complexity was observed. Indeed, after a
transient regime affected by the initial conditions, the fault
settled into a recurrence pattern in which no rupture would
reach the entire length of the fault, and a wide spectrum of
event sizes was produced as opposed to the periodic cycle of
fault-wide events observed for faults with aspect ratio close to
1. In other words, the recurrent earthquakes on the fault would
generate an inherent complexity of the stress field that com-
pletely controlled the rupture conditions for the following
events.



18

6.3 Signature of Friction in Radiated Waves

Is it possible directly to retrieve information about friction
from strong motion data? To answer this important question
we need to know how (or whether) the friction manifests a
signature in the radiated wave field from earthquake rupture.
Ide and Takeo (1997) estimated a depth-varying slip weak-
ening distance of 1 m near the surface and 0.5 m at depth for
the 1995 Kobe earthquake using inverse techniques. Olsen
et al. (1997) found that a slip weakening distance of 0.8 m and
a yield stress of 12MPa generated rupture durations and
seismograms in good agreement with kinematic inversion
results and data, respectively, for the 1992 Landers earth-
quake. On the other hand, Guatteri and Spudich (1998b)
concluded that there is a strong trade-off between peak stress
and slip weakening distances. Actually, Peyrat et al. (2001)
found that the energy release rate G ~T, D, a product of the
peak stress and the slip weakening distance, is all that can be
retrieved from seismic data.

If indeed the signature of friction is detectable in strong-
motion data, the retrieval of such information will be possible
only when data are available in sufficient quality and quantity.
In this case, an estimate of friction using inverse methods may
be feasible. We expect that this will be an important topic of
future research.

7. Conclusions

Thanks to improvements in speed and memory capacity of
parallel computers it is no longer a problem to model the pro-
pagation of seismic ruptures along a fault, or a fault system,
embedded in an elastic 3D medium. The enhanced computa-
tional power can be used to improve classical models in order to
determine the grid size necessary to do reproducible and stable
earthquake simulations. We show that the conditions are that
the slip-weakening zone near the rupture front must be sampled
by at least six grid points. This is clearly a limiting condition,
but it is already possible to model earthquakes of magnitudes
from 6 to 7.5 without unsurmountable problems.

Recent inversions of earthquake slip distributions using
kinematic source models have found that very complex source
distributions require an extensive reappraisal of classical
source models that were mostly based on Kostrov’s model of a
self-similar circular crack. Ruptures in a fault with a very
heterogeneous load follow very tortuous rupture paths. While
on the mean the rupture propagates at a sub-shear speed from
one end of the fault to the other, the rupture front may wander
in any direction, following the areas of strong stress con-
centration and avoiding those areas with low stress or high
rupture resistance. If this view of earthquake rupture is con-
firmed by future observations (we believe it will be) then many
current arguments about earthquake complexity, narrow rup-
ture pulses, earthquake distributions, etc., will be solved and

Madariaga and Olsen

we may concentrate on the interesting problem of determining
which features of friction control stress complexity on the fault
under all circumstances.
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