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On the Self-Healing Fracture Mode

by S. Nielsen and R. Madariaga

Abstract We present the analytical solution for a fundamental fracture mode in
the form of a self-similar, self-healing pulse. The existence of such a fracture mode
was strongly suggested by recent numerical simulations of seismic ruptures but, to
our knowledge, no formal proof of their origin has been proposed yet. We present a
two-dimensional, anti-plane solution for fixed rupture and healing speeds that sat-
isfies both the wave equation and crack boundary conditions for a simple Coulomb
friction law in the absence of any rate or state dependence. This solution is an alter-
native to the classic self-similar crack solution by Kostrov. In practice, the self-
healing impulsive mode rather than the expanding crack mode is selected depending
on details of fracture initiation and is thereafter self-maintained. We discuss stress
concentration, fracture energy, and rupture velocity and compare them to the case of
a crack. The analytical study is complemented by various numerical examples and
comparisons. On more general grounds, we argue that an infinity of marginally stable
fracture modes may exist in addition to the crack solution or the impulsive fracture
described here.

Introduction

As initially reported by Heaton (1990), many earth-
quakes seem to be produced by the propagation of relatively
narrow rupture pulses (see Beroza and Mikumo [1996] and
references therein for several examples of short slip dura-
tion). Since then, self-healing slip pulses have also been re-
ported in laboratory experiments (Rubio and Galeano, 1994;
Anoshehpoor and Brune, 1999; Baumberger et al., 2001).
These self-healing ruptures do not agree with the predictions
of the more classical rupture model of Kostrov (1964b) in
which slip continues way behind the rupture front until stop-
ping phases arrive from the edges of the fault.

In a number of investigations on the possible origins of
self-healing rupture pulses, early healing of the fault has
been attributed to the presence of strong rate weakening in
the friction law, as seen, for example, in Heaton (1990),
Cochard and Madariaga (1994), and Madariaga and Cochard
(1994) and more recently in Zheng and Rice (1998).

Other possible origins of narrow rupture pulses have
been proposed; for instance they appear in rupture propa-
gation between dissimilar materials but only in the plane
mode (Weertman, 1980; Ben-Zion and Andrews, 1998; An-
oshehpoor and Brune, 1999; Cochard and Rice, 2000). In all
these models pulselike rupture propagation is a consequence
of the material properties of the media surrounding the faults
and/or the frictional properties of the fault itself.

In addition, it appears from a number of numerical ex-
periments that early healing can accompany the stopping
phase generated at a barrier, even in the absence of any par-
ticular frictional property or material contrast. The first to

illustrate this mechanism was probably Day (1982), in a 3D
numerical simulation where slip was blocked outside a rec-
tangular patch. Hints of a stable, persistently propagating
pulse solution were also given in the work of Johnson (1990,
1992) for a case where a crack was blocked by a barrier at
one end; similar examples were subsequently reported by
Perrin et al. (1995). Finally, short fracture pulses can be
generated in numerical models by inhomogeneity in the
stress distributions, as argued by Beroza and Mikumo
(1996).

Clear evidence of persistent, self-similar, and self-
healing pulses was found in a number of numerical experi-
ments by Nielsen and Carlson (2000). They showed that if
the healing front was initiated at the start of rupture, healing
could propagate behind the rupture and would self-maintain
under a wide variety of stress and friction parameters, even
at negligible levels of rate weakening in the friction. The
numerical results reported by Nielsen and Carlson (2000)
and previous authors pose the question of whether self-
healing solutions may exist and propagate spontaneously un-
der homogeneous stress conditions and classical Coulomb
friction, as in the case of Kostrov’s expanding crack (Kos-
trov, 1964b). In other words, do self-similar solutions other
than that of Kostrov exist, and if they exist can they explain
the numerical results? It seems that such solutions were not
found in previous work on self-similar crack problems (see
Willis [1973] and references therein for a discussion of the
self-similar solutions known in the early 1970s).

Self-healing rupture pulses were investigated very early
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by Yoffe (1951), who found a steady state solution for a
fixed width, propagating pulse in mode I (opening mode).
The pulse induced only a transient opening followed by clos-
ing, so that no net displacement was left in the wake of
healing. Broberg (1978) later extended the solution to a
mode II, shear fracture pulse, followed by Freund (1979),
who proposed an improved solution where an undesirable
stress concentration was eliminated from the healing front,
in agreement with later works by Broberg (1999). In the
shear models, slip is not supposed to reverse so that a final,
net displacement is left behind the pulse, at odds with
Yoffe’s transient opening model. To our knowledge Bro-
berg’s work has not been cited in relation with the origin of
self-healing rupture pulses, although that developed by
Freund (1979) was discussed in Heaton (1990), Perrin et al.
(1995), and Zheng and Rice (1998). The Freund (1979)
model, as emphasized in the study of Perrin et al. (1995),
requires that frictional strength be recovered rapidly after the
onset of healing, a feature also implicitly present in the so-
lution presented here.

While the pulse solution was acknowledged for the
steady regime, on an analytical basis, few arguments were
made in the framework of self-similarity in favor of or
against the uniqueness of the cracklike Kostrov (1964b) so-
lution. In this article we establish that self-healing, self-
similar solutions exist at least for 2D antiplane faults, for the
same problem as studied by Kostrov. Particular attention is
paid to the analysis of singularities, to the stress concentra-
tion, and to energetic considerations. Differences and simi-
larities with the Kostrov solution are discussed. We further
argue that since the Kostrov solution is not unique, it is pos-
sible that an infinity of exotic fracture solutions may exist
that satisfy the elastic wave equation, although some may be
more likely to develop than others.

We complement our analytical study with a number of
numerical simulations in both 2D and 3D, in order to illus-
trate practically the triggering of the pulselike solution. Once
started, it will be maintained even without rate weakening
in the friction for 2D cases. However, we note that for 3D
elastic cases with elliptical or circular expansion, the healing
front is apparently unable to propagate spontaneously into
regions with no rate weakening.

The question of the selection of the velocity for the heal-
ing front is discussed. Although we have so far been unable
to find a theoretical explanation, the numerical examples dis-
cussed suggest a lower bound for the the healing front ve-
locity. One difficulty is that in the absence of rate weakening,
no controlling dimensionless parameter can be defined, as
was done by Zheng and Rice (1998) or by Nielsen and Carl-
son (2000).

Laplace Transformed Solution to Self-Similar
Antiplane Faults

We consider antiplane particle motion in 2D, that is,
only the single component u � uy of displacement is non-

zero inside the 2D plane (O, x, z). Let the fault plane lie
along the x axis, at z � 0. Let the homogenous elastic mod-
ulus, density, and shear velocity be l, q and b, respectively.
The elastic wave equation in this case reduces to

�2b � u(x, z, t) � � u(x, z, t) � � u(x, z, t). (1)tt xx zz

Let v(x, t) � �tu(x, t) be the y component of particle velocity
and V(x, t) be the slip rate between the two sides of the fault,
such that V (x, t) � v(x, 0�, t) � v(x, 0�, t). Given the
symmetry of the problem, v is an odd function of z, so that
we can write

1�v(x, 0 , t) � V(x, t). (2)
2

We shall seek solutions of the wave equation (equation 1)
that satisfy the general slip velocity boundary condition
(equation 2).

Let us define the double Laplace transform Lxt{v(x, z,
t)} → ṽ(p, s, z) as

� ��
�s(t�px)ṽ(p, s, z) � dt dx v(x, z, t) e , (3)� �

0 ��

with inverse transform:

1 1 �s(t�px)v(x, z, t) � ds dp s ṽ(p, s, z) e , (4)� �2pi C 2pi Cs p

where Cs and Cp are appropriate integration contours in the
complex plane, also known as Bromwich contours, that we
shall define later for our specific case.

We make the assumption that slip velocity V is a general
self-similar function, as in the case of the Kostrov crack.
Self-similarity of velocity v means that it can be rewritten
as a homogeneous function of degree n, v(x, z, t) � tn v(x/
t, z/t). In our case, divergence of velocity at t � � or at the
origin t � 0 is unacceptable so that the only possible choice
for v is a self-similar function of degree n � 0. This also
applies to the slip rate V (Fig. 1), which reduces to a function
of a single variable, that is,

V(x, t) � V(x/t). (5)

It can be shown (see Willis [1973]) that the Laplace trans-
form of a self-similar function of order zero can be written
as

�2˜ ˜V(p, s) � s V(p), (6)

where Ṽ denotes the Laplace transforms of slip rate [obvi-
ously, Ṽ(p, s) and Ṽ(p) are not the same function, but we
retain the same notation for simplicity]. In the Laplace do-
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main, solutions of the wave equation (1) with boundary con-
ditions (2) have the general form

1 �sq(p)z˜ṽ(p, s, z) � V(p, s) e , (7)
2

where the tilde denotes the Laplace transform of particle
velocity v and we introduced the vertical slowness q(p) �

(if p is normalized by the shear-wave velocity b;21 � p�
otherwise q(p) � ).�2 2b � p�

Let us compute now the transform of fault traction (p,r̃
s, z) � Lxt{r(x, z, t)}, where

r(x, z, t) � r (x, z, t) � l � u(x, y, z),yz z

and let us use the property that derivation with respect to t
yields a multiplication by s in the Laplace domain. We get

�1r̃(p, s, z) � ls � ṽ(p, s, z).z

Upon replacement of ṽ according to equation (7), we obtain

l �sq(p)z˜r̃(p, s, z) � � q(p)V(p, s) e ,
2

which on the fault plane reduces to

l ˜r̃(p, s, 0) � � q(p) V(p, s). (8)
2

Equation (8) states that fault stress in the Laplace domain is
simply the slip rate times lq(p)/2. We shall take advantage
of such a property later, in order to derive the stress field
associated to a given form of slip rate. Once the self-similar
function (6) is defined, equations (3) and (4) can be used to

compute velocities and stresses everywhere in the elastic
medium by the Cagniard–de Hoop method.

Kostrov’s Self-Similar Crack

Let us begin by recalling some results that were ob-
tained by Kostrov for the self-similar crack. While Kostrov
used the methods of Smirnov and Sobolev, we prefer to use
the Cagniard–de Hoop technique that is better known in seis-
mology. We start by writing the inverse Laplace transform
of slip rate and stress on the fault, according to equations
(4), (6), and (8):

1 1 �1 �s(t�px)˜V(t/x) � dp ds s V(p) e , (9)� �2pi C 2pi Cp s

l1 �1r(x, 0, t) � � dp ds s� �2pi C 4pi Cp s (10)
�s(t�px)˜q(p)V(p) e .

In the case of a crack expanding at constant velocity with a
constant stress level imposed inside the actively slipping re-
gion, Kostrov (1964b) proposed the following self-similar
slip function:

A
Ṽ(p) � , (11)�2 2 3/2m (m � p )r r

where A is a constant to be computed, whereas �r � vr /b is
the dimensionless rupture velocity and p the dimensionless
slowness (in a sense equivalent to bt/x).

Let us remark that for V(x/t) and r(x, z, t) to be real, the
singularities of Ṽ(p) must be on the real p line. Furthermore,
the exponent of the denominator is not an integer, so that
we have a branch point at p � ; another branch point at�1mr

p � 1 comes from the slowness q(p) � in equa-21 � p�
tion (10). Thus we introduce a branch cut along the real axis,
for 1 � p � in the case of equation (10) and for p ��1mr

in the case of equation (9). Following Cagniard–de�1mr

Hoop, the contour Cp is now folded onto the real line above
and below the singularity of Ṽ(p). Just above the cuts
Im[q(p)] � 0 and Im[ ] � 0.�2 2m � p� r

Since p is real on the new contour, the Laplace trans-
form of the Dirac function d(t �px) is the constant 1, and
division by s in the Laplace domain is equivalent to a time
integration, we can write by inspection that

1 �1 �s(t�px)ds s e � H(t � px). (12)�2pi Cs

By noticing that Ṽ(p) is imaginary in the domain of interest,
we obtain, after replacing equation (12) into equations (9)
and (10),

0 x x
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Figure 1. Slip-rate function of t/x, for the unilat-
eral, self-similar pulse. In the example the rupture and
healing velocities are vr � 2b/3 and vh � b/3 [V is
normalized by lb/(Dr)].
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t/x1 ˜V(t/x) � dp Im [V(p)], (13)�p 0

t/xl ˜r(x, 0, t) � � dp Im [q(p) V(p)]. (14)�2p 0

These expressions were derived by Kostrov (1964b) with a
different technique, essentially by inspection using the
Smirnov–Sobolev theory. Integration of equation (13) yields
the well-known slip-rate profile:

A v t/xrV(x, t) � Re (15)
2 2 �2p b � �t /x � v� r

after substituting �r → vr /b; p → bt/x. Similarly, integration
of equation (14) yields stress distribution on the crack, for
vr � x/t � 1/b:

�2 2 2b �t /x�A l t
r(x, 0, t) � Re vr 2 2 �22p b x� �t /x � v� r

2 2A l bt v bt vr r� Im F arcsin , �E arcsin , , (16)2 2� � � �� �2p b x b x b

where F(�, k) and E(�, k) are the incomplete elliptical in-
tegrals of the first and second kind, respectively (we use the
notation proposed in Gradshteyn and Ryzhik [1965]). We
remark that for bt � x, that is, after the arrival of the S wave,
arcsin bt/x is purely imaginary.

Inside the crack, for t/x � , the real part of the first�1vr

term is zero, while the elliptic integrals yield a constant (see
Appendix C). Such a constant corresponds to the stress drop,
and we can compute the value of the constant A for a given
couple (Dr, vr) by equating equation (16) to the stress drop
Dr:

�12 2bDr b v b vr rA � 2p Im F arcsin , � E arcsin , ,2 2� � � �� �l v b v br r

where the fault impedance l/2b has been combined with the
dimensionless amplitude term from equation (16). This ex-
pression can be simplified using the relation from Appendix
C,

Dr 1
A � 2p b , (17)2l E(c )

where E(c2) is the complete elliptical function of the second
kind with c � .2 21 � v /b� r

Generalization of the Kostrov Solution

The study of the Kostrov solution shows that if one can
find any function of p that is real on the real p axis for p �

, this is a legitimate solution to the crack problem. In�1vr

addition, if one wants to have a finite energy release at the
crack front and no additional dislocation sources, we must
choose

p(p)
Ṽ(p) � ,�n �n 3/2(m �p )r

where p(p) is a complex function and n � 1 or n � 2. In
the case of the Kostrov crack, p(p) is a constant and n � 2,
so that the solution is symmetric with respect to x � 0. Finite
energy release is provided when the the limit of stress in the
unbroken vicinity of the fracture tip has the form r�1/2,
where r � x � tvr is distance to the crack tip. p(p) may
have any number of branch cuts along the real axis for p �

. Thus Kostrov’s solution is just the simplest of the p(p)�1vr

functions: a constant A. In order to find the appropriate func-
tion p(p) for a self-healing slip function, we proceed as fol-
lows. Upon inspection of numerical simulations, slip-rate
functions of self-healing pulses are similar to the singular
crack solution at fracture onset, but they appear to be rapidly
tapered toward zero near the trailing front where healing
occurs. Such features indicate that an expression of V(x, t)
for the pulse may be close to that of the self-similar crack,
but with an extra term accounting for the trailing edge.

Models of self-healing, propagating rupture pulses of
constant width (steady state solution), were presented by
Yoffe (1951), Broberg (1978, 1999), and Freund (1979).
However, in contrast with previous authors, we seek here
solutions of self-similar form, in which a nucleation point
and an initial time are defined.

Yoffe’s solution described a mode I crack model where
the propagating perturbation was opening, then closing
again, in such a way so that no net opening was left in the
wake of the crack. Such a feature required a stress singularity
at both crack ends. However in the solution presented by
Freund (1979) for a mode II (shear) crack, the slip velocity
never reverses, so that a net displacement is retained in the
wake of the healing. Such a feature produces a smooth heal-
ing front with no stress singularity, at odds with the mode
II solution of Broberg (1978) but in agreement with later
works (Broberg, 1999). We note that the fixed width prop-
agating pulse of Freund (1979) and Broberg (1999), V(x, t)
� A , has a square root decay of(x � h � t v )/(t v � x)� r r

slip rate toward zero in the trailing edge of the fracture (h is
the fixed width of the pulse; A � vr Dr/(l is a2 21 � v /b )� r

constant amplitude factor). As we will see later, the square
root decay is also present in self-similar, self-healing solu-
tions.

We point out that even for self-healing pulses, a finite
energy should be absorbed at the rupture front through the
development of a stress concentration, in agreement with
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classical crack propagation models. However, no energy
flow should take place at the healing front, so that we do not
expect any stress singularity there.

In prospect, we can anticipate that the solution should
have the following properties:

1. A stress singularity of the form (x � t vr)
–1/2 in the limit

close to the crack tip because of the finite energy require-
ment. This requires the presence of a term in (pn� )–3/2n�r

in the Fourier transform expression, yielding an inverse
square root term once integrated.

2. In practice, only lower powers of p yield solutions of
acceptable regularity at the origin. If symmetry with re-
spect to the origin is desired, the function p(p) should be
even in p. On the other hand, asymmetric solutions with
uneven powers of p are not excluded a priori, for ex-
ample, in the case of unilateral propagation.

3. Velocity [Ṽ(p) integrated] should taper to zero without
discontinuity (in order to meet the energy neutral require-
ment) at the time of healing; this could be well modeled
by a ( )–1/2 term in the polynomial, where �h ��n n� � ph

vh/b would be the normalized healing front velocity.

On those premises we can propose a function p(p) and
test whether the boundary conditions in stress are met, fol-
lowing a trial-and-error approach as that of Burridge and
Willis (1969), who found the solution for the elliptical, self-
similar crack.

The Unilateral Propagating Pulse

We will first discuss the unilateral fracture pulse, the
case with most practical implications, both physically mean-
ingful and relatively simple mathematically. In this case, we
opt for a Fourier transform where terms in p1/2 are involved
in such a way that any negative value of p yields a purely
imaginary slip rate:

�1 �1� (� � � )� h h r
Ṽ(p) � �A . (18)

�1 �1 3/2� � p (� � p)� h r

The factor (�h
�1 � �r

�1) was introduced to simplify the�� h

resulting velocity expression and to regularize it in the limit
vh → 0. Noting that the new expression for Ṽ(p) introduces
a new singularity and branch point at p � , after a slight�1�h

modification of the branch cuts, we remark that an integra-
tion contour identical to that of the crack can be applied.
Reverse transform of Ṽ(p) by Cagniard–de Hoop, following
a contour going along the real axis in the upper right quarter
plane, yields, after some algebra,

x � t v� ht A vrV � , (19)� � �x p b t v � x� r

where we have reintroduced the scaling with respect to
shear-wave speed b by substituting

� → v /b,r r

� → v /b,h h

p → bt/x .

As usual, the amplitude term A scaling slip rate to the stress
drop is to be evaluated once the stress value is derived in
quite the same way as for the Kostrov crack (equation 17);
note that in our definition A has the dimensions of a velocity.
An example of the resulting curve is represented in equation
(19).

By construction this slip-rate function is self-similar; it
tapers to zero when x → vh from above, it is singular when
x → t vr from below, and it is zero both before fracture and
after healing. Near the rupture front as x → t vr , Ṽ(t/x) be-
haves just like the Kostrov slip-rate function (equation 15).
Indeed, we show further that in the region just behind the
rupture front, we obtain the same limit.

We can now verify that stress drop is constant inside
the actively slipping region, in agreement with the boundary
conditions prescribed. Introducing transform (18) into equa-
tion (14), after integration and some algebra, a closed ex-
pression for the stress can be obtained as a sum of several
terms including elliptic integrals, that is, the real part of

t Al b x�tb tv �xh
r � Re 2 � 2� � � �� � � �x 2pb v x�tb x�tvr r

vh1 � bv� r� �vr x�tb f
� 4 F arcsin k ,�� � � �� �tb�x k(b�v )(b � v )� h r

1 x�tb f
� P , arcsin k ,�� � � ���k tb�x k

(b � v ) (b � v ) x�tb fh r
� 2 E arcsin k , ,�� � �� �� �b v tb�x kr

(20)

b � v b � vr hwhere k � , f � ,
b � v b � vr h

and F, E, and P refer to elliptic integrals of the first, second,
and third kind, respectively (see Appendix C). This function
is plotted in Figure 2 as a function of time and in Figure 3
as a function of x.

We remark that the stress effectively drops to a constant
value, which can be chosen as the zero reference state, in
the actively sliding area vh � x/t � vr, for all variable terms
become purely imaginary in that interval. Before the arrival
of waves (t � x/b), too, all terms become imaginary except
for the integral terms, which reduce to constant, complete
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Figure 2. Stress as a function of t/x, for the uni-
lateral, self-similar pulse. In the example the rupture
and healing velocities are vr � 2b/3 and vh � b/3.
Note that on the healed portion, the stress continu-
ously increases, as long as the pulse continues to
propagate, eventually reaching and surpassing the ini-
tial level. The persistence of such an increase toward
the limit t/x → � corresponds to a stress singularity
located at x � 0, represented in Figure 3. The incerpt
represents the stress trend on a point along the neg-
ative x axis (unbroken side), with an increase slowly
starting at the arrival of the first shear waves from the
nucleation point.

elliptic integrals. The difference between stress in the two
intervals corresponds to the constant stress drop inside the
faulted zone, so that by equating it to Dr, it is possible to
obtain the normalized amplitude A in the form

vh1 � b v� r� �vbDr r f 1 f
A � 2p 4 F � P ,� � � �� �l k k k� (b�v ) (b�v )� h r

(b � v ) (b � v ) fh r
� 2 E .� �� bv k �r

(21)

The E, F, and P functions now represent complete elliptic
integrals.

The stress expression has two remarkable features. First,
the singularity right before rupture yields the correct behav-
ior in 1/ ; second, there is also a singularity at thex � tv� r

origin (in the limit x/t → 0). Such a feature is due to the
nonsymmetry of the unilateral propagation. In the limit
where the healing front does not propagate, the singularity
at the origin corresponds to the arrested edge of a unilateral
propagating crack. In the case of a propagating healing front,
on the other hand, it is linked to the sudden rupture in the
slope of the slip function at x � 0. Upon reflection, it is
obvious that the unbroken semiaxis (x � 0) remains at zero
slip on its whole length, while in the healed portion of the
broken side (0 � x � tvr) we expect a constant, positive

slope, as a direct consequence of self-similarity and a rise
time proportional to position.

This is confirmed indeed if we compute the slip function
by simple integration of V(x, t) with respect to t, assuming
a fixed x, to retain the real part of

tv �x x�tv� �r hA vru(x, t) � 2 �p b vr

A v (v � v ) xr r h
�2 (22)�p b 2v v v�r h r

�2t v v �x(v �v ) ph r r harctan � ,� � � �22 t v � x x�t v v v� � �r h h r

which is illustrated in Figure 3. Slip shows the expected,
intuitive linear dependence in x: since the pulse width is zero
at the origin and expands linearly with x, the slip that it
leaves in its wake should also increase linearly with x. More-
over, it is obvious that slip remains constant at a given po-
sition x after healing. There is a striking feature of the slip,
inside the active area, when represented as a function of
position: one would expect that it reaches a maximum at the
queue of the pulse, right next to the healing front. On the
contrary, it does not decrease monotonously as a function of
position, but reverses slope slightly above t vh, which is sur-
prising at first sight. However, this representation does not
imply that slip rate becomes negative at any time. Indeed we
have, at any given time, a series of points at different stages
of evolution inside the pulse. The slope inversion shortly
above t vh is in fact due to the shorter pulse duration for
inner points. Slip as a function of time, position fixed, shows
a simpler, monotonously increasing trend from rupture time
until it reaches its maximum value, then heals (Fig. 4).

The slip-rate solution is strikingly similar to that for
the propagating pulse of fixed width h, V(x, t) �
A (Broberg, 1978, 1999;(x � h � t v )/(t v � x)� r r

Freund, 1979). In fact the two solutions are exactly super-
imposable, at any fixed time t, by substituting t(vr � vh) →
h. Further, we can point out that the steady state solution is
a self-similar solution in the limit where healing and rupture
fronts become parallel, that is, vh → vr .

In synthesis, we have found a self-healing, self-similar
solution with classical boundary conditions; the resulting ve-
locity, stress, and displacement functions are represented in
Figure 3 as a function of position, at an arbitrary given time
t, for the case vr � 2/3b, vh � 1/3b.

In Appendices A and B we propose two more solutions,
the bilateral pulse and the antisymmetric pulse, essentially
as curiosities of limited practical interest, but also as useful
illustrations of the potential existence of many more solu-
tions.

Properties in the Vicinity of Fracture Front

We can determine now the behavior of our solutions
near the rupture front when t → x/vr. As we explained earlier,
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Figure 3. Slip rate (top), stress (middle), and slip
(bottom) as a function of position, at fixed time t
(same normalization and velocity parameters as in
Fig. 1). See text for further details.

Figure 4. Slip as a function of time (top). The time
axis and the slip both scale with the position of the
fixed observation point x. In this figure, slip is in-
tended as twice the displacement, that is, U �
u|z�0� � u|z�0�.

we normalized the slip-rate functions such that they had the
same behavior near the rupture front. We find from equation
(19) that the slip-rate field behaves like

v t� r2A v vr hlim V(x/t) � � .�p b bx↑v t v t � xr � r

Similarly, just ahead of the rupture front the stress field is,
from the singular terms in equation (20),

2 tv� rlA v v vr h rlim r(x, 0, t) � � 1 � ,2� �bp b b bx↓v t x � tvr � r

which is the same as that for the crack, except for the mul-
tiplying constant terms. In the following we will assume that
the stress drop is the same in the freely slipping areas and
we will refer all our results to stress drop. The stress outside
the crack is given by the singular terms in the expressions
for stress. We write the stress singularity in the usual nota-
tion,

1 1
r(x, 0, t) � K ,III

2p x � v t� � r

where KIII is the stress intensity factor for mode III, antiplane
shear. For the Kostrov model we get from equation (16)

c
K � p Dr v t ,� �III r 2E(c )

where E is the complete elliptical integral of argument c2,
where

2 2c � 1 � v /b .� r

This result is in full agreement with the result of Broberg
(1999). For the self-healing pulse we get from equation (20)

b vhK � 2A 2p 1 � v tc ,� �III r� �v vr r

where A is given by equation (21).
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Figure 5. Energy flux � at the crack tip as a func-
tion of rupture velocity vr. The dotted curve �k rep-
resents the case of the Kostrov crack (no healing); the
solid curves represent self-healing pulses at four dif-
ferent healing rates (vh � 0vr, 0.25vr, 0.5vr, and
0.75vr). Note that all solutions converge in the limit
vr → b: this means that when the fracture is propa-
gating fast, the tip does not see what happens back-
ward, so that in the limit vr → b all models are equiv-
alent. Moreover, note that when vh and vr coincide,
the energy flux vanishes, as a direct consequence of
the slipping area tending to zero, with the obvious
exception of vh � 0. In the case of a pulse, the energy
flux does not decrease monotonously with rupture ve-
locity; this feature explains why it is much easier to
stop a pulse than a crack (see text for further expla-
nations). All � values are normalized by the value
�0 � �k, that is, the energy flux for the cracklimvrF0i

at negligible rupture velocity.

Finally we can compute the energy flow into the rupture
front, using the standard definition (Broberg, 1999):

2K 1III� � .
2l c

Although not obvious from these expressions, the KIII and
� expressions for the crack and the pulse share great simi-
larities; in particular, when the rupture velocity approaches
the shear-wave speed, they converge toward the same limit,
as illustrated graphically (Fig. 5). Furthermore, at vanishing
small rupture velocity, the case vh � 0 has exactly half the
energy flow of a crack; indeed this situation corresponds to
two quasi-static cracks, where one is twice as large as the
other.

For the same stress drop Dr in the broken area between
the rupture and the healing front, and for the same rupture
speed vr, the energy release rate decreases as vh increases.
Figure 5 compares the behavior of the energy release rate �
at four different healing rates with the energy flow for Kos-
trov’s solution (dotted line). This figure illustrates a funda-
mental difference between crack and pulselike ruptures: in-
deed, in the latter case � does not decrease monotonously
with rupture velocity vr . There is a critical limit below which
energy flux decreases as the rupture slows down, so that the
rupture process will become unstable and rapidly stop as
soon as velocity falls below such limit. The opposite occurs
in the case of the crack, where rupture slowness is always
compensated by an increase in the energy flux (note that the
same observation holds for the behavior of stress concentra-
tion KIII). This explains why it is much easier to stop rupture
pulses than cracks.

Behavior at the Healing Front

We can now study in some detail the behavior of slip
rate and stress near the healing front as vht approaches x. For
the slip rate we get

x � t v� h2A v vh rlim V(x, t) � � (23)�p b bx↑v t v t�h h

and for the stress

2 x � t v� hlA b v vr hlim r(x, 0, t) � 1 � � , (24)2� �bp v b bx↓v t h v th � h

and we recall that A is defined in equation (21).
Thus both the slip rate and stress change have matching

square-root singularities. No energy is dissipated by healing,
in the sense that there is no energy flow through the end of
rupture; in our model once healing starts, it propagates with-
out any further dissipation. However the very presence of

healing affects the energy flow at the fracture tip by modi-
fying the overall slip solution.

Behavior at the Origin and Refracturing

By setting vh � 0, the solution becomes a unliateral
propagating crack and the stress peak at x → 0� becomes
the usual stress singularity at the crack edge. Alternatively,
if the healing front propagates (vh � 0) it can be shown that
the stress peak at the origin (see Fig. 3) forms a logarithmic
singularity in the limit x/t → 0. What are then its practical
implications?

In more complex, realistic models in the presence of a
slip-weakening mechanism, all singularities will be blunted,
but nonetheless they appear in the theoretical limit where the
slip-weakening region becomes infinitesimal with respect to
the length of the continuously propagating crack (or pulse).
Thus, even in blunt models, there will be an initially mod-
erate stress concentration at the origin that will tend to grow
sharper in time as the pulse continues to propagate and ex-
pand self-similarly. In the case of a continued propagation,
stress at the origin will eventually reach any given threshold.
A second fracture is then likely to nucleate and start to prop-
agate, in the form of a second, inner pulse. The latter may
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Figure 7. Slip-rate curves from a numerical ex-
ample of spontaneously propagating slip pulse. The
three curves correspond to t � 230 (continuous
curve), t � 470 (thin dashed curve), and t � 700
(loosely dashed curve). Position is read with respect
to the site xi of the initial asperity tip (xi � 30).
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Figure 6. Slip rate in time and space, from a nu-
merical example of spontaneously propagating slip
pulse. Healing is initiated by imposing a slight rate
weakening in the initial asperity only (x0 � x � xi).
For x � xi (away from the initial asperity) no rate
weakening is present, but the healing front generated
at start off is now self-sustained. Healing progres-
sively accelerates and spontaneously sets to a stable
value vh 	 0.35 vr at t 	 150.

soon die out, when encountering lower stress regions, or
continue to develop to some extent. This feature, which we
may describe as a refracturing process, has already been ob-
served in at least two numerical studies of dynamic fracture
in the presence of self-healing pulses (see figure 4 in Nielsen
et al. [2000] and also examples in Cochard and Madariaga
[1996]).

If the reader finds the mechanism counterintuitive, it can
nonteheless be understood with the help of a simple mind
experiment. Let an earthquake A propagate over an asperity
Sa of a fault and stop. Let then an earthquake B affect the
same fault but on a neighboring region Sb, initially not over-
lapping Sa. If earthquake B is sufficiently large and/or close
to area Sa, it may trigger again fracture inside Sa or simply
propagate inside it. Let now the time delay between the two
earthquakes be so small that they behave altogether as a
fracture sequence of two asperities belonging to the same
event. Finally, if we let the healing process of A and the
triggering of B happen in a smooth transition, the whole
process can be viewed as a rupture pulse propagating, fol-
lowed by refracturing.

Selection of Pulselike Solutions:
Numerical Examples

We shall now illustrate the triggering and propagation
of the healing front with numerical examples. In particular,
we show how the healing front, triggered at fracture onset,
propagates persistently even into regions with no rate weak-
ening for 2D, antiplane (mode III) cases. We show that, sur-
prisingly, we obtain a different behavior for the 3D elastic
or acoustic cases, with circular or elliptical propagation,
where the healing front stops in regions without rate weak-
ening. All simulations are done, for simplicity, with param-
eters l � b � q � 1 (and � � b for 3D elastic cases).3�
The numerical method of solution was presented in Nielsen
and Carlson (2000); the reader is referred to that article for
further details on the numerical method.

2D Antiplane Numerical Examples

We start by showing one example of persistent healing
front propagation. Rupture was initiated by imposing frac-
ture inside an initial asperity of half-length xi � 30 dx, where
dx � 0.5 is the sampling space of the finite difference grid.
Rate-weakening friction was imposed only within the initial
asperity, in order to trigger self-healing easily, with a char-
acteristic rate Vc � 2.5. On the remainder of the fault (|x| �
xi) no rate weakening was present. The singularity at the
rupture front was regularized, as usual, by introducing a
moderate slip weakening with characteristic distance Dc �
2. Prestress and yield stress were set to 0.8 and 1.0, respec-
tively. As seen in Figure 6, the rupture front rapidly ap-
proaches the shear-wave velocity b, which is the asymptotic
limit at t → �. On the other hand, the healing front triggered
at the onset penetrates regions with no rate weakening (x �
xi) and gradually accelerates until it reaches a constant ve-

locity of vh 	 0.35 vr. Obviously, in this example both rup-
ture triggering and friction are different from the analytical
self-similar model; moreover, rupture and healing are al-
lowed to occur spontaneously. As a result, there is a slightly
more complex initial transient and no infinite velocity or
stress peak at the rupture front. With those premises, Figure
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Figure 8. Invariance of vh with stress drop, in the
absence of rate weakening. We think that the small
fluctuations about 0.35 are not important and attribute
them to a lack of accuracy in estimation of healing
speed over the finite time interval of the simulations.

7 shows slip-rate curves almost identical, by inspection, to
the analytical result illustrated in Figure 3, and self-similarity
appears by comparing the curves at three different time
steps. Such a spontaneous convergence toward a stable, self-
similar form after an initial transient was shown in more
detail by Nielsen and Carlson (2000).

The Question of the Healing Front Speed

In principle, the solution that we described applies to
any case where 0 � vh � vr � b, with no a priori restriction
or preferred value for the healing velocity. In mode III, under
homogeneous conditions, rupture speed vr generally in-
creases approaching asymptotically the shear-wave speed. In
mode II, the question is more complex, but admissible final,
stable velocities are found theoretically and experimentally
in the sub-Rayleigh range or in the intersonic range between
shear and tension wave velocities (e.g., see Rosakis et al.,
2000). Stability of rupture velocity in crack solutions has
classically been investigated through energy considerations,
by assuming that there is a positive flux into the rupture tip
(Burridge, 1973). For our new self-healing rupture pulse, the
same analysis is valid for the rupture front because, as shown
in the section on fracture energy, the pulses have the same
asymptotic behavior near the rupture front as Kostrov’s crack.
That is indeed a systematic observation in the numerical ex-
periments both here and in Nielsen and Carlson (2000).

As far as the healing front is concerned, on the other
hand, no simple energy consideration is available for se-
lecting admissible values of the healing speed vh because the
energy flow is zero at the healing front since there is no stress
or slip-rate singularity associated with healing. We do not
know why the healing front should propagate at one rather
than another velocity. It is clear from the simulations, how-
ever, that a very stable velocity is selected, independently of
initial stress conditions, of the order of vr � 0.35b, in those
regions where no rate weakening is present (Fig. 8). This
value coincides with the lowest healing rates found by Niel-
sen and Carlson (2000) at low levels of rate weakening. In-
deed, they were able to obtain higher healing rates at higher
levels of rate weakening, but, while the weakening was re-
duced, the range 0 � vh � 0.35 vr seemed to remain ex-
cluded. While dimensional arguments are available that in-
dicate a faster healing at higher weakening rates, no such
dimensional argument exists in the absence of rate weak-
ening. From experiments both with and without weakening,
it seems that vr 	 0.35 is a lower limit for admissible healing
velocity, although we found no theoretical justification for
this result.

It is important to notice that the healing front described
here is subshear, so that stresses and velocities at the healing
front (equations 23 and 24) are Hilbert conjugate functions.
Actually, the local stress and velocity discontinuities at the
healing front can be derived from each other using the equa-
tions in Ida (1972). On the other hand, for simple velocity
weakening friction as studied by Cochard and Madariaga
(1994), the healing front is always supershear. Only at su-

pershear speeds can the particle velocity and shear stress
have the same kind of discontinuity after the passage of the
healing front. No such solution is possible in our problem,
because the healing front must be slower than the rupture
front for a self-similar solution to the antiplane crack prob-
lem to exist.

3D Examples

We did simulations for several different 3D models, in-
cluding (1) 3D acoustic models with cylindrical symmetry
and circular fracture, reproducing the model described by
Nielsen and Carlson (2000), and (2) fully elastic, homoge-
neous models where fracture was spontaneously developing
either within an elliptical front or, in some cases, within a
slightly more complex shape, due to the formation of super-
shear transition lobes along the slip direction. In none of the
instances were we able to observe a persisting healing front
in those regions of the fault where no rate weakening was
present (see Fig. 9 and 10). These results are strongly at odds
with those obtained in all the 2D simulations. However, the
healing front was observed to propagate persistently for most
cases where the rate weakening was maintained, in agree-
ment with Nielsen and Carlson (2000), as seen in Figure 11.

Conclusions and Perspectives: Exotic Solutions

We have established that self-healing cracklike solu-
tions exist in a strictly antiplane self-similar problem with
simple Coulomb friction. Broberg (1978) and Freund (1979)
had shown earlier that self-healing solutions also existed for
fixed width pulses, so that it may not be necessary to invoke
complex friction laws or heterogeneities to explain the evi-
dence of self-healing rupture pulses in a number of obser-
vations and numerical simulations. The only problem is to
initiate them, but as shown here a moderate amount of ve-
locity weakening or heterogeneity can start a self-healing
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Figure 9. Simulation of self-healing in a 3D,
acoustic medium with circular symmetry. In this case
we find that the healing front rapidly stalls after en-
tering the region with no rate weakening (x � xi).
Compare with the 2D case of Figure 6.
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Figure 11. Same model as Figure 10, but in this
case the rate weakening was extended to the entire
fault. The healing front propagates persistently, spon-
taneously adopting a profile that matches the rupture
front, and the solution appears to be stable.
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Figure 10. This illustrates the behavior of a fully
3D elastic model, with snapshots of slip rate on the
fault at four successive times. The central elliptical
region with zero slip rate has healed, due to the pres-
ence of rate weakening. However, healing does not
propagate to the outer regions of the fault where no
rate weakening is present. The side lobes are due to
rupture transition to supershear velocity.

pulse that will then propagate persistently. For instance, the
series of rupture pulses shown in figure 13 of Cochard and
Madariaga (1996) may be self-sustained in a crack with clas-
sical friction law, although in Cochard and Madariaga
(1996) they were computed with a slip-rate-dependent fric-
tion law.

The most important result of this work, beyond the par-
ticular solution proposed, is a clear illustration that the Kos-
trov self-similar crack solution is not unique. Any fracture
form satisfying both the requirement of finite energy in the
limit t → x/vr (i.e., close to the crack tip) and the boundary
conditions (i.e., stress relief inside the active fracture) will
yield a persistent self-similar solution. The implication is
that, in addition to the Kostrov crack and the self-healing
pulse studied here, there may be other marginally stable, yet
unknown, fracture modes that could spontaneously develop
depending on the conditions of fracture triggering.

It may however be possible, although not demonstrated,
that only the expanding crack solution with no self-healing
allows stress to be bounded everywhere away form the frac-
ture fronts, among self-similar models. The solutions found
here (with the exception of the pulse propagating away from
a rigid body presented in Appendix B) all develop stress
singularities at the nucleation site. In the special case of a
zero healing velocity (or unilateral crack), the nucleation sin-
gularity simply becomes the stress concentration at the fixed
fracture edge. As discussed in the Behavior at the Origin and
Refracturing section, we do not dismiss as unrealistic the
stress singularity at the site of nucleation any more than a
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stress singularity at the rupture edge, in the sense that the
sharp crack solution is to be considered as a limit.

Further intriguing questions and developments are sug-
gested by this study. The 2D plane problem needs to be
analyzed, although it is very likely that a self-healing pulse
solution exists in that case for the same velocity function
(equation 18) and a somewhat different stress field. The 3D
solution for the circular or elliptical self-similar pulse, equiv-
alent to this 2D case, needs also to be analyzed. Although
work in that direction is in progress, no complete solution
has been reached yet due to the increased complexity of 3D
Cagniard–de Hoop (see Willis [1973] for a general theory
of 3D elastic waves). Second, the question of the apparently
stable healing front velocity systematically selected in the
2D simulations in the absence of rate weakening is still un-
explained at the moment. Third, why does the healing front
stop in regions with no rate weakening for 3D cases, while
it persistently propagates in equivalent 2D cases? An obvi-
ous answer, to be investigated, is that the healing front is
unstable in 3D because of the combined effects of plane and
antiplane modes of rupture and healing. It may be that the
healing front undergoes geometrical attenuation in 3D so
that it becomes too weak to sustain itself persistently unless
a minimum rate-weakening amount is present. Such mini-
mum amount could also be estimated using, for example, a
numerical approach similar to that adopted in Cochard and
Rice (1997) or Nielsen and Carlson (2000).
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Appendix A

The Bilateral Propagating Pulse: A Combined
Mode Solution

A priori, any value of n may generate a proper mode n
solution, for the Laplace domain function
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np�2 �2Ṽ(p) � A m � m ,�n h r �n 2 �2 3/2 �2 2m (p � m ) m � p�h r h

n � 0, 2, 4, . . . .

In practice, it is found that only the first even modes (n �
0 and n � 2) yield acceptable solutions with proper behavior
at the origin (no singularity in slip).

Reverse transform of 0Ṽ (p) and 2Ṽ(p) by Cagniard–de
Hoop, following a contour going along the real axis in the
upper right quarter plane, yields the following slip-rate func-
tions:

2 �2 2v (t/x) v � (t/x)�r h
V(t/x) � A0 0 2 �2(t/x) � v� r

2 �2(t/x) p � v� r
2� A v dp0 r � �1 �2 2vr v � p� h

2 �2 2v (t/x) v � (t/x)�h h
V (t/x) � A2 2 2 �2(t/x) � v� r

�2 2(t/x) v � p� h
2� A v dp2 h � �1 2 �2vr p � v� r

in the interval t vh � x � t vr ,
where both integral terms can be replaced by equivalent

ellitpic integrals of the second kind second if wished, after
a variable change:

2 �2 2(t/x) p � v� r i vrdp � � Re E (t/x) v ,h� � 2�� ��1 �2 2v v vr r hv �p� h

�2 2 2(t/x) v � p� h i vhdp � � Re E (t/x) v , .r� � 2�� ��1 2 �2v v vr h rp � v� r

We remark that both modes are very similar, essentially
built on the ratio of two square roots, 2 �2(t/x) � v /� r

Such ratio also appears as the argument of�2 2v � (t/x) .� h

the integral terms (the variable of integration p can indeed
be considered as the very slowness t/x at earlier times). The
essential difference between the two modes is that the square
root ratio is inverted only inside the integral of 0V.

Both mode n � 0 and mode n � 2 solutions, taken by
themselves, yield a constant residual slip-rate V (t/x) after
healing, a boundary condition hard to justify in a realistic
situation. However, as suggested by J. Rice (personal
comm., 2002), they can be combined together with an ade-
quate coefficient yielding a unique solution that drops ex-
actly to zero. Accordingly, we can group the first term of
the two velocities and combine the two solutions to obtain.

2 �2 2v (t/x) v � (t/x)�r h
2 2V (t/x) � (v A � v A )h 0 r 2 2 �2(t/x) � v� r

2 �2(t/x) p � v� r
2�A v dp0 r � �1 �2 2vr v � p� h

�2 2(t/x) v � p� h
2�A v dp.2 h � �1 2 �2vr p � v� r

In the first term of the slip rate, the real part vanishes after
healing (t/x � ). On the other hand, after healing time�1vh

the integral terms will each have a constant, real residual
value corresponding to the complete integral between
bounds p � vr and p � vh. The ratio of the two amplitude
terms v � A2/A0, in order to allow a final zero slip rate after
healing, should then satisfy

�1vh
2 �2 2 2 �2v v � p / p � v dp� �h h r��1vr

v � A /A � .2 0 �1vh
2 2 �2 �2 2v p � v / v � p dp� �r r h� �1vr

These expressions include integral representations that can
be easily integrated numerically for evaluation and plotting,
once we fixed a rupture and a healing front velocity. The
factor v(vr, vh) is obtained by equating V(t/x) to zero at any
time t � x/vh after healing.

Stress can also be obtained in closed form (a singular
term and the sum of several elliptic integrals), proceeding in
similar fashion as for the unilateral pulse, except that a vari-
able change p → 1/f in the Laplace transform will facilitate
transformation to the time–space domain through integra-
tion. We do not show any representation of slip, slip rate, or
stress to avoid redundancy, since the resulting graphics are
very similar to those obtained for the unilateral propagating
pulse, with the obvious exception that they are symmetric
with respect to the origin x � 0 in the present case. We note
that a similar singularity in stress develops at the origin,
because in this case, too, there is an abrupt rupture in slope
of the slip function at the origin, which is in this case an
even function of x.

We point out that, again, for the limit x → vrt this so-
lution has the exact same behavior as the classical crack.

Appendix B

The Pulse Propagating away from a Rigid Body

We note that a rather simple solution can be obtained
also for

p
Ṽ(p) � � .

�2 2 �2 2 3/2m � p (m � p )� h r
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However, as remarked by J. Rice (personal comm., 2002),
it turns out to correspond to an antisymmetric case, where
the left half of the fault would be loaded loaded with a pres-
tress �r0 while the right half of the fault is loaded with r0

stress of the opposite sign. Alternatively, it could be consid-
ered as a fracture nucleating right next to an infinitely rigid
body and propagating away from it. There is no stress sin-
gularity at the origin in this case (slip being a linear uneven
function of x close to the origin). It is clear that the latter
solution is of limited practical interest.

Appendix C

Elliptic Integrals

The elliptic integrals of the first kind (F) and of the
second kind (E) are defined (Gradshteyn and Ryzhik, 1965)

�
2 2 �1/2F(�, k) � dh (1 � k sin h)�

0

�
2 2 1/2E(�, k) � dh (1 � k sin h) .�

0

In the case of Kostrov’s model, we run into elliptic integrals
where � � arcsin p and k � h�2 � /b2. Let us make the2vr

following variable change,

n � sinh,

in these expressions in order to obtain the equivalent inte-
grals (see Gradshteyn and Ryzhik, 1965):

�2 2
p 1 � h n�

�2E(arcsin p, h ) � dn� 20 1 � n�

p dn�2F(arcsin p, h ) � .� 2 �2 20 1 � n 1 � h n� �

The kernel of the two integrals is imaginary only in the range
1 � n � h, so that the imaginary part of such integral func-
tions is zero for p � 1 and a constant identical to its value
at p � h for values of p � h:

�2Im E(arcsin p| , h ) � Const.p�h

�2 �2� Im E(arcsin h, h ) � Im E(h )

�2 2
h 1 � h c�

� Im dc� 20 1 � c�

�2Im F(arcsin p| , h ) � Const.p�h

�2 �2� Im F(arcsin h, h ) � Im F(h )

h dc
� Im ,� �2 2 20 1 � h c 1 � c� �

where the functions in bold are currently referred to as the
complete elliptic integrals. For the normalization of the am-
plitude of Kostrov’s slip-rate function, we need to compute
the imaginary part of difference between the elliptic inte-
grals:

�2 �2I(h) � Im[F(h ) � E(h )]

2h n dn
� Im .� 2 2 �2 20 h 1 � n 1 � h n� �

This integral can be evaluated in several ways. Kostrov
(1964a) used contour integration in the complex n plane to
convert the integral into one along the imaginary n axis. Here
we derive an equivalent, simple closed form expression.
First, note that in the given expression, the imaginary part
is nonzero only for 1 � n � h. Thus, after a variable change
and some algebra, we can write

2h n dn
Im �� 2 2 �2 20 h 1 � n 1 � h n� �

�2 2�21/ 1�h 1 � (1 � h )g� �
Re dg� 20 1 � g�

We recognize, in the right-hand member, a complete integral
E(1 � h�2) so that, finally,

�2I(h) � E(1 � h ).
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