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4.02.1 Introduction

Earthquake source dynamics provides key elements for the

prediction of ground motion and to understand the physics

of earthquake initiation, propagation, and healing. The sim-

plest possible model of seismic source is that of a point source

buried in an elastic half-space. The development of a proper

model of the seismic source took more than 50 years since the

first efforts by Nakano (1923) and colleagues in Japan. Earth-

quakes were initially modeled as simple explosions, then as the

result of the displacement of conical surfaces, and finally as

the result of fast transformational strains inside a sphere. In the

early 1950s, it was recognized that P-waves radiated by earth-

quakes presented a spatial distribution similar to that pro-

duced by single couples of forces, but it was very soon

recognized that this type of source could not explain S-wave

radiation (Honda, 1962). The next level of complexity was to

introduce a double-couple source, a source without resultant

force nor moment. The physical origin of the double-couple
atise on Geophysics, Second Edition http://dx.doi.org/10.1016/B978-0-444-538
model was established in the early 1960s thanks to the obser-

vational work of numerous seismologists and the crucial the-

oretical breakthrough of Maruyama (1963) and Burridge and

Knopoff (1964) who proved that a fault in an elastic model

was equivalent to a double-couple source.

In this chapter, we shall review what we believe are the

essential results obtained in the field of kinematic earthquake

rupture to date. In Section 4.02.2, we review the classical point

source model of elastic wave radiation and establish some

basic general properties of energy radiation by that source. In

Section 4.02.3, we discuss the now classical seismic moment

tensor source. In Section 4.02.4, we discuss extended kine-

matic sources including the simple rectangular fault model

proposed by Haskell (1964, 1966) and a circular model that

tries to capture some essential features of crack models. Sec-

tion 4.02.5 introduces crack models without friction as models

of shear faulting in the earth. This will help establish some

basic results that are useful in the study of dynamic models of

the earthquake source.
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4.02.2 Seismic Wave Radiation from a Point Force:
The Green Function

There are many ways of solving the elastic wave equation for

different types of initial conditions, boundary conditions, sources,

etc. Each of these methods requires a specific approach for every

different problem that we would need to study. Ideally, we would

like, however, to find a general solutionmethod that would allow

us to solve any problem by a simple method. The basic building

block of such a general solutionmethod is theGreen function, the

solution of the following elementary problem: find the radiation

from a point source in a finite heterogeneous elastic medium. For

simplicity, we consider first the particular case of a homogeneous

elastic isotropicmedium, for whichwe knowhow to calculate the

Green function. This will let us establish a general framework for

studying more elaborate source models.

4.02.2.1 Seismic Radiation from a Point Source

The simplest possible source of elastic waves is a point force of

arbitrary orientation located inside an infinite homogeneous,

isotropic elastic body of density r, and elastic constants l and

m. Let a¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l +2mð Þ=rp

and b¼ ffiffiffiffiffiffiffiffi
m=r

p
be the P- and S-wave

speeds, respectively. Let us note u(x, t), the particle displace-

ment vector. We have to find the solution of the elastodynamic

wave equation:

r
@2

@t2
u x, tð Þ¼ l +mð Þr r�u x, tð Þð Þ+ mr2u x, tð Þ+ f x, tð Þ [1]

under homogeneous initial conditions, that is,

u x, 0ð Þ¼ _u x, 0ð Þ¼ 0, and the appropriate radiation conditions

at infinity. In [1], f is a general distribution of force density as a

function of position and time. For a point force of arbitrary

orientation located at a point x0, the body force distribution is

f x, tð Þ¼ f s tð Þd x�x0ð Þ [2]

where s(t) is the source time function, the variation of the

amplitude of the force as a function of time. And f is a unit

vector in the direction of the unit force.

The solution of eqn [1] is easier to obtain in the Fourier

transformed domain. As is usual in seismology, we use the

following definition of the Fourier transform and its inverse:

eu x,oð Þ¼
ð1
�1

u x, tð Þe�iotdt

u x, tð Þ¼ 1

2p

ð1
�1

eu x,oð Þe�iotdo

[3]

Here and in the following, we will note Fourier transform

with a tilde.

After some lengthy work see, for example, Achenbach

(1975), we find the Green function in the Fourier domain:

eu R,oð Þ¼ 1

4pr
f �rr 1

R

� �� �es oð Þ
o2

� 1+
ioR
a

� �
e�ioR=a

�
+ 1+

ioR
b

� �
e�ioR=b

�
+

1

4pra2
1

R
f �rRð ÞrRes oð Þe�ioR=a

+
1

4prb2
1

R
f � f �rRð ÞrR½ �es oð Þe�ioR=b [4]
where R¼kx�x0k is the distance from the source to the

observation point. Using the inverse Fourier transform, we

can transform eqn [4] to the time domain to obtain the final

result

u R, tð Þ¼ 1

4pr
f �rr 1Rð Þ½ �

ðmin t,R=bð Þ

R=a
ts t� tð Þdt

+
1

4pra2
1

R
f �rRð ÞrR½ �s t�R=að Þ

+
1

4prb2
1

R
f � f �rRð ÞrR½ �s t�R=bð Þ

[5]

This complicated-looking expression can be better under-

stood considering each of its terms separately. The first line is

the near field, which comprises all the terms that decrease at

long distance from the source faster than R�1. The last two lines

are the far-field P and S spherical waves that decrease with

distance like R�1.

4.02.2.2 Far-Field Body Waves Radiated by a Point Force

Much of the practical work of seismology is done in the far

field, at distances of several wavelengths from the source.

When the distance R is large, only the last two terms in [5]

are important. Under what conditions can we neglect the first

term of that expression with respect to the last two? For that

purpose, we notice that in [4], R appears always in the partic-

ular combination oR/a or oR/b. Clearly, these two ratios

determine the far-field conditions. Since a>b, we conclude

that the far field is defined by

oR
a

�1 or
R

l
� 1

where l¼2pa/o is the wavelength of a P-wave of circular

frequency o. The condition for the far field depends there-

fore on the characteristic frequency or wavelength of the

radiation. Thus, depending on the frequency content of the

signal eS oð Þ, we will be in the far field for high-frequency

waves, but we may be in the near field for the low-

frequency components.

The far-field radiation from a point force is usually written

in the following, shorter form:

uP
FF R, tð Þ ¼ 1

4pra2
1

R
ℜPs t�R=að Þ

uS
FF R, tð Þ ¼ 1

4prb2
1

R
ℜSs t�R=bð Þ

[6]

where ℜP and ℜS are the radiation patterns of P- and S-waves,

respectively. Noting that rR¼eR, the unit vector in the radial

direction, we can write the radiation patterns in the following

simplified form:ℜP¼ fReR and ℜS¼ fT¼ f� fReR where fR is the

radial component of the point force f and fT its transverse

component.

Thus, in the far field of a point force, P-waves propagate the

radial component of the point force, while the S-waves prop-

agate information about the transverse component of the

S-wave. Expressing the amplitude of the radial and transverse

component of f in terms of the azimuth y of the ray with

respect to the applied force, we can rewrite the radiation pat-

terns in the simpler form



n

R

dS = R2 dW
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ℜP ¼ cosyeR, ℜS ¼ sinyeT [7]

As we could expect from the natural symmetry of the prob-

lem, the radiation patterns are axially symmetrical about the

axis of the point force. P-waves from a point force have a

typical dipolar radiation pattern, while S-waves have a toroidal

(doughnut-shaped) distribution of amplitudes.
f

V

S

Figure 1 Geometry for computing radiated energy from a point source.
The source is at the origin and the observer at a position defined
by the spherical coordinates R,y,f, distance, polar angle, and azimuth.
4.02.2.3 The Near Field of a Point Force

When oR/a is not large compared to one, all the terms in eqns

[4] and [5] are of equal importance. In fact, both far- and near-

field terms are of the same order of magnitude near the point

source. In order to find the small R behavior, it is preferable to

go back to the frequency domain expression [4]. When R!0,

the term in brackets in the first line tends to zero. In order to

calculate the near-field behavior, we have to expand the expo-

nentials to order R2. After some algebra, we find

u R, tð Þ5 1

8prb2
1

R
f �rRð ÞrR 1�b2=a2

� �
+ f 1 +b2=a2

� �	 

s tð Þ

[8]

This is the product of the source time function s(t) with the

static displacement produced by a point force of orientation f.

This is one of the most important results of static elasticity and

is frequently referred to as the Kelvin or Somigliana solution

(Aki and Richards, 2002).

The result [8] is quite interesting and somewhat unex-

pected. The radiation from a point source decays like R�1 in

the near field, exactly like the far-field terms. This result has

been remarked and extensively used in the formulation of

regularized boundary integral equations for elastodynamics

(Fukuyama and Madariaga, 1995; Hirose and Achenbach,

1989).
4.02.2.4 Energy Flow from Point Force Sources

A very important issue in seismology is the amount of energy

radiated by seismic sources. The flow of energy across any

surface that encloses the point source must be the same, so

that seismic energy is defined for any arbitrary surface. Let us

take the scalar product of eqn [1] with the particle velocity _u

and integrate on a volume V enclosing the single point source

located at x0: ð
V

r _ui€uidV ¼
ð
V

sij, j _uidV
ð
V

fi _uidV [9]

where we use dots to indicate time derivatives and the summa-

tion convention on repeated indices. In [9], we have rewritten

the right-hand side of [1] in terms of the stresses

sij¼leiidij+2meij, where the strains are eij¼1/2(@jui+@jui).

Using sij, j _ui ¼ sij _ui
� �

, j�sij _eij and Gauss’ theorem, we get

the energy flow identity

d

dt
K tð Þ +U tð Þð Þ¼

ð
S

sij _uinjdS +
ð
U

fi _uidV [10]

where n is the outward normal to the surface S (see Figure 1).

In [10], K is the kinetic energy contained in volume V at time t:
K tð Þ¼ 1

2

ð
V

r _u2dV [11]

while

U tð Þ¼ 1

2

ð
V

l r�uð Þ2 + 2meijeij
	 


dV [12]

is the strain energy change inside the same volume. The last term

in [10] is the rate of work of the force against elastic displace-

ment. Equation [10] is the basic energy conservation statement

for elastic sources. It says that the rate of energy change inside

the body V is equal to the rate of work of the sources f plus the

inward energy flow across the boundary S. This energy balance

equation can be extended to study energy flow for moment

tensor sources and for cracks (Kostrov and Das, 1988).

Let us note that in [10], energy flows into the body through

the surface S. In seismology, however, we are interested in the

radiated seismic energy, which is the energy that flows out of the

elastic body. The radiated seismic energy until a certain time t is

Es tð Þ¼�
ðt
0

dt

ð
S

sij _uinjdS

¼�K tð Þ�DU tð Þ+
ðt
0

dt

ð
V

fi _uidV [13]

where DU(t) is the strain energy change inside the elastic body

from time t¼0 to t. If t is sufficiently long, so that all motion

inside the body has ceased, K(t)!0 and we get the simplest

possible expression

Es ¼ Es 1ð Þ¼�DU +

ð1
0

dt

ð
V

fi _uidV [14]

Thus, total energy radiation is equal to the decrease in

internal energy plus the work of the sources against the elastic

deformation. Both terms in [14] contribute to seismic radia-

tion as we will discuss in more detail for moment tensor

sources and cracks.

Although we can use [14] to compute the seismic energy, it is

easier to evaluate it directly from the first term in [13] assuming

that S is very far from the source, so that far-field approximation

[6] can be used in [13]. Consider, as shown in Figure 1, a cone

of rays of cross section dO issued from the source around the

direction y,f. The energy crossing a section of this ray beam at

distance R from the source per unit time is given by the energy
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flow per unit solid angle _es ¼ sij _uinjR2, where sij is the stress, _ui
the particle velocity, and n the normal to the surface dS¼R2dO.
We now use [6] in order to compute sij and _u. By straightfor-

ward differentiation and keeping only terms of order 1/R with

distance, we get sijnj � rc _ui where rc is the wave impedance and

c the appropriate wave speed. The energy flow rate per unit solid

angle for each type of wave is then

_es tð Þ¼ rcR2 _u2 R, tð Þ [15]

Using the far-field approximation for the velocity derived

from [6] and integrating around the source for the complete

duration of the source, we get the total energy flow associated

with P- and S-waves:

EPs ¼ 1

4pra3
RP
� �

2

ð1
0

s�2 tð Þdt for P waves

ESs ¼ 1

4prb3
ℜS
� �

2

ð1
0

s�2 tð Þdt for S waves

[16]

where hℜci2¼1/(4p)
Ð
O(ℜ

c)2dO is the mean squared radiation

pattern for wave c¼{P,S}. Since the radiation patterns are the

simple sinusoidal functions listed in [7], the mean square

radiation patterns are 1/3 for P-waves and 2/3 for the sum of

the two components of S-waves. In [16], we assumed that

_s tð Þ¼ 0 for t<0. Finally, it is not difficult to verify that, since

_s has units of force rate, Es and Ep have units of energy. Noting

that in the Earth, a is roughly
ffiffiffiffiffiffi
3b

p
so that a3ffi5b3; the amount

of energy carried by the S-waves emitted by a point force of

source time function s(t) is close to ten times that carried by

P-waves. For double-couple sources, this ratio is much larger.
4.02.2.5 The Green Tensor for a Point Force

The Green function is a tensor formed by the waves radiated

from a set of three point forces aligned in the direction of each

coordinate axis. For an arbitrary force of direction f, located at

point x0 and source function s(t), we define the Green tensor

for elastic waves by

u x, tð Þ¼G x, tjx0,0ð Þ�f*s tð Þ
where the star indicates time-domain convolution.

We can also write this expression in the usual index

notation

ui x, tð Þ¼
X
j

Gij x, tjx0,0ð Þfj*s tð Þ

in the time domain or

eui x,oð Þ¼
X
j

eGij xjx0,oð Þfjes oð Þ

in the frequency domain.

The Green function itself can be easily obtained from the

radiation from a point force [6]

Gij x, tjx0,0ð Þ¼ 1

4pr
1

R

� �
, ij

t H t�R=að Þ�H t�R=bð Þ½ �

+
1

4pra2
1

R
R, iR, j

� �
d t�R=að Þ

+
1

4prb2
1

R
dij�R, iR, j

	 

d t�R=bð Þ

[17]
Here, d(t) is Dirac’s delta, dij is Kronecker’s delta, and the

comma indicates derivative with respect to the component that

follows it.

Similarly, in the frequency domain,

eGij xjx0,oð Þ¼ 1

4pr
1

R

� �
, ij

1

o2
� 1+ ioRað Þe�ioR=a
h

+ 1+ ioRbð Þe�ioR=b
i

+
1

4pra2
1

R
R, iR, j

� �
e�ioR=a

+
1

4prb2
1

R
dij�R, iR, j

	 

e�ioR=b
4.02.3 Moment Tensor Sources

The Green function for a point force is the fundamental solu-

tion of the equation of elastodynamics. However – except for a

few rare exceptions – seismic sources are due to fast internal

deformation in the Earth, for instance, faulting or fast phase

changes on localized volumes inside the Earth. For a seismic

source to be of internal origin, it has to have zero net force and

zero net moment. It is not difficult to imagine seismic sources

that satisfy these two conditions:X
f ¼ 0X
f 	 r¼ 0

[18]

The simplest such sources are dipoles and quadrupoles. For

instance, the so-called linear dipole is made of two identical

point forces of strength f that act in opposite directions at two

points separated by a very small distance h along the axes of the

forces. The seismic moment of this linear dipole is M0¼ f h.

Experimental observation has shown that linear dipoles of this

sort are not the most frequent models of seismic sources and,

furthermore, there does not seem to be any simple internal

deformation mechanism that corresponds to a pure linear

dipole. It is possible to combine three orthogonal linear dipoles

in order to form a general seismic source; any dipolar seismic

source can be simulated by adjusting the strength of these three

dipoles. It is obvious, as we will show later, that these three

dipoles represent the principal directions of a symmetrical ten-

sor of rank two that we call the seismic moment tensor:

M¼
Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz

24 35
This moment tensor has a structure that is identical to that

of a stress tensor, but it is not of elastic origin as we shall see

promptly.

What do the off-diagonal elements of the moment tensor

represent? Let us consider a moment tensor such that all ele-

ments are zero except Mxy. This moment tensor represents a

double couple, a pair of two couples of forces that turn in

opposite directions. The first of these couples consists in two

forces of direction ex separated by a very small distance h in the

direction y. The other couple consists in two forces of direction

ey with a small arm in the direction x. The moment of each of
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these couples isMxy, the first pair has positive moment, and the

second has a negative one. The conditions of conservation of

total force and moment [18] are satisfied so that this source

model is fully acceptable from a mechanical point of view. In

fact, as shown by Burridge and Knopoff (1964), the double

couple is the natural representation of a fault. One of the pair

of forces is aligned with the fault, the forces indicate the direc-

tions of slip, and the arm is in the direction of the fault normal.
x

f

Figure 2 Radiation from a point double source. The source is at the
origin and the observer at a position defined by the spherical coordinates
R,y,f, distance, polar angle, and azimuth.
4.02.3.1 Radiation from a Point Moment Tensor Source

Let us now use the Green functions obtained for a point force

in order to calculate the radiation from a point moment tensor

source located at point x0:

M0 r, tð Þ¼M0 tð Þd x�x0ð Þ [19]

M0 is the moment tensor, a symmetrical tensor whose compo-

nents are independent functions of time.

We consider one of the components of the moment tensor,

for instance, Mij. This represents two point forces of direction i

separated by an infinitesimal distance hj in the direction j. The

radiation of each of the point forces is given by the Green

function Gij computed in [17]. The radiation from the Mij

moment is then simply

uk x, tð Þ¼
X
ij

Gki, j x, tjx0, tð Þ*Mij tð Þ [20]

The complete expression of the radiation from a point

moment tensor source can then be obtained from [17]. We

will be interested only on the far-field terms since the near field

is too complex to discuss here. We get for the far-field waves

uPi R, tð Þ ¼ 1

4pra3
1

R

X
jk

ℜP
ijk

_Mjk t�R=að Þ

uSi R, tð Þ ¼ 1

4prb3
1

R

X
jk

ℜS
ijk

_Mjk t�R=bð Þ
[21]

where ℜijk
P ¼RiRjRk and ℜijk

S ¼(dij�RiRj)Rk are the radiation

patterns of P- and S-waves, respectively. We observe in [21]

that the far-field signal carried by both P- and S-waves is the

time derivative of the seismic moment components, so that far-

field seismic waves are proportional to the moment rate of the

source.

Very often in seismology, it is assumed that the geometry of

the source can be separated from its time variation, so that the

moment tensor can be written in the simpler form

M0 tð Þ¼M s tð Þ
where M is a time-invariant tensor that describes the geometry

of the source and s(t) is the time variation of the moment, the

source time function determined by seismologists. Referring to

Figure 2, we can now write a simpler form of [21]

uc x, tð Þ¼ 1

4prc3
ℜc y,fð Þ

R
O t�R=cð Þ [22]

where R is the distance from the source to the observer. c stands

for either a for P-waves or b for shear waves (SH and SV). For

P-waves, uc is the radial component; for S-waves, it is the

appropriate transverse component for SH or SV waves. In
[22], we have introduced the standard notation O tð Þ¼ _s tð Þ for
the source time function, the signal emitted by the source in

the far field.

The term ℜc(y,f) is the radiation pattern, a function of the

takeoff angle of the ray at the source. Let (R,y,f) be the radius,
colatitude, and azimuth of a system of spherical coordinates

centered at the source, respectively. It is not difficult to show

that the radiation pattern is given by

ℜc y, fð Þ¼ eR �M�eR [23]

for P-waves, where eR is the radial unit vector at the source.

Assuming that the z-axis at the source is vertical, so that y is

measured from that axis, S-waves are given by

ℜSV y, fð Þ¼ ey�M�eR and ℜSH y,fð Þ¼ ef�M�eR [24]

where ef and ey are unit vectors in spherical coordinates. Thus,

the radiation patterns are the radial components of the

moment tensor projected on spherical coordinates.

With minor changes to take into account smooth variations

of elastic wave speeds in the Earth, these expressions are widely

used to generate synthetic seismograms in the so-called far-

field approximation. The main changes that are needed are the

use of travel time Tc(r, ro) instead of R/c in the waveform

O(t�Tc) and a more accurate geometric spreading factor

g(D,H)/a to replace 1/R, where a is the radius of the Earth

and g(D,H) is a tabulated function that depends on the angular

distance D between the hypocenter and the observer and the

source depth H. In most work with local earthquakes, the

approximation [22] is frequently used with a simple correction

for free surface response.
4.02.3.2 A More General View of Moment Tensors

What does a seismic moment represent? A number of mechan-

ical interpretations are possible. In the previous sections, we

introduced it as a simple mechanical model of double couples

and linear dipoles. Other authors Eshelby (1956) and Backus

and Mulcahy (1976) have explained them in terms of the

distribution of inelastic stresses (sometimes called stress ‘glut’).
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V
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Figure 3 Inelastic stresses or stress glut at the origin of the concept of
seismic moment tensor. We consider a small rectangular zone that
undergoes a spontaneous internal deformation EI (top row). The elastic
stresses needed to bring it back to a rectangular shape are the moment
tensor or stress glut (bottom row right). Once stresses are relaxed by
interaction with the surrounding elastic medium, the stress change is Ds
(bottom left).
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Let us first notice that a very general distribution of force

that satisfies the two conditions [18] necessarily derives from a

symmetrical seismic moment density of the form

f x, tð Þ¼r�M x, tð Þ [25]

where M(x, t) is the moment tensor density per unit volume.

Gauss’ theorem can be used to prove that such a force distri-

bution has no net force nor moment. In many areas of applied

mathematics, the seismic moment distribution is often termed

a ‘double layer potential.’

We can now use [25] in order to rewrite the elastodynamic

eqn [1] as a system of first-order partial differential equations:

r
@

@t
v ¼r�s

@

@t
s ¼ lr�vI+m rvð Þ+ rvð ÞT

h i
+ _M0

[26]

where v is the particle velocity and s is the corresponding

elastic stress tensor. We observe that the moment tensor den-

sity source appears as an addition to the elastic stress rate _s.
This is probably the reason that Backus and Mulcahy (1976)

adopted the term ‘glut.’ In many other areas of mechanics, the

moment tensor is considered to represent the stresses produced

by inelastic processes. A full theory of these stresses was pro-

posed by Eshelby (1956). Incidentally, the equation of motion

written in this form is the basis of some very successful numer-

ical methods for the computation of seismic wave propagation

see, for example, Madariaga (1976), Virieux (1986), and

Madariaga et al. (1998).

We can get an even clearer view of the origin of the moment

tensor density by considering it as defining an inelastic strain

tensor eI defined implicitly by

m0ð Þij ¼ ldijeIkk + 2me
I
ij [27]

Many seismologists have tried to use eI in order to represent

seismic sources. Sometimes termed ‘potency’ (Ben Menahem

and Singh, 1981), the inelastic strain has not been widely

adopted even if it is a more natural way of introducing seismic

source in bimaterial interfaces and other heterogeneous media.

For a recent discussion, see Ampuero and Dahlen (2005).

The meaning of eI can be clarified by reference to Figure 3.

Let us make the following ‘gedanken’experiment. Let us cut an

infinitesimal volume V from the source region. Next, we let it

undergo some inelastic strain eI, for instance, a shear strain due

to the development of internal dislocations as shown in the

figure. Let us now apply stresses on the borders of the internally

deformed volume V so as to bring it back to its original shape. If

the elastic constants of the internally deformed volume V have

not changed, the stresses needed to bring V back to its original

shape are exactly given by the moment tensor components

defined in [27]. This is the definition of seismicmoment tensor:

It is the stress produced by the inelastic deformation of a body

that is elastic everywhere. It should be clear that the moment

tensor is not the same thing as the stress tensor acting on the

fault zone. The latter includes the elastic response to the intro-

duction of internal stresses as shown in the last row of Figure 3.

The difference between the initial stresses before the internal

deformation and those that prevail after the deformed body has

been reinserted in the elastic medium is the stress change (or

stress drop as originally introduced in seismology in the late
1960s). If the internal strain is produced in the sense of reduc-

ing applied stress – and reducing internal strain energy – then

stresses inside the source will decrease in a certain average

sense. It must be understood, however, that a source of internal

origin – like faulting – can only redistribute internal stresses.

During faulting, stresses reduce in the immediate vicinity of slip

zones but increase almost everywhere else.
4.02.3.3 Moment Tensor Equivalent of a Fault

For a point moment tensor of type [27], we can write

M0ð Þij ¼ ldijeIkk + 2me
I
ij

 �
Vd x�x0ð Þ [28]

where V is the elementary source volume on which acts the

source. Let us now consider that the source is a very thin

cylinder of surface S, thickness h, volume V¼Sh, and unit

normal n. Letting the thickness of the cylinder tend to zero,

the mean inelastic strain inside the volume V can be computed

as follows:

lim
h!0

eIijh¼
1

2
Duinj +Dujni
	 


[29]

where Du is the displacement discontinuity (or simply the slip)

across the fault volume. The seismic moment for the flat fault is

then

M0ð Þij ¼ ldijDuknk +m Duinj +Dujni
� �	 


S [30]

so that the seismic moment can be defined for a fault as the

product of an elastic constant with the displacement disconti-

nuity and the source area. Actually, this is the way the seismic

moment was originally determined by Burridge and Knopoff

(1964). If the slip discontinuity is written in terms of a direc-

tion of slip v and a scalar slip D, Dui¼Dvi, we get

M0ð Þij ¼ dijnknklDS + ninj + njni
� �

mDS [31]

Most seismic sources do not produce normal displacement

discontinuities (fault opening) so that n �n¼0 and the first
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term in [30] is equal to zero. In that case, the seismic moment

tensor can be written as the product of a tensor with the scalar

seismic moment M0¼mDS:

M0ð Þij ¼ ninj + njni
� �

mDS [32]

The first practical determination of the scalar seismic

moment is due to Aki (1966), who estimated M0 from seismic

data recorded after the Niigata earthquake of 1966 in Japan.

Determination of seismic moment has become the standard

way in which earthquakes are measured. All sorts of seismo-

logical, geodetic, and geologic techniques have been used to

determineM0. A worldwide catalog of seismic moment tensors

was made available online by Harvard University (Dziewonski

and Woodhouse, 1983). Initially, moments were determined

by for the limited form [32], but nowadays, the full set of six

components of the moment tensor is regularly computed.

Let us remark that the restricted form of the moment

tensor [32] reduces the number of independent parameters

of the moment tensor from 6 to 4. Very often, seismologists

use the simple fault model of the source moment tensor. In

practice, the fault is parameterized by the seismic moment

plus the three Euler angles of the fault plane. Following the

convention adopted by Aki and Richards (2002), these angles

are defined as d the dip of the fault, f the strike of the fault

with respect to the north, and l the rake of the fault, which is

the angle of the slip vector with respect to the horizontal.
4.02.3.4 Eigenvalues and Eigenvectors of the Moment
Tensor

Since the moment tensor is a symmetrical tensor of order 3, it

has three orthogonal eigenvectors with real eigenvalues, just

like any stress tensor. These eigenvalues and eigenvectors are

the three solutions of

M0v¼mv

Let the eigenvalues and eigenvector be

mi, vi [33]

Then, the moment tensor can be rewritten as

M0 ¼
X
i

miv
T
i vi [34]

Each eigenvalue–eigenvector pair represents a linear dipole.

The eigenvalue represents the moment of the dipole. From

extensive studies of moment tensor sources, it appears that

many seismic sources are very well represented by an almost

pure double-couple model with m1¼�m3 and m2ffi0.

A great effort for calculating moment tensors for deeper

sources has been made by several authors in recent years. It

appears that the non-double couple part is larger for these

sources but that it does not dominate the radiation. For deep

sources, Knopoff and Randall (1970) proposed the so-called

compensated linear vector dipole (CLVD). This is a simple

linear dipole from which we subtract the volumetric part so

that m1+m2+m3¼0. Thus, a CLVD is a source model where

m2¼m3¼�1/2m1. Radiation from a CLVD is very different

from that from a double-couple model, and many seismolo-

gists have tried to separate a double couple from CLVD com-

ponents from the moment tensor. In fact, moment tensors are
better represented by their eigenvalues; separation into a fault

and a CLVD part is generally ambiguous.

Seismic moments are measured in units of Nm. Small

earthquakes that produce no damage have seismic moments

less than 1012 Nm, while the largest subduction events, like

those of Chile in 1960, Alaska in 1964, and Sumatra in 2004,

have moments of the order of 1022–1023 Nm. Large destructive

events like Izmit, Turkey, 1999; Chichi, Taiwan, 1999; and

Landers, California, 1992 have moments of the order of

1020 Nm.

Since the late 1930s, it became commonplace to measure

earthquakes by their magnitude, a logarithmic measure of the

total energy radiated by the earthquake. Methods for measuring

radiated energy were developed by Gutenberg and Richter using

well-calibrated seismic stations. At the time, the general proper-

ties of the radiated spectrumwere not known and the concept of

moment tensor had not yet been developed. Since at present

time earthquakes are systematically measured using seismic

moments, it has become standard to use the following empirical

relation defined by Kanamori (1977) and Hanks and Kanamori

(1979) to convert moment tensors into a magnitude scale:

log10M0 inNmð Þ ¼ 1:5Mw +9 [35]

Magnitudes are easier to retain and have a clearer meaning

for the general public than the more difficult concept of

moment tensor.
4.02.3.5 Seismic Radiation from Moment Tensor Sources
in the Spectral Domain

In actual applications, the near-field signals radiated by earth-

quakes may become quite complex because of multipathing,

scattering, etc., so that the actually observed seismogram, say,

u(t), resembles the source time function O(t) only at long

periods. It is usually verified that complexities in the wave

propagation affect much less the spectral amplitudes in the

Fourier transformed domain. Radiation from a simple point

moment tensor source can be obtained from [22] by straight-

forward Fourier transformation:

euc x,oð Þ¼ 1

4prc3
ℜc y0, f0ð Þ

R
eO oð Þe�ioR=c [36]

where eO oð Þ is the Fourier transform of the source time func-

tion O(t). A well-known property of Fourier transform is that

the low-frequency limit of the transform is the integral of the

source time function, that is,

lim
o!0

eO oð Þ¼
ð1
0

_M0 tð Þdt¼M0

So that in fact, the low-frequency limit of the transform of

the displacement yields the total moment of the source.

Unfortunately, the same notation is used to designate the

total moment release by an earthquake – M0 – and the time-

dependent moment M0(t).

From the observation of many earthquake spectra, and

from the scaling of moment with earthquake size, Aki (1967)

and Brune (1970) concluded that the seismic spectra decayed

as o�2 at high frequencies. Although, in general, spectra are

more complex for individual earthquakes, a simple source

model can be written as follows:
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O oð Þ¼ M0

1 + o=o0ð Þ2 [37]

where o0 is the so-called corner frequency. In this simple

‘omega-squared model,’ seismic sources are characterized by

only two independent scalar parameters: the seismic moment

M0 and the corner frequency o0. Not all earthquakes have

displacement spectra as simple as [37], but the omega-squared

model is a convenient starting point for understanding seismic

radiation.

From [37], it is possible to compute the spectra of ground

velocity _O oð Þ¼ ioO oð Þ. Ground velocity spectra have a peak

situated roughly at the corner frequency o0. In actual earth-

quake spectra, this peak is usually broadened and contains

oscillations and secondary peaks; at higher frequencies, atten-

uation, propagation scattering, and source effects reduce the

velocity spectrum.

Finally, by an additional differentiation, we get the acceler-

ation spectra €O oð Þ¼�o2O oð Þ. This spectrum has an obvious

problem; it predicts that ground acceleration is flat for arbi-

trarily high frequencies. The acceleration spectrum usually

decays after a high-frequency corner identified as fmax. The

origin of this high-frequency cutoff was a subject of discussion

in the 1990s, which was settled by the implicit agreement that

fmax reflects the dissipation of high-frequency waves due to

propagation in a strongly scattering medium, like the crust

and near-surface sediments.

It is interesting to observe that [37] is the Fourier transformof

O tð Þ¼M0o0

2
e� o0tj j [38]

This is a noncausal strictly positive function, is symmetrical

about the origin, and has an approximate width of 1/o0. By

definition, the integral of the function is exactly equal to M0.

Even if this function is noncausal, it shows that 1/o0 controls

the width or duration of the seismic signal. At high frequencies,

the function behaves like o�2. This is due to the slope discon-

tinuity of [38] at the origin.

We can also interpret [37] as the absolute spectral ampli-

tude of a causal function. There are many such functions, one

of them – proposed by Brune (1970) – is

O tð Þ¼M0o2
0t e

�o0tH tð Þ [39]

As for [38], the width of the function is roughly 1/o0 and

the high frequencies are due to the slope break of O(t) at

the origin. This slope break has the same amplitude as that

of [38].
4.02.3.6 Seismic Energy Radiated by Point Moment Tensor
Sources

In Section 4.02.2.4, we discussed the general energy balance

for a seismic source embedded in an elastic medium. The

energy flow for a moment tensor source can be derived from

expression [14], where we replace the force density by its

expression in terms of a moment density [25]. After a few

small changes and integration by parts, we get

Es ¼�DU +

ð1
0

dt

ð
V

Mij _eijdV [40]
Seismic radiation is equal to the reduction in internal strain

energy plus the work of the moment tensor against the elastic

strain rate at the source.

As we have already discussed for a point force, at any

position sufficiently far from the source, energy flow per unit

solid angle is proportional to the square of local velocity [15].

Using the far-field approximation [36], we can follow the same

steps as in [16] to express the radiated energy in terms of the

seismic source time function as

Ec ¼ 1

4prc5
ℜch i2

ð1
0

_O
2
tð Þdt

where c stands again for P- or S-waves and, as in [18],

hℜii2¼1/(4p)
Ð
O(ℜ

i)2dO is the mean square radiation pattern.

We can now use Parseval’s theoremð1
0

_O tð Þ2dt¼ 1

p

ð1
0

o2eO oð Þ2do

in order to express the radiated energy in terms of the seismic

spectrum as

Ec ¼ 1

4p2rc5
ℜch i2

ð1
0

o2O2 oð Þdo [41]

For Brune’s spectrum [37], the integral isð1
0

o2O2 oð Þdo¼ p
2
M2

0o
3
0

so that radiated energy is proportional to the square of

moment. We can finally write

Ec
M0

¼ 1

16prc5
ℜch i2M0o3

0 [42]

This nondimensional relationmakes no assumptions about

the rupture process at the source except that the spectrum is of

the form [37]. Noting that in the Earth, a is roughly
ffiffiffi
3

p
b so that

a5ffi16b5, the amount of energy carried by the S-waves emitted

by a point moment tensor is close to 25 times that carried by

P-waves, if the source spectrum is the same for P- and S-waves.

For finite sources, the partition of energy into P- and S-waves

depends on the details of the rupture process.

Since the energy flow ec can usually be determined in only a

few directions, (y,f) of the focal sphere, the energy-moment

ratio [42] can only be estimated, never computed very pre-

cisely. This problem still persists; in spite of the deployment

of increasingly denser instrumental networks, there will always

be large areas of the focal sphere that remain out of the domain

of seismic observations because the waves in those directions

are refracted away from the station networks, energy is dissi-

pated due to long trajectories, etc.
4.02.3.7 More Realistic Radiation Models

In reality, earthquakes occur in a complex medium that is

usually scattering and dissipative. Seismic waves become

diffracted and reflected and in general suffer multipathing in

those structures. Accurate seismic modeling would require per-

fect knowledge of those structures. It is well known and under-

stood that those complexities dominate signals in certain

frequency bands. For this reason, the simple model presented
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here can be used to understand many features of earthquakes,

and the more sophisticated approaches that attempt to model

every detail of the waveform are reserved only for more

advanced studies. Here, like in many other areas of geophysics,

a balance between simplicity and concepts must be kept

against numerical complexity that may not always be war-

ranted by lack of knowledge of the details of the structures. If

the simple approach were not possible, then many standard

methods to study earthquakes would be impossible to use. For

instance, source mechanism, the determination of the fault

angles d, f, and l, would be impossible. These essential param-

eters are determined by back projection of the displacement

directions from the observer to a virtual unit sphere around the

point source.

A good balance between simple, but robust concepts, and

the sophisticated reproduction of the complex details of real

wave propagation is a permanent challenge for seismologists.

Nowadays, numerical techniques become more and more

common. Our simple models detailed earlier are not to be

easily neglected; in any case, they should always serve as test

models for fully numerical methods.
4.02.4 Finite Source Models

The point source model we just discussed provides a simple

approach to the simulation of seismic radiation. It is probably

quite sufficient for the purpose of modeling small sources

situated sufficiently far from the observer so that the source

looks like a single point source. Details of the rupture process

are then hidden inside the moment tensor source time func-

tion M0(t). For larger earthquakes, and especially for earth-

quakes observed at distances close to the source, the point

source model is not sufficient, and one has to take into account

the geometry of the source and the propagation of rupture

across the fault. Although the first finite models of the source

are quite ancient, their widespread use to model earthquakes is

relatively recent and has been more extensively developed as

the need to understand rupture in detail has been more press-

ing. The first models of a finite fault were developed simulta-

neously by Maruyama (1963) and Burridge and Knopoff

(1964) in the general case, by Ben Menahem (1961, 1962)

for surface and body waves, and by Haskell (1964, 1966)

who provided a very simple solution for the far field of a

rectangular fault. Haskell’s model became the de facto earth-

quake fault model in the late 1960s and early 1970s and was

used to model many earthquakes. In the following, we review

the available finite source models, focusing on the two main

models: the rectangular fault and the circular fault.
4.02.4.1 The Kinematic Dislocation Model

In spite of much recent progress in understanding the dynam-

ics of earthquake ruptures, the most widely used models for

interpreting seismic radiation are the so-called dislocation

models. In these models, the earthquake is simulated as the

kinematic spreading of a displacement discontinuity (slip or

dislocation in seismological usage) along a fault plane. As long

as the thickness of the fault zone H is negligible with respect to

the other length scales of the fault (width W and length L), the
fault may be idealized as a surface of displacement discontinu-

ity or slip. Slip is very often called dislocation by seismologists,

although this is not the same as the concept of a dislocation in

solid mechanics.

In its most general version, slip as a function of time and

position in a dislocation model is completely arbitrary, and

rupture propagation may be as general as wanted. In this

version, the dislocation model is an appropriate description

of an earthquake as the propagation of a slip episode on a fault

plane. It must be remarked, however, that not all slip distribu-

tions are physically acceptable. Madariaga (1978) showed that

Haskell’s model, by far the most used dislocation model, pre-

sents unacceptable features like interpenetration of matter that

make it very difficult to use at high frequencies without impor-

tant modifications. The most serious problem with Haskell’s

model is that strain energy release is infinite, so that this model

is not useful for the study of seismic energy balance. For this

reason, dislocation models must be considered as an interme-

diate step in the formulation of a physically acceptable descrip-

tion of rupture but examined critically when converted into

dynamic models. From this perspective, dislocation models are

very useful step in the inversion of near-field accelerograms

(see, e.g., Wald and Heaton, 1994).

A finite source model can be described as a distribution of

moment tensor sources. Since we are interested in radiation

from faults, we use the approximation [32] for the moment of

a fault element. Each of these elementary sources produces a

seismic radiation that can be computed using the Green func-

tion [17]. The total displacement seismogram observed at an

arbitrary position x is the sum

ui x, tð Þ¼
ðt
0

ð
S

m x0ð ÞDuj x0, tð ÞGij,k x, tjx0,tð Þnk x0ð Þd2x0dt [43]

where Du(x0, t) is the slip across the fault of surface S as a

function of position on the fault (x0) and time t. n is the normal

to the fault and G(x, t) is the elastodynamic Green tensor that

may be computed using simple layered models of the crustal

structure or more complex finite difference simulations.

In a first, simple analysis, we can use the far-field approxi-

mation [22] that is often used to generate synthetic seismo-

grams far from the source (see, e.g., Kikuchi and Kanamori,

1982, 1991). Inserting [22] into [43] and after some

simplification, we get

uc x, tð Þ¼ 1

4prc3

ðt
0

ð
S

ℜc
ijk y, fð Þ
R

mD _uj x0, t� t�R x�x0ð Þ
c

� �
nkd

2x0dt

[44]

where R(x�x0) is the distance between the observer and a

source point located at x0. In almost all applications, the

reference point is the hypocenter, the point where rupture

initiates.

In [44], both the radiation pattern ℜc and the geometric

decay 1/R change with position on the fault. In the far field,

according to ray theory, we can make the approximation that

only travel time changes are important so that we can approx-

imate the integral [44] assuming that both radiation pattern

and geometric spreading do not change significantly over the

fault. In the far field, we can also make the so-called Fraunhofer

approximation:
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R x�x0ð ÞffiR x�xHð Þ�er� x0�xHð Þ
where xH is a reference point on the fault, usually the

hypocenter, and er is the unit vector in the radial direction

from the reference point to the observer. With these approxi-

mations, far-field radiation from a finite source is again given

by the generic expression [22] where the source time function

O is replaced by

O t, y, fð Þ¼ m
ðt
0

ð
S

D _uj x1,x2, t� t+
er�x
c

� �
dx1dx2dt [45]

where x is a vector of component (x1,x2) that measures posi-

tion on the fault with respect to the hypocenter xH. The main

difference between a point and a finite source as observed from

the far field is that in the finite case, the source time function O
depends on the direction of radiation (y,f) through the term

er �x. This directivity of seismic radiation can be very large when

ruptures propagate at high subshear or intersonic speeds

(Chapter 4.09).

The source time function expression [45] is linear in slip

rate amplitude but very nonlinear with respect to rupture

propagation, which is implicit in the time dependence of D _u.

For this reason, in most inversions, the kinematics of the

rupture process (position of rupture front as a function of

time) is simplified. The most common assumption is to

assume that rupture propagates at constant speed away from

the hypocenter. Different approaches have been proposed in

the literature in order to approximately invert for variations in

rupture speed about the assumed constant rupture velocity

(see, e.g., Cotton and Campillo, 1995; Hartzell and Heaton,

1983; Wald and Heaton, 1994; Chapter 4.09).

4.02.4.1.1 Haskell’s rectangular fault model
One of themost widely used dislocationmodel was introduced

by Haskell (1964, 1966). In this model, shown in Figure 4, a

uniform displacement discontinuity spreads at constant rup-

ture velocity inside a rectangular-shaped fault. Although from a

mechanical point of view this model violates simple principles

of continuum mechanics, like continuity of matter, it is a very

useful first approximation to a seismic source. At low frequen-

cies, or wavelengths much longer than the size of the fault, this

model is a reasonable approximation to a simple seismic rup-

ture propagating along a strike-slip fault.

In Haskell’s model, at time t¼0, a line of dislocation of width

W appears suddenly and propagates along the fault at a constant

rupture velocity until a region of length L of the fault has been
W

Slip D

v

L

Figure 4 Haskell’s kinematic model, one of the simplest possible
earthquake models. The fault has a rectangular shape, and a linear
rupture front propagates from one end of the fault to the other at constant
rupture speed v. Slip in the broken part of the fault is uniform and
equal to D.
broken. As the dislocation moves, it leaves behind a zone of

constant slipD. Assuming that the fault lies on a plane of coordi-

nates (x1,x2), the slip function canbewritten as (see alsoFigure 4)

D _u1 x1, x2, tð Þ¼D _s t�x1=vrð ÞH x1ð ÞH L�x1ð Þ
for �W=2< x2 <W=2

[46]

where _s tð Þ is the slip rate time function that in the simplest

version of Haskell’s model is invariant with position on the

fault. The most important feature of this model is the propa-

gation of rupture implicit in the time delay of rupture. x1/vr �vr
is the rupture velocity, the speed with which the slip front

propagates along the fault in the x1 direction. An obvious

unphysical feature of this model is that rupture appears instan-

taneously in the x2 direction, this is of course impossible for a

spontaneous seismic rupture. The other inadmissible feature of

Haskell’s model is the fact that on its borders, slip suddenly

jumps from the average slip D to zero. This violates material

continuity so that the most basic equation of motion (1) is no

longer valid near the edges of the fault. In spite of these two

obvious shortcomings, Haskell’s model gives a simple, first-

order approximation to seismic slip, fault finiteness at a finite

rupture speed. The seismic moment of Haskell’s model is easy

to compute, the fault area is L	W, and slip D is constant over

the fault, so that the seismic moment isM0¼mDLW. Using the

far-field approximation, we can compute the source time func-

tion for Haskell’s model:

OH t, y,fð Þ¼ m
ðW=2

�W=2

dx2

ðL
0

D _s t�x1
vr

+
x1
c
cosfsiny

�
+
x2
c
sinfsiny

�
dx1 [47]

where we used the index H to indicate that this is Haskell’s

model. The two integrals can be evaluated very easily for an

observer situated along the axis of the fault, that is, when f¼0.

Integrating, we get

OH y, 0, tð Þ¼M0
1

TM

ðmin t, TMð Þ

0

_s t� tð Þdt [48]

where TM¼L/c(1�vr/c sin y). Thus, the far-field signal is a

simple integral over time of the source slip rate function. In

other directions, the source time function OH is more complex,

but it can be easily computed by the method of isochrones that

we will explain shortly. Radiation from Haskell’s model shows

two very fundamental properties of seismic radiation: finite

duration given by TM and directivity, that is, the duration and

amplitude of seismic waves depend on the radiation angles y
and f.

A similar computation in the frequency domain was made

by Haskell (1966) for the particular direction f¼0. In our

notation, the result iseOH y,0,oð Þ¼M0sinc oTM=2ð Þe�ioTM=2e_s oð Þ [49]

where sinc(x)¼ sin(x)/x.

It is often assumed that the slip rate time function _s tð Þ is a
boxcar function of amplitude 1/tr and duration tr, the rise

time. In that case, the spectrum eO oð Þ becomes

eOH y, 0,oð Þ¼M0sinc oTM=2ð Þsinc otr=2ð Þe�iw TM + trð Þ=2 [50]

or in the time domain
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OH y, 0, tð Þ¼M0boxcar t, TM½ �*boxcar t, tr½ �
where the star means convolution and boxcar is a function of

unit area that is zero everywhere except that in the time interval

from 0 to tr where it is equal to 1/tr. Thus, OH is a simple

trapezoidal pulse of area M0 and duration Td¼TM+tr. This

surprisingly simple source time function matches the o-squared
model for the far-field spectrum since OH is flat at low frequen-

cies and decays like o�2 at high frequencies. The spectrum has

two corners associated with the pulse duration TM and the other

with rise time tr. This is unfortunately only valid for radiation

along the plane f¼0 or f¼p. In other directions with f 6¼0,

radiation is more complex and the high-frequency decay is of

order o�3, faster than in classical Brune’s model.

In spite of some obvious mechanical shortcomings,

Haskell’s model captures some of the most important features

of an earthquake and has been extensively used to invert for

seismic source parameters in both the near field and far field

from seismic and geodetic data. The complete seismic radia-

tion for Haskell’s model was computed by Madariaga (1978).
4.02.4.2 The Circular Fault Model

The other simple source model that has been widely used in

earthquake source seismology is a circular crack model. This

model was introduced by several authors including Savage

(1966), Brune (1970), and Keylis-Borok (1959) to quantify a

simple source model that was mechanically acceptable and to

relate slip on a fault to stress changes. As we have already

mentioned, dislocations models like Haskell’s produce non-

integrable stress changes due to the violation of material con-

tinuity at the edges of the fault. The circular crack model was a

natural approach to model earthquakes avoiding nonphysical

singularities. In the present section, we will examine the circu-

lar crack model from a kinematic point of view.

4.02.4.2.1 Kostrov’s self-similar circular crack
The simplest possible crack model is that of a circular rupture

that starts from a point and then spreads self-similarly at
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Figure 5 Slip distribution as a function of time on Sato and Hirasawa (1973
constant rupture speed vr without ever stopping. Slip on this

fault is driven by stress drop inside the fault. The solution of

this problem is somewhat difficult to obtain because it requires

very advanced use of self-similar solutions to the wave equa-

tion and its complete solution for displacements and stresses

must be computed using the Cagniard–de Hoop method

(Richards, 1976). Fortunately, the solution for slip across the

fault found by Kostrov (1964) is surprisingly simple:

Dux r, tð Þ¼C vrð ÞDs
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r t

2� r2
q

[51]

where r is the radius in a cylindrical coordinate system centered

on the point of rupture initiation (see Figure 5). Vrt is the

instantaneous radius of the rupture at time t. Ds is the constant

stress drop inside the rupture zone, m is the elastic rigidity, and

C(vr) is a very slowly varying function of the rupture velocity.

For most practical purposes, C�1. As shown by Kostrov

(1964), inside the fault, the stress change produced by the slip

function [51] is constant and equal to Ds. This simple solution

provides a very basic result that is one of the most important

properties of circular cracks. Slip in the fault scales with the ratio

of stress drop over rigidity times the instantaneous radius of the

fault. As rupture radius increases, all the displacements around

the fault scale with the size of the rupture zone.

The circular self-similar rupture model produces far-field

seismic radiation with a very peculiar signature. Inserting the

slip function into the expression for far-field radiation [45],

we get

OK t, yð Þ¼A vr, yð Þt2H tð Þ
where we used an index K to indicate Kostrov’s model. The

amplitude coefficient A is

A vr, yð Þ¼C vrð Þ 2p

1� v2r =c
2sin2y

� �2Dsv3r
(see Boatwright, 1980; Richards, 1976). Thus, the initial rise of

the far-field source time function is proportional to t2 for

Kostrov’s model. The rate of growth is affected by a directivity
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factor in the denominator (1�vr
2/c2 sin y)2 that increases with

the polar angle y and is maximum for y¼p/2.
4.02.4.2.2 The kinematic circular source model of Sato
and Hirasawa
Simple Kostrov’s self-similar crack is not a good seismic source

model for two reasons: (1) rupture never stops so that the

seismic waves emitted by this source increase like t2 without

limit and (2) it does not explain the high-frequency radiation

from seismic sources. Sato and Hirasawa (1973) proposed a

modification of Kostrov’s model that retained its initial rupture

behavior [59] but added the stopping of rupture. They

assumed that the Kostrov-like growth of the fault was suddenly

stopped across the fault when rupture reached a final radius a

(see Figure 5). In mathematical terms, the slip function is

Dux r, tð Þ¼C vrð ÞDs
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r t

2� r2
q

H vrt� rð Þ for t< a=vr

¼C vrð ÞDs
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2� r2

p
H a� rð Þ for t> a=vr

[52]

Thus, at t¼a/vr, the slip on the fault becomes frozen and no

motion occurs thereafter. This mode of healing is noncausal,

but the solution is mechanically acceptable because slip near

the borders of the fault always tapers like a square root of the

distance to the fault tip. Using the far-field radiation approxi-

mation [45], Sato and Hirasawa found that the source time

function for this model could be computed exactly

OSH t, yð Þ¼C vrð Þ 2p

1� v2r =c
2sin2y

� �2Dsv3r t2 [53]

for t<L/vr(1�vr/csiny) where y is the polar angle of the

observer. As should have been expected, the initial rise of the

radiated field is the same as in Kostrov’s model, the initial

phase of the source time function increases very fast like t2.

After the rupture stops, the radiated field is

OSH t, yð Þ¼C vrð Þp
2

1

vr=csiny
1� v2r t

2

a2 1 + vr=csinyð Þ2
" #

Dsa2vr [54]

for times between ts1¼a/vr(1�vr/c sin y) and ts2¼a/vr(1+vr/

c sin y). Radiation from the stopping process is spread in the

time interval between the two stopping phases emitted from

the closest (ts1) and the farthest (ts2) points of the fault. For

times greater than ts2,O returns to zero. The waves radiated by

circular crack present both directivity in the second term and

strong focusing due to the inverse sin y term. Because of this

term, the radiated field O is infinite along the axis of the fault.

It is also possible to compute the spectrum of the far-field

signal ([53] and [54]) analytically. This was done by Sato and

Hirasawa (1973). The important feature of the spectrum is that

it is dominated by the stopping phases at times ts1 and ts2. The

stopping phases are both associated with a slope discontinuity

of the source time function. As we already discussed for Brune’s

model, slope discontinuities produce o�2 high-frequency

asymptotes. This simple model explains one of the most uni-

versal features of seismic sources: The high frequencies radiated

by seismic sources are dominated by stopping phases not by

the energy radiated from the initiation of seismic rupture
(Savage, 1966). These stopping phases are ubiquitous in

dynamic models of faulting.
4.02.4.3 Generalization of Kinematic Models
and the Isochrone Method

A simple yet powerful method for understanding the general

properties of seismic radiation from classical dislocation

models was proposed by Bernard and Madariaga (1984) and

Spudich and Frazer (1984). The method was recently extended

to study radiation from supershear ruptures by Bernard and

Baumont (2005). The idea is that since most of the energy

radiated from the fault comes from the rupture front, it should

be possible to find where energy is coming from at a given

station and at a given time. Bernard and Madariaga (1984)

originally derived the isochrone method by inserting the ray-

theoretical expression [22] into the representation theorem, a

technique that is applicable not only in the far field but also in

the immediate vicinity of the fault at high frequencies. Here,

for the purpose of simplicity, we derive isochrones only in the

far field. For that purpose, we study the far-field source time

function for a finite fault derived in [45]. We assume that the

slip rate distribution has the general form

D _ui x1, x2, tð Þ¼Di t� t x1, x2ð Þð Þ¼Di tð Þ*d t� t x1, x2ð Þð Þ [55]

where t(x1,x2) is the rupture delay time at a point of coordi-

nates x1,x2 on the fault. This is the time that it takes for rupture

to arrive at that point. The star indicates time-domain convo-

lution. We rewrote [55] as a convolution in order to distin-

guish between the slip time function D(t) and its propagation

along the fault described by the argument to the delta function.

While we assume here that D(t) is strictly the same everywhere

on the fault, in the spirit of ray theory, our result remains valid

if D(x1,x2, t) is a slowly variable function of position on the

fault. Inserting the slip rate field [55] in the source time func-

tion [45], we get

O t, y, fð Þ¼ mDi tð Þ*
ðt
0

ð
S0

d t� t x1, x2ð Þ�e�x0
c

h i
d2x0dt [56]

where the star indicates time-domain convolution. Using the

sifting property of the delta function, the integral over the fault

surface S0 reduces to an integral over a line defined implicitly by

t¼ t x1, x2ð Þ + e�x0
c

[57]

the solutions of this equation define one or more curves on the

fault surface (see Figure 6). For every value of time, eqn [57]

defines a curve on the fault that we call an isochrone.

The integral over the surface in [56] can now be reduced to

an integral over the isochrone using standard properties of the

delta function

O t, y, fð Þ¼ mDi tð Þ*
ð
l tð Þ

dt

dn
dl [58]

¼ mDip tð Þ*
ð
l tð Þ

vr
1� vr=ccoscð Þdl [59]

where l(t) is the isochrone and dt=dn¼n�rx0 t¼ vr= 1� vr=ccoscð Þ
is the derivative of t in the direction perpendicular to the
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isochrone. Actually, as shownbyBernard andMadariaga (1984),

dt/dn is the local directivity of the radiation from the isochrone.

In general, both the isochrone and the normal derivative dt/dn

have to be evaluated numerically. Themeaning of [58] is simple,

the source time function at any instant of time is an integral of

the directivity over the isochrone.

The isochrone summationmethod has been presented in the

simplest case here, using the far-field approximation. The

method can be used to compute synthetics in the near field

too; in that case, changes in the radiation pattern and distance

from the source and observer may be included in the computa-

tion of the integral [58] without any trouble. The results are

excellent as shown by Bernard and Madariaga (1984) who

computed synthetic seismograms for a buried circular fault in

a half-space and compared them to full numerical synthetics

computed by Bouchon (1982). With improvements in com-

puter speed, the use of isochrones to compute synthetics is less

attractive, and although themethod can be extended to complex

media within the ray approximation, most modern computa-

tions of synthetics require the appropriate modeling of multi-

pathing, channeled waves, etc. that are difficult to integrate into

the isochrone method. Isochrones are still very useful to under-

stand many features of the radiated field and its connection to

the rupture process (see, e.g., Bernard and Baumont, 2005).
4.02.5 Crack Models of Seismic Sources

As we havementioned several times, dislocationmodels capture

some of the most basic geometric properties of seismic sources

but have several unphysical features that require careful consid-

eration. For small earthquakes, the kinematic models are
generally sufficient, while for larger events – especially in the

near field – dislocationmodels are inadequate because theymay

not be used to predict high-frequency radiation. A better model

of seismic rupture is of course a crack model like Kostrov’s self-

similar crack. In crack models, slip and stresses are related in a

very precise way, so that a finite amount of energy is stored in the

vicinity of the crack. Griffith (1920) introduced crack theory

using the only requirement that the appearance of a crack in a

body does two things: (1) it relaxes stresses and (2) it releases a

finite amount of energy. This simple requirement is enough to

define many of the properties of cracks, in particular energy

balance (see, e.g., Freund, 1989; Kostrov and Das, 1988; Rice,

1980; see alsoChapter 4.03, Fracture and FrictionalMechanics).

Let us consider the main features of a crackmodel. Referring

to Figure 7, we consider a planar fault lying on the plane x, y

with normal z. Although the rupture front may have any shape,

it is simpler to consider a linear rupture front perpendicular to

the x-axis and moving at speed vr in the positive x direction.

Three modes of fracture can be defined with respect to the

configuration of Figure 7:

• Antiplane, mode III or SH, when slip is in the y direction

and stress drops also in this direction, that is, stress szy is
relaxed by slip.

• Plane, or mode II, when slip is in the x direction and stress

drops also in this direction, that is, stress szx is relaxed by

this mode.

• Opening, or mode I, when the fault opens with a displace-

ment discontinuity in the z direction. In this case, stress szz
drops to zero.

In natural earthquakes, the opening mode is unlikely to

occur at large scales, although it is perfectly possible for very
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small cracks to appear due to stress concentrations, geometric

discontinuities of the fault, etc.

For real ruptures, when the rupture front is a curve (or

several disjoint ruptures if the source is complex), modes II

and III will occur simultaneously on the periphery of the crack.

This occurs even in the simple self-similar circular crack model

we studied earlier. Fortunately, in homogeneous media, except

near-sharp corners and strong discontinuities, the two modes

are locally uncoupled, so that most features determined in 2-D

carry over to 3-D cracks with little change.

In order to study a two-dimensional crack model, we solve

the elastodynamic wave equation together with the following

boundary conditions on the z¼0 plane. For antiplane cracks,

mode III:

szy x, 0ð Þ ¼Ds for x< l tð Þ
uy x, 0ð Þ ¼ 0 for x> l tð Þ

[60]

For plane cracks, mode II:

szx x, 0ð Þ ¼Ds for x< l tð Þ
ux x, 0ð Þ ¼ 0 for x> l tð Þ

[61]

where l(t)¼vrt is the current position of the rupture front on

the x-axis. These boundary conditions define a mixed bound-

ary value problem that can be solved using complex variable

techniques. The solution for arbitrary time variation of l(t) was

found for mode III by Kostrov (1966). For plane ruptures, the

solution for arbitrary l(t) was found by Freund (1972) (see also

Kostrov and Das, 1988). Eshelby (1969) showed that the crack

problems have a number of universal features, which are inde-

pendent of the history of crack propagation and depend only

on the instantaneous rupture speed.

4.02.5.1 Rupture Front Mechanics

Since stresses and velocities around a rupture front have uni-

versal properties, we can determine them by studying the sim-

pler crack that propagates indefinitely at constant speed. This

can be done using a Lorentz transformation of the static elas-

ticity. We are not going to enter in the details of the determi-

nation of the solution of the wave equation in moving

coordinates; very succinctly, the stress and velocity fields
around the crack tip are related by a nonlinear eigenvalue

problem solved by Muskhelishvili in his classical work on

complex potentials. There are an infinite number of solutions

of the problem, but only one of them ensures a finite energy

flow into the crack tip. All other produce no flow or

infinite flow.

Along the fault, stress and particle velocities have the uni-

versal forms (see Figure 8)

s xð Þ ¼ Kffiffiffiffiffiffi
2p

p 1

x� l tð Þ½ �1=2
for x> l tð Þ

D _u xð Þ ¼ Vffiffiffiffiffiffi
2p

p 1

x� l tð Þ½ �1=2
for x< l tð Þ

[62]

and the relations [60] or [61] on the rest of the line. Here, s
stands for either syz or sxz and D _u for the corresponding slip

velocity component in either antiplane or plane fracture

modes. In [62], K is the stress concentration, a quantity with

units of Pa m1/2 that represents the strength of the stress field

near the rupture front. V is the dynamic slip rate intensity,

which is related to K by

K ¼ m
2vr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r =b

2
q

V [63]

for antiplane cracks, where m and b are the elastic rigidity and

shear wave speed, respectively. For plane cracks, the relation is

more complicated

K ¼ m
2vr

b2

v2r

R vrð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r =b

2
q [64]

where R(vr) is the Rayleigh function

R vrð Þ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r =b

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2r =a2
q

� 2� v2r =b
2

� �2
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The complete angular dependence of the stress and particle

velocity fields is given by Freund (1989). The inverse squared-

root singularities of the form [62] only occur if the rupture

velocity is less than the classical limiting rupture speeds: the

shear wave velocity b for antiplane ruptures and the Rayleigh

wave speed cR�0.91b for inplane cracks. At the terminal speed,

the coefficient relating K and V reduces to zero, meaning that at

the terminal speed the stress concentration K disappears.

A crack running at the terminal speed releases no energy; this

speed is thus only possible if there are no rupture resistance

and no friction on the fault.

Both experimental evidence and observational evidence

cited by Rosakis et al (1999) showed that it is possible for

mode II shear cracks to propagate at speeds faster than the

shear wave speed in a so-called supershear mode first put in

evidence numerically by Andrews (1976). For supershear

speeds, the stress and velocity concentration have different

dependence with distance than the squared root for subshear

faults except for a very particular rupture speed
ffiffiffi
2

p
b, some-

times called the Eshelby speed.

The stress field in [62] is infinite at the rupture front; this is

a consequence of the idealization that was made to obtain

these results: It was assumed that the material around the

fault remained elastic even in the immediate vicinity of the

rupture front. If more realistic frictional boundary conditions

are used instead of the abrupt discontinuities implied by [60]

and [61], then the singularity disappears inside a small zone

called the rupture process, or slip-weakening zone. Many

global features of the crack model can be derived with the

simple elastic model studied here; more detailed studies

involving a finite slip-weakening zone are only needed to

study crack growth in detail.
4.02.5.2 Stress and Velocity Intensity

K and V in [62] have a simpler more fundamental structure that

was discovered by Eshelby (1969) for the antiplane case and

later extended to plane shear cracks by many authors as

reviewed by Freund (1989). Both the dynamic stress intensity

factor and the velocity intensity factors can be written in

the form

K ¼ k vrð ÞK*
V ¼ b vrð ÞV* [65]

where, for an antiplane crack,

kIII vrð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vr=b

p
and, for a mode II crack,

kII vrð Þ� 1� vr=cr

which is a very good approximation; the exact expression for kII
can be found in the books by Freund (1989) and Kostrov and

Das (1988).

The factors K * and V* in [65] depend only on the load

applied to the fault. In the case of an earthquake, they are

determined by the stress drop inside those segments of the

fault that have already slipped. Since k(vr)!0 as the rupture

velocity tends to zero, K* is simply the stress intensity that

would prevail if the rupture velocity dropped instantaneously
to zero. Thus, K * is often called the zero-speed stress intensity

factor; it depends only on the history of rupture and stress drop

inside the broken parts of the fault. Some authors interpret this

property of faults mechanics as meaning that rupture fronts

have no inertia and their rupture speed can change instanta-

neously if rupture resistance increases or if the rupture front

encounters some geometric discontinuity like a fault jog or

a kink.
4.02.5.3 Energy Flow into the Rupture Front

We already mentioned that the stress and slip singularities are a

consequence of the requirement that there is a finite energy

flow into the rupture front. This energy is used to create new

fault surface and is spent in overcoming frictional resistance of

the fault. The energy flow into the crack tip was first computed

by Kostrov and Nikitin (1970) who provided a very complete

discussion of the problem.

The energy flow per unit area of crack advance is usually

called Gc

Gc ¼ 1

4vr
KV [66]

for all the modes, so that for mode III,

GIII ¼ 1

2m
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2r =b
2

q K2

and, for mode II,

GII ¼ 1

2m
v2r
b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2r =b

2
q

R vrð Þ K2

Let us note that K2 tends to zero as the rupture velocity vr
approaches the Rayleigh wave speed, so that GII vanishes at

the terminal speed.

The crack models are mostly concerned with the local con-

ditions near the edge of the fault as it propagates inside the

elastic medium. This is the principal subject of fracture

mechanics. In seismology, we are interested not only on the

growth of ruptures but also on the generation of seismic waves.

Earthquakes are three-dimensional and the finiteness of the

source plays a fundamental role in the generation of seismic

waves.
4.02.5.4 The Circular Crack

The simplest fault model that can be imagined is a simple

circular crack that grows from a point at a constant or variable

rupture speed and then stops on the rim of the fault arrested by

the presence of unbreakable barriers. The first such simple

model was proposed by Madariaga (1976). Although this

model is unlikely to represent any actual earthquake, it does

quite a good job in explaining many features that are an

intrinsic part of seismic sources, most notably the scaling of

different measurable quantities, like slip, slip rate, stress

change, and energy release. The circular crack problem is

posed as a crack problem, which is in terms of stresses not

of slip.
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We start by a quick study of a simple circular crack from

which we derive some of the most fundamental properties of

dynamic source models. Let us consider a static circular

(‘penny-shaped’) crack of radius a lying on the x, y plane.

Assuming that the fault is loaded by an initial shear stress

sxz
0 and that the stress drop

Ds¼ s0xz�sfxz

is uniform, where sxz
f is the final, residual stress in the fault

zone (Chapters 4.08 and 4.06), the slip on the fault is given by

Dux rð Þ¼D rð Þ¼ 24

7p
Ds
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2� r2

p
[67]

where r is the radial distance from the center of the crack on the

(x, y) plane, a is the radius of the crack, and m is the elastic

rigidity of the medium surrounding the crack (see Figure 9).

Slip in this model has the typical elliptical shape that we

associate with cracks and is very different from the constant

slip inside the fault assumed in Haskell’s model. The taper of

the slip near the edges of the crack is of course in agreement

with what we discussed about the properties of the elastic fields

near the edge of the fault. From [67], we can determine the

scalar seismic moment for this circular fault

M0 ¼ 16

7
Dsa3 [68]

so that the moment is the product of the stress drop times the

cube of the fault size. This simple relation is the basis of the

seismic scaling law proposed by Aki (1967). The circular crack

model has been used to quantify numerous small earthquakes

for which the moment was estimated from the amplitude of

seismic waves and the source radius was estimated from corner

frequencies, aftershock distribution, etc.; the result is that for

shallow earthquakes in crustal seismogenic zones like the San

Andreas Fault or the North Anatolian Fault in Turkey, stress

drops are of the order of 1–10 MPa. For deeper events in

subduction zones, stress drops can reach several tens of MPa.

Thus, in earthquakes, stresses do not change much, at most a

couple of order of magnitudes, while source radius varies over

several orders of magnitudes frommeters to 100 km ormore. It

is only in this sense that the usual assertion ‘stress drop in

earthquakes is constant’ should be taken; it actually changes

but much less than the other parameters in the scaling law.

Finally, let us take a brief view of the stress field in the

vicinity of the fault radius. As expected for crack models, the

stress presents stress concentrations of the type [62], that is,
a−a

Δu(r)

Figure 9 Static circular crack model. On the left, the slip distribution as a fu
change. Inside the fault, stress drops by a constant amount, and outside the
sxz r,fð Þ¼ KIIcosf+KIIIsinfð Þffiffiffiffiffiffiffiffiffiffi
r�a

p

where (r,f) are polar coordinates on the plane of the circular

fault with f being measured from the x-axis. The stress inten-

sity factors are

KII ¼ 16

7
ffiffiffi
p

p 1

1� v
Ds

ffiffiffi
a

p
and KIII ¼ 16

7
ffiffiffi
p

p Ds
ffiffiffi
a

p

where v is Poisson’s ratio. It is interesting to note that even if

the slip distribution [67] was radially symmetrical, the stress

distribution is not. Stress concentration in the mode II direc-

tion is stronger than in the antiplane one. As a consequence, if

rupture resistance is the same in plane and antiplane modes, a

circular crack has an unstable shape. This is clearly observed in

fully dynamic simulations where the faults become invariably

elongated in the inplane direction.

The creation of a static circular crack with slip [67] inside an

elastic medium of rigidity m produces an elastic energy release

DU¼ 8

7

Ds2

m
a3 [69]

This is the maximum energy that is available for radiation

from the dynamic rupture of the circular crack. In reality, the

creation of the crack reduces the amount of energy radiated by

the energy required to generate the new fault surface.

The simplest physically realistic source model is a circular

crack that grows initially at constant speed vr as predicted by

the self-similar Kostrov’s model [51] for times less than a/vr and

then evolves spontaneously while it heals. Such a model is

usually called quasidynamic because rupture speed is imposed

but slip is computed from a properly posed mechanical prob-

lem (Madariaga, 1976). There are no simple analytic solutions

equivalent to that of Sato and Hirasawa (1973) for quasidy-

namic cracks. We are forced to use numerical solutions that are

actually very simple to obtain using either finite difference or

boundary integral equation techniques. The full solution to the

circular crack problem is shown in Figure 10. Initially, until the

sudden arrest of rupture at the final radius a, the slip distribu-

tion can be accurately computed using Kostrov’s self-similar

solution [51]. The stopping of rupture generates strong healing

waves that propagate inward from the rim of the fault. These

waves are of three types: P-, S-, and Rayleigh waves. Soon after

the passage of the Rayleigh waves, slip rate inside the fault

decreases to zero and the fault heals. After healing, we assume

that frictional forces are sufficiently strong that no slip will
−a a

Δs (r)
K (r − a)−1/2

Δs

nction of radius of the fault. On the right, the corresponding shear stress
fault, inverse square root stress concentrations appear.
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occur until the fault is reloaded. As observed in Figure 10, it is

clear that slip and rise time are functions of position on the

fault, the rise time being much longer near the center where

slip is also larger than near the edges of the fault where slip is

clamped. Finally, let us note that the slip after healing is very

similar to that of a static circular crack, except that there is an

overshoot of slip with respect to the static solution [67]. The

overshoot is of course a function of the rupture speed, but its

maximum value is of the order of 15% for a rupture speed of

0.75b. The quasidynamic circular crack model was recently

studied with a high-resolution numerical method by Kaneko

and Shearer (2014). Their results are similar to those of

Madariaga (1976) except that the numerical coefficient relating

the corner frequency to the radius of the fault has increased. We

refer to them for a detailed study of the radiation from the

circular crack. Here, we turn to fully dynamic sources.
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Figure 12 Far-field pulses radiated by the circular crack in two
directions of space: y is the polar angle measured from the axis of the
circular crack and f is the azimuth measured from the direction of
slip. Thus, f¼0 is the direction of inplane motion (mode II) and f¼90


is the direction of mode III.
4.02.5.5 The Dynamic Circular Fault in a Homogenous
Medium

The circular crack model was originally proposed by Brune

(1970) to explain the omega-squared model of the radiated

spectrum. This model is widely used to obtain information

about seismic sources, to compute stress change and radiated

energy. In this section, we study the spontaneous propagation

of rupture away from a small initial asperity that is arrested by

an unbreakable circular barrier. This is the simplest realistic

source model that we can study. Our study will show the role

of rupture propagation, stopping phases, and healing phases

for a very simple geometry.

We modeled a circular fault embedded inside a homoge-

neous elastic medium where P-wave velocity was 6400 m s�1,

the P-to-S velocity ratio was 1.73, and the density was 2700

Kg m�3. Stress drop, the difference between initial stress in the

fault and the residual stress after slip rate has decreased to zero,

was 4.5 MPa. In the dynamic model, rupture propagation is

controlled by a slip-weakening friction law (Ida, 1972) with a

peak stress of 8 MPa, a slip-weakening distance of 0.2 m, and

an energy release rate of Gc¼0.8 J m�2 (Chapter 4.06).

We modeled the circular fault using a staggered grid finite

difference code proposed by Madariaga et al (1998). The

space and time steps were 200 m and 0.01 s, respectively.

Rupture starts from a small circular asperity where stress is

at the static friction level and then propagates spontaneously

until it is arrested by an unbreakable barrier of radius of

20 km concentric with the initial asperity. Since we are inter-

ested in comparing spontaneous rupture simulations with the

quasidynamic circular crack model, we used a stress drop of

4.5 MPa so that the rupture does not become supershear in

our simulation. Snapshots of slip rate are shown in Figure 11

at several successive instants of time measured in seconds. We

observe that after 2 s, rupture has become elongated in the

horizontal direction, which is also the direction of the initial

stress. In this direction, mode II prevails. In the transverse

direction (vertical), slip is in mode III. Thus, as already

remarked by Das (1980) and Day (1982), rupture tends to

grow faster in the inplane direction, which is dominated by

mode II. At time t¼6 s, rupture has reached the unbreakable

border of the fault in the inplane direction, and at time t¼7 s,
the stopping phases generated by the top and bottom edges of

the fault have started to move toward the center of the fault.

The snapshot at t¼8 s shows stopping phases propagating

inward from all directions. The slipping patch in darker

color is now elongated in the antiplane direction, which is

due to slower healing. The duration of the rupture process is

slightly longer than 8 s.

Let us now study the radiation from the dynamic circular

fault. These circular crack models are widely used to study

seismic radiation. How much does spontaneous rupture affect

the radiation of circular crack models? As expected for a finite

rupture model, there are significant variations in the seismic

signals radiated in different direction of space. To illustrate this

variability, we show in Figure 12 the radiation in two direc-

tions: along the mode II direction and along the transverse or

mode III direction. The angle y is the polar angle measured

from the normal to the fault plane, and f is the azimuth

measured from the direction of slip on the fault. The displace-

ment signals are shown in Figure 12 in two different directions

(f¼0
 and f¼90
). Both have roughly the same duration of

about 10 s but are quite different because one of them

(f¼90
) has larger displacement at the beginning of the

signal, while the other is stronger near the end. The reason is

that stopping phases, the abrupt change in slope in the figures,
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Figure 13 Far-field Fourier spectrum for the two far-field signals shown in Figure 12. The spectra have the typical inverse o-squared decay at high
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have different relative weights. This difference is in turn due to

directivity that is very large in the forward direction (f¼0
)
and is minimal in the transverse direction (f¼90
). The cor-

responding amplitude spectra are shown in Figure 13. As pre-

dicted by Aki (1967) and Brune (1970), these have the typical

o�2 spectral decay at high frequencies. The corner frequencies

vary from 0.1 to 0.12 Hz. It is not surprising that very different

time-domain signals produce similar spectra. The reason is that

spectra are dominated by the stopping phases, which carry the

information about rupture arrest. Although arrest is faster in the

inplane direction, the difference in arrival time of the stopping

phases is not very large so that the main features of the spec-

trum are preserved. It is possible to study the variation of

corner frequency as a function of the polar angle and azimuth,

but the effect of moving the initiation point with respect to the

circular border is much more important.
4.02.6 Conclusions

The study of seismic radiation from realistic source models has

reached now its maturity. Seismologists have been able to

invert the rupture process of a number of earthquakes, and

many of the features predicted by simple dynamic source

models have been quantified and observed. Foremost among

these is the shape of the far-field spectrum, the basic scaling

laws relating particle velocity and acceleration to properties of

the fault, like size, stress drop, and rupture velocity. The fron-

tier today is the accurate estimation and interpretation of seis-

mic energy and, therefore, the quantification of radiation in

terms of the energy balance of seismic sources.

Recent inversions of earthquake slip distributions using

kinematic source models have found very complex source
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distributions that require an extensive reappraisal of classical

source models that were mostly based on Kostrov’s model of

self-similar circular crack. Ruptures in a fault with heteroge-

neous stress and rupture resistance distributions follow very

tortuous paths. While on the average, the rupture propagates at

a sub-Rayleigh speed from one end of the fault to another, in

detail, the rupture front can wander in all directions following

the areas of strong stress concentration and avoiding those

with low stress or high rupture resistance. If this view of earth-

quake rupture was to be confirmed by future observations (we

believe it will be), then many current arguments about earth-

quake complexity, narrow rupture pulses, and earthquake

distributions will be solved, and we may concentrate on the

truly interesting problem of determining which features of

friction determine that fault stress is always complex under

all circumstances.
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