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Abstract Based on a new quantitative analysis of side-

scan sonar data combined with coring, we propose a

revised model for the origin for Mediterranean Ridge mud

volcanism. Image analysis techniques are used to produce a

synthetic and objective map of recent mud flows covering a

640 · 700 km2 area, which represents more than half of

the entire Mediterranean Ridge mud belt. We identify 215

mud flows, extruded during the last 37,000–60,000 years.

This time period corresponds to the limit of penetration of

the sonar, that we evaluate through geoacoustic modeling

of the backscattered signal returned by the mud breccia-

hemipelagites contact, and calibrate by coring. We show

that during this period, at least 96% of the mud volume has

been extruded at the Mediterranean Ridge-Hellenic back-

stop contact, the remaining being scattered over the prism.

We suggest that the source is a Messinian (5–6 Ma) mud

reservoir that remained close to the backstop contact, at

variance with the classical transport-through-the-wedge

model. A revised mud budget indicates that steady-state

input is not needed. We propose that the source layer was

deposited in deep and narrow pre-Messinian basins, sealed

by Messinian evaporites, and finally inverted in post-

Messinian times. Onset of motion of the Anatolia-Aegea

microplate in the Pliocene resulted in change from slow to

fast convergence, triggering shear partitioning at the edges

of the backstop and basin inversion. Mud volcanism initi-

ation is probably coeval with the latest events of this

kinematic re-organization, i.e. opening of the Corinth Gulf

and activation of the Kephalonia fault around 1–2 Ma.

Keywords Mediterranean Ridge � Mud volcanism �
Acoustic characterization � Backscatter � Geodynamics �
Messinian evaporites � Accretionary prism � Backstop �
Strike-slip faults

Introduction

Mud volcanoes have been found in various geological

contexts in the Mediterranean seas, including Tertiary and

Mesozoic basins (Alboran Sea, Black Sea, Levantine

Basin, see Pérez Belzuz et al. (1997), Ivanov et al.

(1996b), Netzeband et al. (2006)), Neogene accretionary

prisms (Mediterranean Ridge; Calabrian Prism, see

Ceramicola et al. (2006); Gulf of Cadiz, see Van Rens-

bergen et al. (2005) and Hensen et al. (2007)), and

sedimentary cones (Nile, see Loncke et al. (2004)). In the

Eastern Mediterranean, mud volcanism is present as one

more or less continuous belt along the Mediterranean

Ridge referred to as the Mediterranean Ridge mud diapiric

belt (Limonov et al. 1996). As in other marine accretionary

environments associated with mud volcanism, and in par-

ticular the Barbados prism, the Mediterranean Ridge mud

fields have been related to dewatering of the Mediterranean

sediments incorporated into the prism in the context of

subduction of the African plate beneath the Anatolia plate.

In many accretionary complexes, mud volcanoes are

found close to the frontal thrust—generally within the first

tens of kms of prism—and in several cases seaward of it.

At the eastern end of the Java Trench, mud volcanoes and

mud ridges parallel the thrust front, some 10–15 km

ahead of it (Breen et al. 1986). Mud volcanoes are

reported in the same region ahead of the Flores thrust

(Silver et al. 1986) and Wetar thrust (Breen et al. 1989).

Mud mounds are also described in the proto-thrust zone
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of the eastern Nankai thrust (Kobayashi et al. 1992). Mud

ridges and domes were discovered immediately off the

Burma front in the Bengal plain (Nielsen et al. 2004), as

well as within the prism, in a subduction context. The

best studied example so far is the Barbados accretionary

prism (Brown and Westbrook 1988; Henry et al. 1990; Le

Pichon et al. 1990; Sumner and Westbrook 2001). There,

exhaustive surveys indicate that mud volcanoes are found

evenly scattered in the outer portion of the prism (Brown

and Westbrook 1988).

In contrast with the Barbados accretionary complex,

mud volcanism of the Mediterranean Ridge is not uni-

formly distributed, but concentrates into an inner belt at the

prism-backstop contact (Camerlenghi et al. 1995; Huguen

et al. 2004). This paper addresses the distribution of mud

volcanism with respect to the main geological contacts

(frontal thrust, wedge-backstop backthrust), by use of

multibeam and acoustic data covering the western and

central Mediterranean Ridge. Image analysis techniques

are used to automatically extract mud flows from reflec-

tivity images. The results are validated with available cored

material. We present a map of the mud volcanism that

covers an area of 600 · 740 km, and discuss it in terms of

mud volcanoes distribution within different parts of the

prism. We estimate that 96% of the mud volume is

expelled in the so-called inner belt, the outer belt playing a

marginal role in the overall mud budget. We propose an

alternative to the dewatering wedge model that we call the

‘‘reservoir model’’. In this model, the source for mud

volcanism is assumed to be mud deposited close to the

wedge-backstop contact in deep pre-Messinian forearc

basins, which were later inverted. We test this new scenario

against recent tectonics of the Hellenic arc and Aegean

domain.

Mud volcanism over the western Mediterranean Ridge

Over the last 10 years, the eastern branch of the Mediter-

ranean Ridge has been heavily surveyed and sampled using

side-scan sonar, seismics, submersible, coring, dredging,

and in-situ fluids sampling, with a focus on several

important mud fields: Olimpi, United Nations, Strabo,

Anaximander, Florence Rise, Nile cone (see Fig. 1, labels

f–k). The morphology of the mud volcanoes, their possible

control by tectonic features and the mechanisms of extru-

sion were described (see recent works by Huguen (2001);

Huguen et al. (2004); Zitter (2004); Zitter et al. (2005);

Huguen et al. (2005, 2006)).
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Fig. 1 Geological setting of the Eastern Mediterranean, showing the

Mediterranean Ridge in contact with the Aegean backstop. The empty

stars figure the surveyed mud volcano fields, (a) Kephalonia, (b)

Cobblestone, (c) Pan di Zucchero, (d) Olimpi and Prometheus 2, (e)

United Nations, (f) Strabo, (g) Anaximander Mountains, (h) Nile

Cone, (i) St Pauli. Motion of the backstop with respect to Africa is

taken from Kreemer and Chamot-Rooke (2004). Dashed frame figures

the extent of Figs. 2 and 7
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On the other hand, mud fields in the western part of the

Mediterranean Ridge (west of 24� E) remain poorly

known. Two areas were surveyed and cored in this western

portion, mainly by Italian teams:

(1) The Cobblestone area was discovered and investi-

gated during several cruises between 1978 and 1988

(Cita et al. 1981; Ryan et al. 1982; Cita et al. 1982).

It is located southwest of the Peloponnesus, close to

the crest of the Mediterranean Ridge in the Ionian Sea

(Fig. 1, western branch of the Mediterranean Ridge,

label b). Mud volcanism was confirmed by coring and

sonar images (Cita et al. 1981; Ryan et al. 1982;

Limonov et al. 1995).

2) The Pan di Zucchero area is located half-way between

Crete and Libya (Fig. 1, central branch of the Med-

iterranean Ridge, label d), in a broad area that has been

mapped as the highest point of the Mediterranean

Ridge (Camerlenghi et al. 1992, 1995; Hieke et al.

1996). The very top of the Mediterranean Ridge is an

elevation observed west of the Pan di Zucchero 2, and

called Antaeus high (Hieke et al. 1996). Coring and

seismic surveys (Camerlenghi et al. 1992, 1995;

Staffini et al. 1993; Fusi and Kenyon 1996; Hieke

et al. 1996) suggested that the elongated domes that

form the top of the Mediterranean Ridge are actually

mud diapirs, rather than mud volcanoes.

Three new mud fields were identified and named in the

course of this study: the Kephalonia area (Fig. 1, western

branch of the Mediterranean Ridge, label a), the Médée

area (Fig. 1, western branch of the Mediterranean Ridge,

label c), and the Beautemps-Beaupré area (Fig. 1, central

branch of the Mediterranean Ridge, label e). The extension

of the latter was completed during the SIMED-MEDOR cruise

in 2004 (Huguen et al. 2006, not included in this study).

We focus on a large area of 600 · 740 km based on the

MEDEE marine survey of the R/V l’Atalante in the Eastern

Mediterranean. The swath mapping using the Simrad

EM12-D multibeam echo-sounder (operated at 12–13 kHz)

provided a set of detailed bathymetric maps contoured at an

interval of 20 m, and reflectivity images showing the

strength of the sea-floor backscattering of the side-scan

sonar signal. The survey includes the five mud fields

identified in the Mediterranean Ridge west of 24� E,

namely Kephalonia, Cobblestone, Médée, Pan di Zucchero

and Beautemps-Beaupré areas, and was divided into 19

maps at a scale of 1:150,000 (Fig. 2a). Each of them was

analysed in terms of high backscattered intensity patches,

known to indicate fresh mud flows. Marine mammals are

suspected to find these acoustic bright spots by echolocation

and to feed themselves on the abundant associated benthic

fauna (Woodside et al. 2006). The maps were cut so they

overlap each other on their four sides. Finally, we used the

overlapping to check the coherence of the results of the

image analysis between two or more neighbour maps.

Characteristic features extraction from multibeam data

and reflectivity images

Figure 2b shows an image of the acoustic reflectivity recor-

ded over the Mediterranean Ridge during the MEDEE cruise.

Striking features include the lower backscatter intensity of

the backstop with respect to that of the Mediterranean Ridge,

and the unevenly scattered patches of very high reflectivity

that concentrate at the prism-backstop boundary. This very

strong acoustic backscattering signature and the mound-

shape morphology are two major characteristics of a mud

volcano that we briefly summarize below.

Backscattering of an acoustic wave on a layer of sedi-

ment is the result of two contributions (Hamilton 1980;

Jackson et al. 1986): (1) a surface backscattering at the

interface between water and sediments, and (2) a volume

backscattering, both strongly correlated to the presence of

heterogeneities (e.g. clasts, gas inclusions, carbonate

crusts). The high backscatter intensity on the sea floor

seems to be closely related to the nature of the erupted

material (Cita et al. 1981; Staffini et al. 1993; Zitter et al.

2005). The mud breccia contain clasts and gas which form

the volume scatterers of the acoustic signal (Volgin and

Woodside, 1996). A thorough review of the possible causes

of high backscatter can be found in Zitter et al (2005).

The morphology of a typical mud volcano is charac-

terized by a more or less mounded topography, with a top

culminating between 50 m and 200 m above the regional

sea-floor level (Cita et al. 1981; Ryan et al. 1982;

Camerlenghi et al. 1992). Almost all of the mud volcanoes

investigated and checked in the Mediterranean Ridge have

shown gentle slopes, ranging between 5� and 10�
(Camerlenghi et al. 1992; Hieke et al. 1996; Galindo-

Zaldivar et al. 1996). An exception is the Napoli mud

volcano in the Olimpi mud volcano field, which shows

unusual step-like flanks, with slopes up to 16�. Another

characteristic feature of most mud volcanoes is the collapse

ring structure around the principal eruption conduit (Ivanov

et al. 1996b). This rim syncline around the mud dome was

considered to be the result of salt dissolution (Hieke et al.

1996). Other authors consider this explanation as less likely

(Galindo-Zaldivar et al. 1996) as there is no systematic

evidence for salt dissolution (for example depressions

along fault systems, or around smaller mud volcanoes), and

there is ample evidence of collapse structure around mud

volcanoes in areas where salt is not present in the upper

sedimentary section (for example in the Black Sea). These

authors suggest that the ring depressions are probably a
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consequence of the load of the volcano on poorly consol-

idated sediments.

We analysed the reflectivity images using a two-stage

procedure. The first step is an automated analysis of the

seafloor acoustic reflectivity. Figure 3 shows a schematic

flow chart of the reflectivity image typical analysis. An

example of a reflectivity image is given (Fig. 3a). The

image analysis procedure is detailed in Appendix A. The

result of the processing is two twin images representing

the medium (Fig. 3c) and high reflectivity (Fig. 3d).

The second step of our analysis is the identification of

mud flows and the removal of artefacts. We particularly

consider tectonic and geomorphologic effects, such as land

slides on steep slopes, coarse-grained filled basins, or the

crest of active folds, as they can also result in high back-

scatter intensity. Both reflectivity maps are used with the

bathymetry, the morpho-structural interpretation (Chamot-

Rooke et al. 2005b) and core information where available,

to produce a map (Fig. 3e), that can be superimposed on

bathymetry and structures (Fig. 4). In the course of this

morphologic analysis, we observed that each flow is almost

systematically associated with mounded relief. A detailed

inspection of morpho-bathymetry indicates very few

mounded structures that are not associated with high

reflectivity patches. These could possibly be buried and

thus undetected mud volcanoes.
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Correlation between cored material and reflectivity

Figure 4 shows the Cobblestone area, with the two specific

areas surveyed between 1978 and 1995. We show the

location and numbers of the piston and gravity cores and

the named mud volcanoes. The characteristics of the cores

recovered in the Cobblestone and Pan di Zucchero areas

are given in Table 1. All the mud volcanoes checked by

core analysis (Cores 24, 25E, 28 and 38, and Cores 160G,

162G and 164G) have been properly inferred from image

analysis (Aros, Novorossiysk, Prometheus Dome and

Unnamed mud volcanoes).

Figure 5 shows a detailed view of Areas 1a and b,

together with their original seafloor acoustic reflectivity,

and the location of the piston and gravity cores. In Area 1a,

the shape of the inferred mud flow from the Prometheus

Dome corresponds particularly well with the extension of

the mud breccia, as found by the tight coverage of the

piston coring. The northern part of this mud flow ends

abruptly, as we see that Core 31, which is 11.25 m-long

and located at the rim of the mud flow, does not show any

occurrence of mud breccia. Core 21 is reported to have

recovered only mud breccia, but on the outside of the core

barrel (Cita et al. 1982). We do not see any reflectivity

associated with it. Furthermore, Core 20, located about

400 m east of Core 21, and 4.6 m long, does not show any

occurrence of mud breccia nor any reflectivity. It is then

likely, as stated by Cita et al. (1982), that the mud breccia

subsurface contact is too deep (ca. 2 m below seafloor,

mbsf) to induce any significant reflectivity.

In Area 1b of the Cobblestone area, mud breccia was

found in Cores 160G, 162G and 164G (Limonov et al.

1995). Core 164G is located near the top of the Nov-

orossiysk mud volcano. The detected reflectivity patch

(Fig. 5-R1b) is very homogeneous, intense and round-

shaped, as found previously (Limonov et al. 1995). North

of Novorossiysk, a structure was identified as a possible

buried mud volcano although one core (163G) taken near

its foothills does not show any occurrence of mud breccia.

We indeed observed two mud flows, flowing away from the

core location, and which seem to come from the nearby

rounded structure (open star, Fig. 5). The medium reflec-

tivity characterizing these mud flows indicates a deeper

burial of the mud flows, and thus confirms its past activity.

Core 162G corresponds to Aros mud volcano. The corre-

sponding mud flow was not detected completely due to the

vessel blind path during acquisition crossing right on top of

the dome structure. The possible buried mud volcano

identified northwest of Aros (Limonov et al. 1995) corre-

sponds in Fig. 5 to the rounded structure sampled by Core

161G, although no mud breccia was recovered in this core.

A recent mud flow can be identified flowing southeast of

the inferred emission point (open star). Core 160G recov-

ered mud breccia although no reflectivity is associated with

it. Due to the local steep seafloor slope, the reflectivity was

entirely removed during image analysis. However, a

nearby rounded feature, located immediately south of Core

160G, and surrounded by patches of medium to high

reflectivity, could correspond to the mud volcano.

Figure 6 shows the Pan di Zucchero area, together with

the location of the piston cores. As stated by Hieke et al.

(1996), the elevations named Pan di Zucchero and Pan di

Zucchero 2 do not appear to be mud volcanoes, because

they do not show any high or medium reflectivity. How-

ever, a large area of medium to high reflectivity covers and

surrounds the Antaeus high, which we infer to be a mud

volcano. We also interpret as a mud flow the high reflec-

tivity area south of Scarpata Vertiginiosa. We locate the

inferred emission point of the corresponding mud volcano

on the circular feature southwest of Core 19 (open star).

Two of the eight cores collected in this area recovered mud

breccia, namely Cores 20 and 2, with a mud breccia contact

Smoothing and cleaning with the help of high resolution 
morpho-structural interpretation and known features.

- Equalizing, filtering and thresholding
- Remove slopes above 18% (10°)

a b

c d

e

Fig. 3 Schematic flow chart of the reflectivity image analysis
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occurring at 0.53 and 4.2 m below the sea floor, respec-

tively. Core 2 is located in Castiglione Basin, at the rim of

the inferred mud flow coming from a nearby local high

(open star). The mud breccia found in this core may be

related to an older, and thus deeper buried, mud flow. Core

20 is located in an intermediate plateau between the Pan di

Zucchero high and the Castiglione Basin. The very small

patch of high reflectivity associated with this core could not

be associated to a closeby rounded structure nor to the

patches of high reflectivity visible nearby (south and

southeast of the core), and was therefore removed. A

general observation about the Pan di Zucchero area is its

higher background reflectivity with respect to Cobblestone

area (compare Figs. 6-R2 with 5-R1a and R1b).

Mud volcanoes statistics and volumetric budget

Size

Figure 7 shows the location and importance of mud vol-

canism in the entire survey area. We individualize 215 mud

flows (Table 2) summing up to a total of 1474.3 km2 of
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Fig. 4 Detected mud flows and inferred emission points in the

Cobblestone Area. (1a) Area surveyed during R/V Eastward ’78 (cores:

filled circles; (Cita et al. 1981)) and R/V Bannock ’81 (cores: empty

circles; (Cita et al. 1982)) cruises; (1b) Area surveyed during R/V
Gelendzhik ’94 (cores: filled diamonds; (Limonov et al. 1995)) cruise.

Empty star: inferred emission point (the circle centered on it figures

roughly the relative importance of the mud dome). Mud flows: High

reflectivity (dark grey) and medium reflectivity (medium grey) are shown.

Light grey strips across the figure represent roughly the extension of the

specular reflection (blind path) during data acquisition. Bathymetric

contours every 20 m. On the right is shown the structural interpretation

based on morpho-bathymetry and available seismic profiles
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Table 1 Characteristics of the cores recovered in Cobblestone and Pan di Zucchero areas, with corresponding main references

# Lon Lat MBC TCL GL Dev RI GA RL

Bannock ’81 (R/V Bannock), Cobblestone area (Cita et al. 1981, 1982)

21 20�47.430 35�51.170 2 3.10 57.0 3.7 –31.4 53.30 B

23B 20�47.870 35�52.130 9.25 10.59 46.5 3.6 –35.9 39.43 B

18 20�46.780 35�52.030 no br. 3.80 60.4 8.8 –29.9 M (slope)

14 20�44.800 35�52.180 no br. 0.88 57.0 6.6 –31.4 B

15 20�46.620 35�52.320 no br. 4.32 54.9 7.8 –32.3 B

20 20�47.150 35�51.200 no br. 4.65 54.1 4.4 –32.7 B

25B 20�47.870 35�50.130 no br. 0.73 48.9 8.6 –34.9 B

16 20�46.130 35�52.170 no br. 2.85 45.5 3.1 –36.4 B

Cobblestone project ’78 (R/V Eastward), Cobblestone area (Ryan et al. 1982)

24 20�48.370 35�51.080 0.39 1.30 75.2 3.7 –23.5 65.03 H

25E 20�48.580 35�50.900 1.25a 1.84 69.1 3.1 –26.2 72.87 H

28 20�47.630 35�51.430 0.57 1.32 73.9 3.3 –24.1 50.62 H

38 20�48.180 35�50.800 0.81 1.39 65.1 5.0 –27.9 70.14 M

30 20�50.530 35�50.330 no br. 9.31 63.8 4.8 –28.5 M

27 20�49.970 35�50.080 no br. 7.07 56.1 5.7 –31.8 B

32 20�51.300 35�51.450 no br. 11.55 53.6 6.0 –32.9 B

37 20�48.000 35�52.220 no br. 2.00 53.6 3.9 –32.9 B

26 20�50.780 35�51.370 no br. 7.76 52.2 14.2 –33.5 B

39 20�47.670 35�52.370 no br. 1.88 46.5 5.2 –35.9 B

35 20�50.420 35�51.380 no br. 5.57 40.3 9.0 –38.6 B

33 20�50.580 35�51.350 no br. 2.94 30.8 5.3 –42.8 B

36 20�50.400 35�51.550 no br. 3.01 26.8 9.0 –44.5 B

34 20�50.550 35�51.520 no br. 2.01 23.6 11.6 –45.9 B

23E 20�49.650 35�50.830 no data

29 20�48.620 35�49.800 no data

31 20�48.470 35�51.900 no data

Bannock ’89 (R/V Bannock), Pan di Zucchero area (Hieke et al. 1996)

20 22�48.400 33�46.170 0.53 1.95 64.2 4.8 –28 53.52 M

2 22�49.630 33�44.820 4.2 5.01 62.5 4.8 –29 24.86 M

19 22�48.870 33�45.170 no br. 4.61 66.4 4.9 –27.3 H (slope)

18 22�48.680 33�46.870 no br. 5.08 63.5 9.2 –28.6 M

15 22�48.000 33�47.330 no br. 2.37 62.8 4.7 –28.9 M

14 22�48.070 33�47.330 no br. 2.26 61.6 4.3 –29.4 M

16 22�48.280 33�46.670 no br. 0.70 58.2 6.5 –30.9 M

17 22�48.930 33�46.430 no br. 5.03 51.4 5.1 –33.8 B

TTR-4 (R/V Gelendzhik), Cobblestone area (Limonov et al. 1995)

160G 20�48.60 36�08.90 0.15 1.40 74.0 9.5 –24.0 69.96 H

162G 20�51.30 36�00.80 0.2 2.17 72.6b 5.4b –24.6b 70.44 H (specular)

164G 20�53.00 35�55.30 0.2 1.95 81.9 3.9 –20.6 30.47 H

161G 20�50.60 36�02.00 no br. 3.89 55.4 4.4 –32.1 B

163G 20�51.90 35�58.60 no br. 3.73 62.6 4.7 –29.0 M

Columns numbering: #, Core number; Lon, Longitude (d:m:s E); Lat, Latitude (d:m:s N); MBC, Depth of mud breccia contact (mbsf); no br., no

mud breccia; TCL, Total core length (mbsf); GL, Reflectivity (gray level); DEV, Std Dev; RI, Retrodiffusion Index (dB m–2); GA, Grazing angle

hg (degree) for the insonified core location (only for cores with mud breccia); RL, Reflectivity level, B, Background; M, Medium; H, High
a See Ryan et al. (1982, Fig. 4)
b Because of specular perturbation, reflectivity was taken on a nearby location on the same mud flow (see text and Fig. 5-1b)
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extruded mud. The maximum surface of mud flows around

a single mud volcano is above 78 km2, which is enough to

cover a city the size of Paris. This volcano is located north

of Antaeus (Pan di Zucchero area). Table 3 shows the

characteristics of the 215 mud flows. The average area of a

mud flow is ca. 9 km2.

Distribution and distance to backstop

The mud volcanoes are unevenly distributed on an arcuate

chain, concave northward, close to the top of the Mediter-

ranean Ridge. The distribution shows two main active

provinces, a Cobblestone Area s.l., and a Pan di Zucchero s.l..

We note that these provinces cover much larger surfaces

than those originally described. The area between these

provinces seems to be less active (Fig. 8c). A third and

smaller belt of mud volcanism follows the top of the

Mediterranean Ridge further north towards the junction

with the Calabrian Prism. Notice that the portion of the

Calabrian Prism surveyed is spotted with mud flows of

insignificant extent compare to the western Mediterranean

Ridge. The two large provinces show slightly different

populations: the Cobblestone area s.l. is more densely

populated with smaller mud flows, while the Pan di Zuc-

chero area s.l. shows more scattered and bigger objects.

A first striking result is that mud volcanism is concen-

trated in a rather narrow belt, emphasizing the concept of a

mud diapiric belt (Limonov et al. 1996). To quantify this

effect, we plot the longitudinal distribution of mud flows

(Fig. 8a) and the total extruded mud surface (Fig. 8b), both

as a function of the distance to the prism-backstop

boundary. West of 22� E, the mud is expulsed in a narrow

(ca. 35 km) band, restricted to the southwest of the prism

backstop boundary. East of 22� E, mud flows are more

evenly distributed, still the largest of them being located

within 35 km from the prism-backstop boundary. The

resulting total extruded mud distribution (Fig. 8b) is an

asymmetric bell-shaped curve, with a clear threshold

around 35 km. We use this threshold to separate two mud

volcanism domains: an inner domain covering the wedge-

backstop contact, and an outer domain that corresponds to

the mud volcanism scattered in the rest of the accretionary

prism (Fig. 7). We note that in Fig. 8b there is no mud
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R/V Bannock ’89 core (Hieke et al. 1996). Empty circles corresponds

to cores which did not recovered mud breccia. Filled circle and
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equalized. Sampling locations are shown by circles, except for

Core 20, where the arrow indicates the small patch of reflectivity
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volcanism farther than 128 km, indicating very little

activity within the post-Messinian wedge.

Table 2 shows the statistics for the two domains. About

76% of the mud flows are located in the inner domain, and

contribute to 92% of the total mud extrusion surface. The

largest mud flows are also located in the inner domain.

Mud flows are significantly smaller in the outer domain

(prism), the size of the volcanoes varying mainly between

0 km2 and 5 km2. The average mud flow area is at least

four times smaller than in the inner domain (2 vs. 9 km2).

Age of the mud flows

The age of the flows detected by sonar imagery is obvi-

ously much younger than the age of the volcanoes. Flows

are rapidly buried beneath a thin layer of hemipelagic

sediments, at a depth greater than the detection limit of the

sonar. This implies that we detect only the latest flows

related to the recent activity of the volcano. A simple

acoustic model was explored by Mitchell (1993), using

GLORIA sidescan sonar data to estimate sediment
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Fig. 7 Detected mud flows in the western Mediterranean Ridge, in
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mud volcanism closer than, and farther than 35 km from the prism

backstop boundary, respectively. Black squares represent the total

mud flow surface at true scale, for each domain (Inner domain:

36.8 · 36.8 km2, 92% of the total mud surface; Outer domain:

11.1 · 11.1 km2, 8% of the total mud surface)
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thickness from the level of backscatter. The model involves

a highly backscattering surface (basement or mud breccia)

overlain by a thin layer of fine-grained sediments. The

effective backscattering strength (i.e. the signal recorded

back to the sonar) is merely dependant on the backscatter

properties of the rough surface, BSv, diminished by the

amount of signal attenuated along the two-way path of the

wave into the soft sediments:

BS ¼ BSvðhgÞ þ 20 logðTwsTswÞ �
2adBh

sin hg
; ð1Þ

where hg is the grazing angle, adB is the attenuation

coefficient, expressed in dB m–1, and h is the thickness

of the sediment layer. The quantity 20 log(TwsTsw)

(transmission coefficients across the water-sediments

interface) has been calculated using the parameters

defined in Volgin and Woodside (1996) and shows little

variations for hg comprised between 30� and 70� (see also

the discussion in Mitchell (1993)). Derivating Eq. 1 with

respect to depth leads to:

dBS

dhe
¼ �2adB; ð2Þ

where he ¼ h=sin hg; and is the effective thickness of sed-

iments traveled by the acoustic ray. It directly gives an

estimate of the attenuation adB, supposed to be constant

with h.

Figure 9a shows the cores that recovered mud breccia,

and the depth of mud breccia first contact in the core. We

plot the backscatter strength BS as a function of the

effective thickness he. The plot shows the boundaries of our

classification of reflectivity, namely high, medium and

background. Eight of a total of 12 cores reached mud

breccia at depths less than one metre. They all fall into the

medium and high reflectivity domains. The remaining four

cores reached mud breccia at depths greater than 2 m.
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Fig. 8 (a) Plot of the distance to backstop as a function of the

longitude of the mud volcano emission points. Bubble size is

proportional to the mud extrusion surface for each mud flow. Null

distance is the prism-backstop boundary, negative values cover the

backstop area while positive values cover the wedge area. We
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Table 2 Statistics on mud volcanism over the western Mediterranean Ridge. Inner and outer domains are those defined in Fig. 7

Total extruded mud: 1474.3 km2

Total number of flows: 215

Inner domain (Transpressional to pre-collisional settings) Outer domain (Intra-prism area)

Number of flows 163 52

Maximum size (extruded mud, km2) 78.43 14.18

Average size (extruded mud, km2) 8.29 2.36

Total extruded mud (km2) 1351.42 122.90

% Surface of total extruded mud (measured) 92% 8%

% Volume of total extruded mud (calculated) 96% 4%

Surface percentages were measured. Volume percentages were calculated following simple geometrical assumptions stated in Appendix A
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Three of them fall in the background domain. Core 2

(Castiglione Basin) shows a medium backscatter strength

but we still consider it as part of the background noise

because of an overall higher average reflectivity of the Pan

di Zucchero area.

A first-order interpretation is that mud breccias at

sub-seafloor depths of less than 2.25 m do contribute to the

backscattering strength, whereas deeper mud breccia

signal, if any, is lost into the background signal. Unfortu-

nately, the interval 125–200 cm is not sampled. The plot

also shows that in the 0–125 cm interval, reflectivity is

rapidly decreasing with depth. A least-squares fit using

the constant attenuation model (Eq. 1; see Appendix C)

through these data gives an attenuation a of

2.0 ± 0.7 dB m–1 in our data depth interval (20–125 cm).

Converted into dB m–1 kHz–1, equivalent to Hamilton’s

constant k (Hamilton 1972), we find k = 0.16 ± 0.06 dB

m–1 kHz–1. These values are in the range of those quoted

by Gorgas et al. (2002) in superficial unconsolidated fine-

grained sediments.

We note that the maximum depth of detection of the

sonar is different than the depth of penetration: a mud

breccia can eventually be reached at depth below the

detection level, but the corresponding signal is lost in

the background level. We estimate from Fig. 9 that the

maximum depth of detection lies between 100 cm and

225 cm. This plot further suggests that the backscatter

strength is correlated to the depth of burial of the mud

breccia layer (i.e. the thickness of the overlying pelagic

sediments), at least in the Cobblestone area s.l.. The nature

of the pelagic sedimentary cover may account also for

variations in reflectivity intensity, especially for the
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282 Mar Geophys Res (2007) 28:271–295

123



background reflectivity, as we see a striking difference in

the overall reflectivity between the Cobblestone area

(Fig. 5-R1a and R1b) and the Pan di Zucchero area (Fig. 6-

R2). However, we think that this effect is minor in the

interpretation of backscatter intensities. Another cause of

variation in the reflectivity pattern is the nature of the mud

breccia, and particularly the size and shape of the included

clasts, which can increase the roughness of the sediment-

breccia interface. The mud breccia recovered in the cores

used in the present study (see Tables 1 and 2) contains

generally 10–15% of angular to subrounded, millimetric to

centimetric clasts. The maximum size was found to be

7 cm for Cobblestone area, and 5 cm for Pan di Zucchero

area, which is close to the probable maximum size of clasts

which can be recovered by coring. However, it is known

that clasts in mud breccia can reach much bigger sizes.

During ODP Leg 160, Formation MicroScanner downhole

geophysical logs showed clasts of up to 50 cm in size

(Robertson and Shipboard Scientific Party 1996), and

during the fifth cruise of the Training-Through-Research

program, underwater video encountered blocks larger than

5 m across inside a mud volcano crater (Cronin et al.

1997). Although we cannot rule out that these variations

impact the reflectivity level, the depth of burial seems to be

the first order effect (see Fig. 9a).

Figure 10 shows the sedimentation rate for the last

200,000 years calculated from the positions of sapropels

S1 to S7 and tephra Y5 in Core 23B. The ages of the

markers were taken from Kroon et al. (1998). For the last

100,000 years, the sedimentary rate is 38 m/m.y. The

potential maximum depth of detection of the sonar being

225 cm, we suggest that we have detected all mud flows

younger than 60,000 years. The deepest mud breccia

contact observed in the cores is at 125 cm (Core 25E; Ryan

et al. (1982)), immediately overlain by tephra Y5

(37,000 years). Consequently, amongst the 215 identified

mud flows, the age of the last eruption varies between 0

(subactive) and 37,000–60,000 years.

Discussion

Episodicity of mud eruption

Mud volcanoes of the Mediterranean Ridge have been

described as active or inactive on the basis of various

characteristics: age of the mud flows, type of mud breccia,

presence of fluids and gases expulsion, amount of subsi-

dence, strength of acoustic reflectivity. We interpret these

to relate to a wide range of timescales and physical pro-

cesses. The episodicity of eruptions has been proven by

coring (reworking of mud breccia), drilling (long period of

pelagic sedimentation in between mud flows), and

numerical modeling (Kopf and Behrmann 2000). Sche-

matically, a resting period greater than 105 years was found

in Milano volcano between two mud extrusion periods

(Robertson and Shipboard Scientific Party 1996), while

reworking of mud breccia in metres-long cores indicates

episodicity probably shorter than 103 years. Similarly,

mousse-like mud breccia, because of its highly gaseous

nature, may be an even more recent sign of activity. Such

type of mud breccia has been recently found outcropping in

a small number of mud volcanoes, Napoli and Milano

(Robertson and Shipboard Scientific Party 1996), Dublin

and Stoke-on-Trent (Ivanov et al. 1996a) and in our area

Novorossyisk (Limonov et al. 1995). All of them are

characterized by strong reflectivity patterns, except Napoli,

which shows an almost blank pattern, with a marked moat

surrounding a darker center (Kopf et al. 2001, their

Fig. 4A). Significant gas/fluid emission activity has been

detected on this mud volcano during several submersible

dives (Aloisi et al. 2000; MEDINAUT/MEDINETH Sci-

entific Party 2000), and a pure methane content measured

as high as 900,000 ppm in the cores during ODP Leg 160

(Emeis et al. 1996, Site 971). These unique characteristics

strongly suggest that Napoli volcano has been active very

recently (1–102 years ?). Reflectivity data, on the other

hand, span an age interval which is dependent on the

detection depth of the sonar and on the rate of sedimen-

tation above the latest mud flow, and typically gives a

timespan of the order of 104 years.

In our case, a sedimentation rate of 38 m/m.y. causes the

imprint of a mud volcano averaging 50–200 m in height to

disappear in 1.3–5.3 m.y. from the seafloor. We suggest

below that the initiation of mud volcanism may be as

young as 2 Ma. We thus argue that we have detected most

of the population of mud volcanoes, either as high reflec-

tivity patches, or as rounded features not associated with

high backscattering but suspected to be mud volcanoes. In

the following text, we suggest that the latter may represent

5–10% of the entire population. They correspond to the

rare mud volcanoes that did not erupt during the time span

covered by the sonar (0 to 37,000–60,000 years).

To gain insight into the episodicity of mud eruption, let

us assume that the recurrence time for mud volcano erup-

tion is s (in other words, one single eruption for the entire

population of N volcanoes, every s). We further assume

that each volcano has the same equal probability p = 1/N to

erupt. We use a simple binomial distribution law to find

after how many draws in the entire population, we reach a

proportion of negative draws (no eruption) equal to 5% and

10%. We find a number n of 804 and 549 draws, respec-

tively. The time interval is Dt = 37,000–60,000 years. As

s = Dt/n, the recurrence time for a mud volcano eruption

ranges between 60 years and 88 years. Using the same law,

the most probable number of eruptions for one single
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volcano during the Dt period is 2–3. The probability to

have more than six eruptions is below 1%. These figures

are compatible with our observation of multiple flows at at

least one mud volcano, based only on reflectivity contrasts.

They suggest that the order of magnitude for the resting

time at one single volcano is 103–104 years. This is com-

patible with the long resting period observed for the Milano

volcano. This recurrence time is significantly larger than

the eruption rates reported for the Azerbaijan mud fields

(Mellors et al. 2007).

Tectonic control on mud volcanism

The Mediterranean Ridge is actively growing in front of a

continental crustal backstop, as a typical accretionary

prism. The present-day convergence rate derived from GPS

is above 30 mm/year (Mcclusky et al. 2003). It is generally

agreed that the present-day kinematic framework was

established during the Plio-Pleistocene (Armijo et al.

1999), in relation with the onset of motion of the Anatolian

microplate and the activation of the North Anatolian fault.

Although the timing of initiation of the Hellenic subduction

is still debated, the Mediterranean wedge is generally

considered not older than Miocene (Kastens 1991). The

frontal portion of the wedge (not more than 80 km wide) is

post-Messinian, implying that the material involved in the

accretion is a mixture of post-Messinian sediments and

Messinian evaporites originally deposited in the trench.

The rest of the wedge (about two thirds) is essentially built

by pre-Messinian sediments. A particularity of the present-

day subduction is the V-shape geometry of the tip of the

resisting backstop, with a NW trending western branch and

NE trending eastern branch (Le Pichon et al. 1995, 2002;

Costa et al. 2004; Kreemer and Chamot-Rooke 2004).

Northward motion of Africa with respect to the backstop

implies high obliquity of the convergence along the entire

Mediterranean Ridge. This oblique convergence is

accommodated by shear partitioning on both branches of

the Mediterranean Ridge (Kreemer and Chamot-Rooke

2004; Costa et al. 2004). Shearing is active preferentially at

the wedge backstop contact, and is respectively dextral and

sinistral over the western and eastern branches of the

Mediterranean Ridge.

The mud volcanic belt closely follows these dextral and

sinistral shear bands. The Cobblestone Area s.l. coincides

with a major NNW-SSE dextral strike-slip fault zone,

while the Pan di Zucchero Area s.l. exactly covers the left-

lateral strike-slip zone and associated en-échelon folds that

form the very top of the Mediterranean Ridge. At the scale

of the Eastern Mediterranean basins, there is thus a clear

link between the main active fault zones and mud expul-

sion. The common interpretation is that the source for the

mud is within the wedge (Robertson and Kopf 1998b; Kopf

2002), and that rapid stacking of high-porosity sediments

ultimately leads to over-pressures and expulsion.

An alternative is that the mud reservoir is located at the

backstop-wedge contact, as discussed below. In both cases,

active faults then act as preferential channels for mud

expulsion.

At a local scale, mud flows of the Mediterranean Ridge

are systematically associated with faults. Detailed struc-

tural mapping shows that mud volcanoes are

preferentially located at the tip of the faults, or more

generally in the zones of fault interactions (restraining or

releasing bends, faults intersections). This is not specific

to the Mediterranean Ridge outflows, as evidenced by the

worldwide compilation of fluid flow outlets under various

tectonic regimes made by Curewitz and Karson (1997).

Simple faults models predict accumulation of stress and

strain at faults tips and/or intersections, leading to local-

ized damaging. Several examples are shown in Fig. 4.

Several volcanoes punctuate a more or less linear strike-

slip fault, each of them associated with small step in the

major trend. One of them coincides with a releasing bend,

leading to the formation of a small pull-apart type basin

(right lateral). The main edifice is conical and located

right in the center of the basin, while the erupted material

fills the depression.

Most of these mud volcanoes were not surveyed by

means of seismic reflection methods. Apart from areas

that have been extensively covered, it is actually quite

rare that a seismic profile runs across a mud volcano, and

even more unlikely that it cuts through the mud extrusion

conduit. The conduit itself is probably small compared to

the overall size of the mud volcano, and it may be

irregular or oblique. Figure 11 shows the IMERSE 01

profile, that crosses a mud volcano immediately south of

the Cobblestone area (Westbrook and Reston 2002).

Several features, often described as typical of a mud

volcano can be seen: the mud dome with the depression

ring around it, the reflectors below interrupted and dip-

ping downward, and the transparent material forming the

core of the volcano. Away from the mud volcano,

reflectors are sub-horizontal and organized into a limited

number of stratigraphic sequences. A thin and very flat

reflector is ubiquitously recognized 200 ms below the

surface. Based on seismic velocities and sedimentation

rates, we estimate that this reflector marks the Miocene–

Pliocene boundary. Immediately below, we find a thick

body of well-stratified sediments above another thick but

poorly stratified sequence. Seismic traces show a polarity

inversion at the base of this latter sequence, around 5s

two-way travel time (TWTT), that we interpret as the

base of the Messinian series. The two large bodies would

thus correspond to the upper evaporites resting on the
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main salt body. Our tectonic interpretation is that a small

releasing relay along the major strike-slip fault leads to

normal faulting, with the base of the Messinian salt body

acting as a décollement. In detail, the upper Messinian

sequence shows fanning of the reflectors towards the

fault, indicating that it was active during Messinian time.

The erupted material is quite thick and seems to rest

above the top reflector. The likely scenario is that strike-

slip tectonism induced normal faulting, which in turn

ultimately lead to mud eruption. This suggests that this

mud volcano is post-Pliocene in age. This is compatible

with the inferred age of the Milano (about 1.5 Ma) and

Napoli (older than 1 Ma) domes (Robertson and Kopf

1998b).

Messinian evaporites

Messinian evaporites are generally considered to play a

major role in controlling mud volcanism over the Medi-

terranean Ridge. They also have been proven to be

involved in mud volcanism genesis in contexts other than

subduction (Netzeband et al. 2006). Low permeability

evaporites strata act as seals leading to high pressures in the

sediments below (Reston et al. 2002b; Netzeband et al.

2006). The paradox is two-fold for the Mediterranean

Ridge. First, mud volcanism is most intense in the crestal

portion of the ridge, where the Messinian should be absent

considering that the ridge (i.e. topographic relief) formed in

Miocene times and perhaps even before (Kastens 1991).
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Fig. 11 Top: Extract of IMERSE profile IM01 (migrated section)

across one mud volcano located south of Cobblestone area 1a along

one of the main strike-slip faults. A and B: polarity inversion at the

boundary between the Messinian salt and the pre-Messinian series.

Bottom: tentative geological interpretation; dotted line: base of the

salt body inferred from mapping of the polarity inversion
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Second, maximum mud output occurs at a great distance from

the toe of the prism where dewatering is almost completed

(Chamot-Rooke et al. 2005a). The Messinian wedge itself,

i.e. the portion of the wedge that formed in post-Messinian

times and contains thrusted Messinian evaporites and Plio-

Quaternary, is restricted to the outer 80 km of the accretion-

ary prism (Chaumillon et al. 1996). However, Messinian

evaporites are not restricted to the outer post-Messinian

wedge. Salt basins have also been found further up-slope,

including the crestal area of the Mediterranean Ridge (Reston

et al. 2002a). The base of the Messinian was actually recog-

nized at several places based on the polarity inversion

generated by the inverse velocity gradient at this boundary

(Fruehn et al. 2002). The Messinian thickness reaches locally

several kilometers. Figure 11, which is a section obtained

close to the top of the ridge, shows a total thickness of the

main body salt plus the Upper Messinian evaporites of about

2,000 m. During the Messinian salinity crisis, deep basins

existed in a fore-arc position, probably at the southern edge of

the continental Hellenic margin. Relief was thus inverted in

post-Messinian times. Our data indicate that mud volcanism

is indeed closely related to these Messinian evaporites

basins: mud escapes are preferentially located at the edges

of these basins, where the salt layer was either thinner or

broken, the latter being the result of extension (Costa et al.

2004) or strike-slip (Chamot-Rooke et al. 2005a), or both.

Our conclusion is that the Messinian seals do not relate

to the post-Messinian incorporation of evaporites into the

wedge, but to in-situ sedimented Messinian sediments in

small and deep basins that have been uplifted rather than

accreted and transported.

Source of mud and clasts

A full discussion on the provenance and age of clasts and

matrix is found in Akhmanov (1996), Robertson and

Shipboard Scientific Party (1996), Robertson and Kopf

(1998a) and Akhmanov et al. (2003). Drilling undisputedly

brought important new data. ODP Leg 160 (Sites 970 and

971) drilled into two contrasting mud volcanoes: the

Milano volcano, which is conical, and the Napoli volcano,

which is flat-topped. The deepest holes reached 200 mbsf.

Both volcanoes were active prior to at least 1.5–1.75 Ma.

Napoli is still active, but Milano is considered to be dor-

mant. The matrix includes dominantly Middle Miocene age

nannofossils and foraminifer assemblages, but Eocene and

Oligocene ages are also found. Clasts in both volcanoes

contain (1) Burdigalian to Langhian biota and (2) assem-

blages of Middle Miocene, Oligocene and Eocene ages,

together with Cretaceous nannofossils. Sandstone clasts are

mainly of plutonic and metamorphic origin, derived

dominantly from the North African margin, but also from

Crete and adjacent reliefs (Akhmanov 1996; Akhmanov

and Woodside 1998; Robertson and Kopf 1998b; Kopf

et al. 2000; Akhmanov et al. 2003). Drilling did not totally

rule out the possibility that clasts and matrix were derived

from the same stratigraphic unit. However, the favored

interpretation is that the matrix is dominantly Messinian in

age (mud from the early stages of the salinity crisis) and

clasts are older Miocene clastic and carbonate units

(Robertson and Kopf 1998b). Our interpretation is that the

clasts represent reworked material. Detrital units have been

described above the main Messinian salt body (Sage et al.

2005), as products of the subaerial erosion of nearby con-

tinental rocks of the backstop during lowstands of the

Messinian crisis, including the extension at sea of the

cretean metamorphic units (Le Pichon et al. 2002). Cam-

erlenghi et al. (2007) recently raised the possibility that the

origin of mud volcano clasts in the entire Mediterranean

region is the exhumation of olistostromes.

A key point of the discussion is whether the source has

been traveling into the wedge or not, either along the

décollement (?) (e.g. Kopf and Behrmann 2000, p. 198) or

by progressive incorporation into the prism. If the décoll-

ement is taken as the plate boundary, then material below

has little chance to be accreted into the wedge. The

implication is that traveling, if any, can only occur within

the wedge itself. The horizontal velocity, then, is only a

small fraction of the total convergence rate. A clear dem-

onstration is that the width of the Messinian wedge does

not exceed 80 km, which is thus the maximum distance

traveled by Messinian material originally deposited in the

trench. A second line of reasoning leads to a similar con-

clusion. Taking the present-day velocity field as steady-

state through time (Kreemer and Chamot-Rooke 2004), we

can calculate the traveling time, i.e. the time it would take

for one sequence deposited into the trench (and later

incorporated into the wedge) to enter the area of maximum

mud production. The steady-state model is obviously an

over simplification. We think however that this model is

much closer to reality (for the last few million years) than

the kinematics that has been used so far (unrealistic con-

vergence rate of 6 cm/year in Kopf (1999), probably

misprinted as 5–6 mm/year in Kopf (2002), definitely

misused as 6 km/m.y.—instead of 60 km/m.y.—in Kopf

(1999)). The traveling time is 19 m.y. at longitude 20� E,

11 m.y. at longitude 21� E, and 4 m.y. at longitude 22� E.

These numbers are probably overestimated, since we do

not take into account the outward growth rate of the prism.

However, based on the limited width of the post-Messinian

wedge, we still find it very unlikely that the source for

volcanism is a Messinian mud unit transported from the

trench, the traveling time being too long for a sizeable

portion of the prism.
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That clasts and matrix have not been deeply buried is

further demonstrated by petrographic and mineralogical

studies. Drilling did not indicate deep-burial diagenesis nor

metamorphism of either clasts or matrix, and derivation

from relatively shallow levels (less than 7 km) was thus

suggested (Robertson and Kopf 1998b). This result con-

flicts with earlier interpretation that one of the potential

sources for the matrix could be Aptian–Albian shales (Cita

et al. 1981), but was in good agreement with the estimated

depth of the décollement level (Camerlenghi et al. 1995).

Thermal maturity data initially gave a mobilization depth

between 4.9 km and 7.5 km (Schulz et al. 1997), but

re-evaluation points to an even shallower depth of only

about 2 km (Kopf and Behrmann 2000; Kopf et al. 2000).

The latter study is based on low vitrinite reflectance,

indicating that the material—both clasts and matrix—was

not subjected to elevated temperature. To summarize, a

Messinian source for mud implies in-situ production close

to the wedge-backstop contact rather than transportation

through the wedge. The deep Messinian basins that existed

close to this boundary prior to the salinity crisis were filled

by Messinian evaporites during dessication, the latter

providing the necessary seals (Netzeband et al. 2006). The

thickness of evaporites compares well with the inferred

depth of mobilization (about 2 km).

Mud budget for the reservoir hypothesis

In the previous section, we suggest that the source for the

mud is a reservoir that remained close to the backstop

contact through time. If we are correct, then convergence

has little to do with the overall mud mass budget. The

reservoir model implies a ‘‘closed’’ system (the source

cannot be renewed), which is at variance with the sub-

duction model in which the input is steady-state. We thus

re-examine this budget. Following the simple geometric

scheme devised in Appendix B, we estimated the total

volume of extruded mud at 657 km3. As mentioned pre-

viously, we may have missed some of the volcanoes.

However, morphological arguments indicate that at least

80–90% of them have been discovered. Since we only seek

orders of magnitude here, we ignore this potential error.

Evenly distributed over the considered 589 km-long of the

prism-backstop boundary, this leads to an average rate of

1.1 km3 of mud per kilometer. The thickness of the source

layer in the hypothetical mud reservoir can be calculated

by dividing this number by the estimated width of the

reservoir, that is, the width of the inner domain. The latter

varies between 20 km and 75 km, leading to thicknesses of

between 56 m and 15 m, respectively. In other words, the

western Mediterranean mud belt can be explained by

depleting an in-situ reservoir of a few tens of meters thick.

The total thickness of the reservoir is unknown, but we

conclude that the amount of mud to be mobilized is modest

and refilling is not required. The limited thickness of

mobilized mud layer is compatible with the limited amount

of subsidence, only reported, to date, to happen around

each individual mud volcano.

Initiation of mud volcanism

There are now growing evidence that Eastern Mediterra-

nean tectonics has been affected by significant changes in

recent times. Comparisons between global kinematic

models based on geology (Nuvel-1A type) and geodetic

models (mainly GPS-based) indicate that the convergence

of Africa with respect to Eurasia has changed between

3.6 Ma and Present (Calais et al. 2003). The Nubia

(Africa)/Eurasia pole of rotation has migrated southward,

implying a more westerly oriented motion at slower

velocity for the present-day (4–6 mm/year). Whether this

change was progressive or sudden has not yet been docu-

mented. A significant kinematic change is the onset of

motion of the Anatolia–Aegea microplate, pushed laterally

in the wake of Arabia northward motion and collision

(Mckenzie 1972; Le Pichon et al. 1995). The post-Miocene

period is marked by the westward propagation of the North

Anatolian Fault towards the Aegean domain (Armijo et al.

1999; Hubert-Ferrari et al. 2002). Propagation may have

started in the east at about 10 Ma, and by 5 Ma the fault

was in the Marmara Sea region (Armijo et al. 1999).

Concomitant with the activation of the North Anatolian

Fault and the cessation of opening of the Aegean Basin,

rapid motion of the Anatolian–Aegean region has resulted

in high convergence rate in the Eastern Mediterranean

([3 cm/year), the maximum convergence being reached

precisely along the western branch of the Mediterranean

Ridge (Le Pichon et al. 1995). The implication for the

recent growth of the Mediterranean Ridge is drastic: prior

to Anatolia–Aegea escape, the convergence rate did not

exceed Nubia/Eurasia motion, and was thus 4–5 times

slower than the present-day rate (Kreemer and Chamot-

Rooke 2004). The exact link with the tectonics of the

Hellenic Arc is still in debate. The Corinth Gulf, which is

presently actively opening at a [1 cm/year rate, started

opening around 1.0–1.7 m.y. (Sorel 2000; Flotte et al.

2001). At the western end of the Hellenic Arc, the right-

lateral Kephalonia Fault may have been activated at about

the same time (Nielsen et al. 2001). These recent tectonic

changes have been recorded in the field from Peloponnesus

to Rhodes. The stress pattern derived from striations

measurements on fault planes shows important changes in

the Pleistocene (Mercier et al. 1987; Piper and Perissoratis

2003). In the Pliocene and Early Pleistocene extension was
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roughly NE–SW oriented, switching to more or less NS

extension in post Middle Pleistocene. A short but intense

phase of compression was found in between those two

extensional regimes, bracketed between 1 m.y. and

0.7 m.y. (Sorel et al. 1992).

The latest kinematic re-organization thus probably

occurred between 1.7 m.y. and 0.7 m.y. If we take the

regional events as indicative of the tectonics of the Medi-

terranean Ridge backstop, then the opening of the Corinth

Gulf, the activation of the Kephalonia Fault and the re-

organization of the stress pattern along the Hellenic Arc

may date the switch from low (\1 cm/year) to high con-

vergence rate ([3 cm/year). The result of this change was

the activation of strain partitioning at the wedge backstop

contact, and the correlative initiation of mud volcanism

along this contact. In our model, the major changes thus

occurred in the kinematics of the upper plate (motion of the

Hellenic backstop), rather than in the lower plate (collision

of blocks from Africa). Triggering of mud volcanism

would thus relate to the initiation of large-scale transcur-

rent motion along the Western and Eastern branches of the

Mediterranean Ridge in the very recent time, rather than

the on-going process of subduction. The proposed age of

initiation (younger than 2 Ma) is compatible with the

estimated ages of Milano and Napoli mud volcanoes.

Conclusion

The seafloor acoustic reflectivity of an area of

600 · 740 km in the Eastern Mediterranean that includes

590 km of the prism-backstop boundary has been analysed

to identify the mud flows and their associated mud volca-

noes. A total of 215 mud flows were found, covering a total

surface of extruded mud of almost 1,500 km2. The inner

domain (prism-backstop boundary) represents 92% of this

surface. Using a simple geometric transformation cali-

brated on a known mud volcano, we convert surface to

volume of extruded mud and find that 96% of the mud is

expelled at the wedge-backstop contact.

We calibrate a geoacoustic model modified from

Mitchell (1993) using all available cores that recovered

mud breccia. The model shows that the maximum depth of

mud breccia detection by the sonar is comprised between

125 cm and 200 cm below the seafloor. We find an atten-

uation ranging between 1 dB m–1 and 3 dB m–1 in our data

depth interval (20–125 cm). This value is consistent with

the type of sediments overlying the mud breccia deposits.

Using chronostratigraphic markers and sedimentation rate,

all detected mud flows are younger than 37,000–

60,000 years. We tentatively constrain the episodicity of

mud eruption between 50 years and 100 years.

At regional and local scales, there is a clear link between

the main active faults and mud expulsion. Shear partitioning

activates dextral strike-slip faults at the wedge backstop

contact. Whatever the mechanism of expulsion, these faults

act as preferential pathways for mud expulsion, especially at

fault tips and intersections, or more generally in the zones of

fault interactions (releasing and restraining bends).

Based on the kinematics of the wedge, we find it very

unlikely that the source of mud volcanism is a layer

transported from the trench. We rather suggest in situ

production close to the wedge-backstop contact. We show

that deep Messinian basins existed close to this boundary

prior to the salinity crisis as forearc basins. Messinian mud

was deposited in these basins and sealed by the Messinian

evaporites. These basins were later inverted in post-Mes-

sinian times. This reservoir model does not require

refilling, since we calculate that the amount of mud to be

mobilized is modest.

We propose to link basin inversion and initiation of mud

volcanism to the latest kinematic re-organisations in the

area. The present-day rapid rate of convergence ([3 cm/

year) is the result of the recent motion of the Anatolia–

Aegean block, which probably took place after 5 m.y., thus

triggering large-scale transcurrent motion along the Wes-

tern and Eastern branches of the Mediterranean Ridge.

Opening of the Corinth Gulf, activation of the Kephalonia

Fault, change in the stress pattern along the Hellenic arc,

indicate that the present-day framework was already

established by 1 Ma. We relate initiation of mud volcanism

to these recent tectonic changes.
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Appendix

A. Image analysis

The image analysis starts with the raw image, without

grid and coordinates. All images are 8-bits (256 gray

levels) grayscale bit-maps. The flow chart of image pro-

cessing is (1) Remove the lower part of the 256-levels of

gray histogram (0–127), considered as noise level; then

stretch the resulting histogram to fill the 256 gray levels;

(2) Apply a median filter (3 · 3 neighbourhood) to

remove spikes; (3) Apply a 192-mask image on the fil-

tered image with a bit-to-bit AND logical operator. This

single operation gives the 192 value to all pixels between

192 and 255, the 128 value to all pixels between 128 and

192, the 64 value to all pixels between 64 and 128, and
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the null value to all pixels between 0 and 64; (4) Keep

bin 128 as the medium reflectivity and bin 192 as the

high reflectivity. This operation allows to keep the pixels

between 192 and 256 of the original raw reflectivity

image; (5) Remove the slopes (Fig. 3b) above 10� (18%).

The slopes have been calculated from the same digital

elevation model which produced the bathymetry con-

toured at 20 m; (6) Perform an open process (erosion

operation, followed by dilation, which smoothes objects

and removes isolated pixels).

B. Computation of mud volumes

Reflectivity mapping allowed us to estimate the surface

covered by mud flows, over the outer and inner belts.

We showed that 92% of the surface belong to the inner

belt, while the remaining 8% are scattered within the

outer belt. We now wish to convert our surface estimates

to volumetric estimates. In most cases, the area of the

mud flow that we detected is comparable to the size of

the corresponding mud volcano. Since we only seek

orders of magnitude here, we assume in the following

that mud flows can be taken as a proxy for the finite size

of the edifice, although we are aware that it may be a

rather crude approximation. Each root of the mud

volcano is assumed to be a cone. For volumetric cal-

culations, we neglect the relief that stands above the

seafloor since most of the volume is within the root

itself. We further assume that all volcanoes are homo-

thetic in shape:

r

h
¼ constant; ð3Þ

where r is the radius of the cone, and h its height. We

define a shape ratio k:

k ¼ v

s
; ð4Þ

where v is the volume of the root, and s the area of the mud

volcano at the seafloor. k is not constant. The cone

approximation thus leads to:

k ¼ v

s
¼ h

3
: ð5Þ

Under the homothetic assumption, we thus have

k
r
¼ constant ¼ k

ffiffiffi

p
p

s�
1
2; ð6Þ

which implies

ks�
1
2 ¼ constant: ð7Þ

This dimensionless constant characterizes the geometric

properties of the entire population. The total volume is:

VT ¼
X

i

kisi ¼
X

i

ðkis
�1

2

i Þs
3
2

i ; ð8Þ

where the summation is over the entire population. Since

kis
�1

2

i ¼ constant; ð9Þ

the total volume can be rewritten:

VT ¼ kjs
�1

2

j

X

i

s
3
2

i ; ð10Þ

where subscript j refers to any mud volcano of the popu-

lation. In other words, if we know the geometric properties

of one volcano, the homothetic assumption implies that the

total volume can be calculated from the summation of the

surfaces.

The Napoli mud volcano, surveyed during ODP Leg 160

(Emeis et al. 1996) was chosen as the reference mud

volcano. Applying the previous scheme leads to

kjs
�1

2

j ¼ 0:11� 0:01: We finally find that for the inner

domain, 92% of the total surface convert to 96% of the

total volume.

C. Acoustical model

The standard acoustical propagation law can be written

(Mitchell 1993):

Sb ¼ SbðhÞT2
wsðhÞT2

swðhÞ exp �4

Z h

0

apðzÞ
sin h

dz

� �

; ð11Þ

where Sb(h) is the effective backscatter coefficient of the

buried surface, h is the grazing angle of the refracted wave,

z is the vertical distance measured below the sediment

surface. ap is the attenuation expressed in nepers m–1. The

conventional model generally assumes that the attenuation

a is constant with depth. Then, taking the logarithm of

Eq. 11 and multiplying by 10 to convert the variables to

decibels, the effective backscattering strength is:

BS ¼ BSvðhÞ þ 20 log10ðTwsTswÞ �
2adBh

sin h
; ð12Þ

where h is the sediment thickness. Some authors measured

a decreasing attenuation with depth (Gorgas et al. 2002),

which comes to solving Eq. 11 for a varying attenuation

with depth, ap(z) = a0 + bp z. b is the rate of attenuation in
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dB m–2, and is negative in unconsolidated superficial

sediments, as shown by Gorgas et al. (2002). Equation 11

becomes:

Sb ¼ SbðhÞT2
wsðhÞT2

swðhÞ exp
�4a0h

2 sin h

� �

exp
�4bph2

2 sin h

� �

;

ð13Þ

The new expression of BS is:

BS ¼ BSvðhÞ þ 20 log10ðTwsTswÞ �
2a0;dBh

sin h
� bdBh2

sin h
:

ð14Þ

We solve Eq. 14 for the linear case (b = 0) and for the

non-linear case ðb\0Þ: In the linear case (Eq. 12), the

loss is proportional to the effective thickness he ¼ h=sin h;
equivalent to the distance traveled by the ray into the

sediments. The best linear fit gives a ¼ 2:0� 0:7 dB m�1;

which is equivalent to k ¼ 0:16� 0:06 dB m�1 kHz�1:

These values are in the range of values found in-situ

by Gorgas et al. (2002) for unconsolidated superficial

sediments. In the non-linear case, the best fit gives

a0 ¼ 3 dB m�1 and b ¼ �1:2 dB m�2: At a depth of 1 m,

a ¼ 1:8 dB m�1: The non-linear model does not improve

significantly the fit, and although plausible, the decrease

of the attenuation with depth is not required by our data.

In any case, both models lead to the same range of values

for the attenuation.

D. Characteristics of inferred mud flows

In Table 3 are given some characteristics of the mud flows

identified on the Mediterranean Ridge during the course of

the present study.

Table 3 Longitude, latitude and depth of inferred emission point, associated mud flows surface, for the 215 mud flows individualized over the

western Mediterranean Ridge, sorted according to decreasing latitude. mbsl is metres below sea level

Longitude

(d:m:s)

Latitude

(d:m:s)

Surface

(km2)

Depth

(mbsl)

Name Longitude

(d:m:s)

Latitude

(d:m:s)

Surface

(km2)

Depth

(mbsl)

Name

19:37:11 37:56:28 3.45 3,337 – 20:43:41 36:22:19 5.61 2,848 –

19:37:3 37:50:6 3.71 3,310 – 20:47:12 36:22:12 2.77 2,830 –

19:49:58 37:49:57 2.67 3,451 – 20:44:19 36:21:40 0.87 2,846 –

19:45:16 37:43:41 0.60 3,306 – 20:46:2 36:20:43 8.59 2,856 –

19:46:16 37:28:28 1.30 3,335 – 20:47:23 36:19:59 4.17 2,912 –

19:25:2 37:25:29 1.98 3,390 – 20:36:25 36:19:41 5.28 2,797 –

19:40:5 37:21:45 1.48 3,507 – 20:49:25 36:19:35 4.24 2,943 –

19:55:21 37:21:35 5.72 3,284 – 20:55:39 36:18:40 2.00 3,633 –

19:58:39 37:20:17 7.67 3,210 – 20:35:22 36:18:38 14.72 2,807 –

19:45:35 37:18:42 2.11 3,496 – 20:44:5 36:16:42 1.21 2,983 –

19:57:25 37:14:19 39.36 3,198 – 20:40:7 36:15:49 1.50 2,779 –

20:3:58 37:9:15 20.91 3,106 – 20:46:16 36:15:14 0.79 2,957 –

18:57:7 37:9:12 1.84 3,420 – 20:44:49 36:14:58 7.22 2,895 –

19:32:54 37:6:22 2.69 3,381 – 20:47:26 36:11:39 5.45 2,870 –

20:9:2 37:5:56 14.80 2,991 – 20:24:59 36:10:50 3.24 3,118 –

19:51:17 37:0:42 18.08 3,522 – 20:46:7 36:10:39 8.46 2,752 –

19:46:48 36:58:8 7.21 3,522 – 20:41:4 36:10:2 7.20 2,950 –

20:27:12 36:51:50 3.21 3,202 – 20:48:36 36:6:55 18.66 2,632 –

19:52:25 36:50:15 0.88 3,195 – 20:58:17 36:6:37 4.98 3,423 –

20:31:13 36:50:2 3.32 3,426 – 21:1:48 36:5:18 1.35 3,553 –

19:49:12 36:49:51 1.80 3,311 – 20:49:44 36:4:30 2.04 2,751 –

19:44:25 36:46:37 1.43 3,227 – 20:50:47 36:4:21 16.34 2,753 –

19:55:7 36:46:22 2.35 3,243 – 20:48:47 36:3:30 4.33 2,795 –

20:33:53 36:46:9 28.30 2,894 – 20:53:21 36:3:28 3.67 2,925 –

19:45:24 36:43:28 1.37 3,187 – 20:46:21 36:2:29 3.87 2,863 –

20:21:0 36:40:10 2.64 2,901 – 20:48:12 36:2:22 2.55 2,803 –

20:29:54 36:38:7 1.34 2,767 – 20:50:36 36:2:18 3.81 2,889 –

19:56:1 36:37:52 1.04 3,102 – 20:56:17 36:1:40 38.11 2,792 –
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Table 3 continued

Longitude

(d:m:s)

Latitude

(d:m:s)

Surface

(km2)

Depth

(mbsl)

Name Longitude

(d:m:s)

Latitude

(d:m:s)

Surface

(km2)

Depth

(mbsl)

Name

20:23:51 36:35:50 2.48 2,881 – 20:51:25 36:1:14 5.45 2,925 Aros

20:42:3 36:35:17 2.44 2,845 – 21:2:1 35:59:17 5.37 3,125 –

20:34:17 36:33:39 15.89 2,963 – 20:52:30 35:58:49 4.43 2,871 –

20:40:37 36:32:14 8.87 2,846 – 20:54:13 35:58:40 1.98 2,907 –

20:55:53 36:28:22 2.84 3,390 – 20:47:15 35:58:31 2.54 2,864 –

20:48:50 36:28:16 5.43 3,020 – 20:44:43 35:58:11 9.38 2,765 –

20:46:2 36:24:46 14.24 2,884 – 21:2:53 35:58:0 8.21 3,010 –

20:42:58 36:23:40 19.03 2,800 – 21:0:51 35:57:23 5.10 2,993 –

20:53:21 35:57:5 2.02 2,891 – 20:4:50 35:30:59 1.20 3,049 –

20:46:24 35:56:52 5.02 2,842 – 20:53:24 35:28:41 14.25 2,925 –

21:2:53 35:56:21 4.41 3,066 – 21:9:26 35:28:23 3.97 2,970 –

21:1:43 35:55:59 2.75 2,976 – 20:43:6 35:28:21 6.03 3,032 –

20:52:49 35:55:35 12.25 2,879 Nov. 20:8:43 35:28:8 0.86 3,022 –

21:2:26 35:54:55 3.04 3,007 – 20:39:26 35:27:21 3.24 3,001 –

21:4:39 35:54:24 5.18 3,114 – 21:13:27 35:25:50 1.96 2,875 –

21:3:17 35:53:46 2.90 3,011 – 20:9:26 35:25:14 1.03 3,032 –

20:48:4 35:51:12 7.30 2,974 Prom. 21:14:8 35:24:45 3.09 2,916 –

21:1:15 35:51:7 2.66 2,971 – 20:54:32 35:24:39 14.76 2,884 –

20:55:9 35:50:23 2.58 2,965 – 21:2:1 35:23:10 0.44 2,922 –

20:57:1 35:47:11 0.62 2,947 – 21:21:22 35:22:16 5.29 3,234 –

20:7:24 35:46:58 1.68 3,093 – 21:5:22 35:19:16 21.62 3,009 –

20:49:12 35:46:40 29.00 2,850 – 20:7:49 35:18:14 0.82 2,988 –

20:55:15 35:42:52 0.85 2,968 – 20:8:46 35:17:49 0.67 3,011 –

20:51:6 35:41:28 0.55 2,973 – 20:23:19 35:16:58 2.36 2,876 –

21:2:42 35:40:26 1.62 2,845 – 21:27:38 35:15:27 3.45 3,414 –

21:1:51 35:39:53 0.98 2,925 – 20:38:43 35:14:53 1.20 3,008 –

21:7:13 35:39:40 0.65 3,100 – 21:24:34 35:14:15 1.12 3,392 –

21:4:52 35:39:2 6.13 2,957 – 21:4:39 35:13:24 5.02 3,049 –

21:2:31 35:38:9 2.76 2,881 – 20:21:25 35:12:33 1.05 2,942 –

20:51:19 35:38:7 12.82 2,951 Fig. 11 21:0:56 35:12:2 1.17 3,062 –

20:4:42 35:37:53 1.97 3,071 – 21:2:18 35:11:17 3.14 3,064 –

20:26:58 35:37:44 1.98 3,122 – 20:27:23 35:11:15 1.55 2,852 –

21:6:41 35:37:36 3.57 2,926 – 21:4:55 35:10:37 0.98 3,036 –

20:35:22 35:37:25 1.21 3,068 – 20:9:18 35:10:14 2.78 2,891 –

21:1:53 35:36:53 3.02 2,888 – 21:18:44 35:9:41 13.97 2,888 –

21:9:10 35:36:25 32.15 2,961 – 20:42:6 35:9:37 0.44 2,934 –

21:2:50 35:36:16 7.92 2,873 – 20:27:33 35:8:34 2.66 2,833 –

21:0:24 35:36:5 3.66 2,828 – 20:8:5 35:8:25 1.75 2,922 –

19:44:14 35:35:56 1.31 3,151 – 21:19:49 35:6:22 5.19 3,015 –

20:19:12 35:35:31 0.93 2,989 – 20:44:38 35:5:35 14.18 2,681 –

20:20:6 35:33:47 2.59 2,976 – 20:56:9 35:3:12 2.24 2,705 –

20:24:34 35:33:5 0.54 3107 – 20:29:33 35:3:1 1.22 2,843 –

20:15:30 35:32:41 1.82 2,880 – 20:27:50 35:2:14 3.33 2,809 –

21:7:57 35:32:1 1.11 2,914 – 21:6:30 35:1:59 2.81 2,645 –

21:9:23 35:1:0 5.42 2,626 – 22:8:2 34:5:38 8.49 2,251 –

21:0:16 35:0:7 1.80 2,538 – 23:26:46 34:4:52 36.00 2,312 –

21:20:27 35:0:0 1.73 2,850 – 22:11:52 34:2:2 1.96 2,030 –

20:59:35 34:59:31 1.83 2,569 – 22:14:16 34:1:33 35.29 2,016 –
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