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Ancient times Geodesy (6 century bc)

• Geodesy is a very old science. It comes from the first question 
mankind ask themselves : what is the shape and the size of the 
earth ?

If the Earth were flat, 
then one could see 
very far 

=> no horizon

Because there is an 
horizon (i.e. objects 
disappear below the 
horizon) 

⇒ Earth is spherical
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Ancient times Geodesy (Eratosthene, 300 bc)

At one place on 
Earth, the Sun is 
vertical (lights the 
bottom of a well) 
only once a year

At the same time, at a 
different place, the 
Sun is not vertical

The angle can be 
measured from the 
length of the shadow 
of a vertical pole

The angle α of the 
sun light direction 
depends on the local 
vertical direction

=> Depends on the     
latitude of the site

Size of the Earth : circ = 360°/α * d12 =  40000 km
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«Modern» Geodesy (17th century)

A correction has to be made 
if distance is not aligned
with longitude

d12 can be computed from 
the sum (oriented) of many 
smaller distances

Measuring many (if not all) 
distances and angles
within a network of points 
give the more accurate 
solution for d12
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The shape of the Earth  (18th century)

Making those measurements, 
different people find different 
values for the length of an arc 
of 1° at different places in 
Europe

- Snellius (1617) : 104 km
- Norwood (1635) : 109 km
- Riccioli (1661) : 119 km

In France, Picard finds :
- 108 km in the north of France
- 110 km in the south of France

α

α

d1

d2

d1 < d2
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Satellite Laser Ranging
High energy laser firing at satellites enable to determine the position of the satellite and then the Geoid, 
assuming the station position is know. On reverse, assuming one knows the satellite position (i.e. the 
earth gravity field), then by measuring the satellite-station distance one can determine the station 
position. The time is measured with a precision of about  0.1ns to 0.3 ns (3.10-10 sec), which give a 
precision of about 3 to 10 cm on the measured length, hence on the station position.

Earth surface deformation

L = ∆t x CXsat,Ysat,Zsat

Xlas,Ylas,Zlas

Xlas =Xsat - Lx

Ylas =Ysat - Ly

Zlas =Zsat - Lz

poslas =possat(ti)- L(ti)

With : ti = time of ith measurement  
along the orbit

If the earth surface deforms, then the 
laser station moves. If this motion is 
bigger than a few cm, then the 
measurement detects it ! 
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Radio Telescope principle
Radio telescopes are used to study naturally occurring radio emission from stars, galaxies, quasars, 
and other astronomical objects between wavelengths of about 10 meters (30 megahertz [MHz]) and 1 
millimeter (300 gigahertz [GHz]). At wavelengths longer than about 20 centimeters (1.5 GHz), 
irregularities in the ionosphere distort the incoming signals. Below wavelengths of a few centimeters, 
absorption in the atmosphere becomes increasingly critical. the effective angular resolution and image 
quality is limited only by the size of the instrument.

Galaxy 3C66B

Earth surface deformation
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Bigger antennas

12 m antenna

140” antenna

140” antenna
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12 m antenna

140” antenna

140” antenna

Very Large Base Interferometry (VLBI)

It is extremely difficult to built antennas bigger than 20-30 meters diameter…
But, one single large mirror (or antenna) can be replace by many small
mirrors (or antenna). The size of the image wills be equivalent. Thus, an array of 
small antennas make a virtual big antenna of equivalent size the size of the 
array.

Single small antenna
virtual antenna
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12 m antenna

140” antenna

140” antenna

Very Large Base Interferometry (VLBI)

One can reconstruct a precise image of the observed object, knowing precisely 
the distances between the individual antennas. If these distances are not well 
known, then the image is fuzzy.
Again, reversing the problem, focusing a known image allow to determine the 
distances between stations.

The radio wavelength 
arrives at first antenna at 
time t, and at the second 
antenna at time t + ∆t.

The additional distance is : 
∆t .C

Which we can easily 
convert into distance 
between stations (knowing 
the angle=difference in 
latitude)

The obtained precision is around 1 millimeter !
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12 m antenna
140” antenna

DORIS (Doppler system)

A wavelength is broadcasted by a ground station  with a given frequency. A 
satellite is receiving this signal. Because the satellite is moving, the frequency it 
receives is shifted. This is the Doppler effect.

For a velocity v, the frequency ν will be shifted by a quantity equal to νx v/c
The complete formula for V not // to line of view is :

For a satellite velocity and 
position are linked by the 
Keplerian equation of its 
orbit.
Thus, measuring the 
Doppler shift allows to 
determine the Station to 
Satellite distance
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12 m antenna
140” antenna

DORIS (Doppler system)

The obtained precision on 
station position is around 
1-3 cm

DORIS beacons

DORIS GLOBAL network
~60 stations covering the whole Globe
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12 m antenna
140” antenna

DORIS (Doppler system)

Reference pole

Real pole position

Motion of the Earth gravity center

DORIS allow to detect motion of stations but also the motion of the whole network (as a 
polyhedron) in space. Thus we can determine the oscillations of planet Earth. These 
oscillations  have a complex frequency contains from Milankovitch period (26 000 years) 
to Chandler Wobble (400 days) and daily adjustments due to atmospheric loads

Motion of the Earth axis of rotation
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12 m antenna
140” antenna

GPS (Global Positioning System)

GPS was created in the 80s’ by the US Department of Defense for military purposes. The 
objective was to be able to get a precise position anywhere, anytime on Earth. 

The satellites send a 
signal, received by a GPS 
antenna. Again, this allow 
to measure the distance 
satellite to antenna

With at least 3 
satellites visible at 
the same time, we 
can compute 
instantaneously the 
station position. The 
precision can be as 
good as 1 millimeter



M1 – Géodésie14

GPS (Global Positioning System)

∆t

pseudo-distance Measurement:

Accurate to 30 m if C/A code 
(pseudo frequency of 1 MHz) 

Accurate to 10 m if P code 
(pseudo frequency of 10 MHz)

Easy because code never repeats 
itself over a long time, i.e. no 
ambiguity
Phase  Measurement:

Accurate to 20 mm on L1 or L2 
(1.5 GHz)

But difficult because the initial 
offset is unknown.

=> Post processing of a sequence 
of measurements on 1 satellite 
give final station position

Phase offset
Unknown 
initial offset 
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12 m antenna
140” antenna

GPS (Global Positioning System)

GPS antenna on tripod

GPS marker
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12 m antenna
140” antenna

GPS (Global Positioning System)

A spectacular application of GPS : the measurement of plate tectonics
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Fundamentals of GPS
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Double differences

One way phases are affected by 
stations and satellites clock 
uncertainties 

Double differences Are free from 
all clock uncertainties but

=>  Measurement of distances       
between points (= baselines)

=> Relative positioning

Single differences are affected by 

stations clock uncertainties 

Or
satellites clock uncertainties
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Other perturbation : The Ionosphere

Correct measurement 
in an empty space

But the ionosphere 
perturbates
propagation of electric 
wavelength …..

… and corrupts the 
measured distance

… and the inferred 
station position
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Ionosphere theory

Ionospheric delay τion depends on  :

• ionosphere contains in charged particules (ions and    
electrons) : Ne

• Frequency of the wave going through the ionosphere : f

τion = 1.35 10-7 Ne / f2
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Ionosphere : solution = dual frequency

Problem : Ne changes with time and is never known

solution : sample the ionosphere with 2 frequencies

τion1 = 1.35 10-7 Ne / f12                          τion2 = 1.35 10-7 Ne / f22

=> τion2 - τion1 = 1.35 10-7 Ne (1/ f22 - 1/ f12 )

=> Ne = [τion2 - τion1 ] / 1.35 10-7 (1/ f22 - 1/ f12 )

Using dual frequency GPS, allow to determine the number Ne and then to 
quantify the ionospheric delay on either L1 or L2.

(in fact, GPS can and is used to make ionosphere Total Electron Containt (TEC) maps 
of the ionosphere)
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Second perturbation : The Troposphere

Horizontal effects cancel out

Vertical effects 
remain

The troposphere (lower layer of the atmosphere) contains water. This also affects the 
travel time of radio waves.                                     
But the troposphere is not dispersive (effect not inversely proportional to frequency), so 
the effect cannot be quantified by dual frequency system. Therefore there a position error 
of 1-50 cm.
Thanks to the presence of many satellites, the effect cancel out (more or less) in average, 
on the horizontal position. Only remains a vertical error called Zenith tropospheric delay
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Troposphere zenith delay

The tropospheric zenith delay 
can be estimated from the 
data themselves…
if we measure every 30s on 5
satellites, we have 1800
measurements in 3 hours. 
We only have 3 unknowns : 
station lat, lon, and altitude !

So we can add a new one :    
1 Zenith delay every 3 hours

The curves show that the 
estimated  Zenith delay vary 
from 15 cm to 30 cm with a 
very clear day/night cycle



M1 – Géodésie24

Antenna phase center offset and variations

Electric 
wires inside 
the antenna

area of phase center 
displacement (~1 cm)

The Antenna phase center is the wire in which the radio wave converts 
into an electric signal.

It’s a “mathematical”
point, which exact
position depends 

on the signal 
alignment    

with the wire 
(azimuth and 

elevation)



M1 – Géodésie25

Antenna phase center offset and variations

Solution : use identical antennas, oriented in the same direction

As the signal rotates, the 
antenna phase centers 
move

But they move the same 
quantity in the same 
direction if antennas are 
strictly identical because 
the incoming signal are 
the same (satellite is 
very far away)

Therefore, the baseline
between stations 
remains unchanged

But this works for small baselines only (less than a few 100 km)
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Tripod and tribrachs source of errors

The measurement give the position of the antenna center, we have to 
tie it to the GPS marker which stays until next measure

The antenna has to be leveled horizontally and centered
perfectly on the mark. Then :

Horiz. position of marker = horiz. position of antenna

Altitude of marker = altitude of antenna – antenna height
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Precision and repeatability

10 measurements of 
the same baseline 
give slightly different 
values :

80 km +/- 10 mm

How many 
measurements are 
between 80 and 80+δ

The histogram curve 
is a Gaussian statistic

The baseline  
repeatability is the 
sigma of its 
Gaussian scatter
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Network repeatabilities

Network of N points 
(N=9)

(N-1) (=8) baselines from
1st station to all others

(N-2) (=7) baselines from
2nd station to all others
=> subtotal = (N-1)+(N-2)

total number of baselines
= (N-1)+(N-2)+…+1
= N(N-1)/2  (36 in that case)
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Typical repeatabilities (60 points => ~1800 bsl)

Repeatabilities are much larger than formal uncertainties ! 
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From position to velocity uncertainty

If one measures position P1 at time t1 and P2 at time t2 with 
precision ∆P1 and ∆P2, what is the velocity V and its 
precision ∆V ?

V = (P2 - P1)  / (t2 - t1)

∆V = (∆P2 + ∆P1 ) / (t2 - t1)X
Uncertainties don’t add up simply, because sigmas involve 
probability.

∆V = [ (∆P2 )2 + (∆P1 ) 2] 1/2 / (t2 - t1)
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Velocity uncertainties
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Velocity ellipses
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Accuracy vs. precision (1)

Fix point :                    
measure 1 hour every 30 s

=> 120 positions

with dispersion ~+/- 2 cm

5 hours later, measure again 
1 hour at the same location 

=> Same dispersion but 
constant offset of 5 cm 

Precision = 2 cm

Accuracy = 5 cm 
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Accuracy vs. precision (2)

Measure path, 1 point every 
10s

=> 1 circle with  50 points

10 circles describe runabout 
with dispersion ~ 2 cm

Next day, measure again

=> Same figure but constant 
offset of 6 cm 

Precision = 2 cm

Accuracy = 6 cm 
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GPS finds Arabia, India and Nazca are slower
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Rigid Sundaland

GPS campaigns with more 
than 60 sites allow to 
determine that :

• South-East Asia (red 
arrows) is an individual block 
which moves away from 
Eurasia (black arrows)

• South China (blue arrows) 
also moves away from 
Eurasia at around 10 mm/yr 
eastward
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Strain rate and rotation rate tensors (1)

2. Compute strain rate and rotation rate tensors 

1. Look at station velocity residuals

Velocity        mm/yr 
Strain  = _______ = _____ =  % / yr

Distance          km

Matrix tensor notation : Si
j = d(Vi) / d(xj) =

d(Vx) / d(x)     d(Vx) / d(y)

d(Vy) / d(x)     d(Vy) / d(y)

Theory says : [S] =    [E]       +       [W]
Symetrical Antisymetrical
Strain rate    rotation rate

| |

To asses plate deformation :
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Strain rate and rotation rate tensors (2)

[E] has 2 Eigen values : ε1, ε2

ε1 and ε2 are extension/compression along  principal direction defined 

by angle  θ (defined as angle between ε2 direction and north)

[E] = ½ ([S] + [S]T) = | ||E11 E12

E12 E22

| [W] = ½ ([S] - [S]T) = 
0 W      

-W       0

ε1 = E11 cos2θ + E22 sin2θ – 2 E12 sinθ cosθ

ε2 = E11 sin2θ + E22 cos2θ – 2 E12 sinθ cosθ
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Strain rate and rotation rate tensors (3)

Therefore we can compute strain rate and rotation rate within any 
polygon, the minimum polygon being a triangle 

Minimum requirement to compute strain and rotation rates is :  

3 velocities (to allow to determine 3 values ε1, ε2, and W)

No deformation compression rotation

Strain and rotations are unsensitive to reference frame
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Strain and rotation in GEODYSSEA network

Strains : 

extension/compression/strike-slip

Rotations : 

Anti-clockwise/clockwise
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Mathematical formulation

at the surface (z=h)

Uy = K arctang (x/z) 

Uy = 2.V0 / Π arctang (x/h) 

The expected profile of deformation 
across a strike slip fault we should see at 
the surface of the earth (if the crust is 
elastic) is shape like an arctangant
function. The exact shape depends on 
the thickness of the elastic crust, also 
called the locking depth.
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Arctang profiles Uy = 2.V0 / Π arctang (x/h) 
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Sagaing Fault, Myanmar

GPS measurement on 
the Sagaing fault fit well 
the arctang profile

but with an offset of 10-
15 km
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Palu Fault, Sulawesi

Part of the GPS data on Palu fault fits well an arctang
profile. But wee need a second fault to explain all the 
data
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Altyn Tagh Fault, China
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Altyn Tagh Fault, China (INSAR)

1 color cycle = 28 mm LOS displacement

Interferogram Nov. 1995/ Nov. 1999
Fault-parallel velocity :

v = v0/π atan(x/D)

Slip rate V0 = 1.4 cm/yr
Locking depth D = 15 km
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San Andreas Fault, USA (INSAR)
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Subduction in south America
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Subduction modeling
Velocity component // to convergence direction In the case of a subduction

(dippping fault with 
downward slip) we use 
Okada’s formulas.

We find a very large 
deformation area (> 500 
km) because the dipping 
angle is only 22°

With oblique slip we predict 
the surface vector will start 
to rotate at the vertical of 
the end of the subduction
plane 
The profile of the velocity 
component // to the 
convergence shows this 
with a flat portion at this 
location
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Subduction parameter adjustments

Model and data Residuals


