GPS uncertainties

- Relative/ vs. absolute positioning
- Position precision limitations
- Velocity uncertainties
- Accuracy vs. Precision
- Mapping in a reference frame

Double differences

Phase center offset and variations

lonosphere sketch

Mun

Correct measurement in an empty space

But the ionosphere perturbates propagation of electric wavelength

... and corrupts the measured distance

... and the inferred station position

Ionosphere theory

Ionospheric delay τ ion depends on :

- ionosphere contains in charged particules (ions and electrons) : Ne
- Frequency of the wave going through the ionosphere : f

$$\tau_{ion}$$
 = 1.35 10⁻⁷ Ne / f²

Ionosphere : solution = dual frequency

Problem : Ne changes with time and is never known

solution : sample the ionosphere with 2 frequencies

 $\tau_{ion_1} = 1.35 \ 10^{-7} \ \text{Ne} \ / \ f_1^2 \qquad \tau_{ion_2} = 1.35 \ 10^{-7} \ \text{Ne} \ / \ f_2^2$

$$T_{10n_{2}} - T_{10n_{1}} = 1.35 \ 10^{-7} \ \text{Ne} \ (1/\ f_{2}^{2} - 1/\ f_{1}^{2})$$

Ne =
$$[T_{100_2} - T_{100_1}] / 1.35 \, 10^{-7} \, (1/f_2^2 - 1/f_1^2)$$

Dual frequency GPS to quantify ionospheric delay Make ionoosphere TEC maps with GPS

Troposphere

Atmospheric Parameters at Ujung Pendang (Indonesia)

SEAMERGES GPS course - Bangkok may 2004

Precision and repeatability

SEAMERGES GPS course - Bangkok may 2004

8

Network repeatabilities

Network of N points (N=9)

(N-1) (=8) baselines from 1st station to all others

(N-2) (=7) baselines from 2nd station to all others => subtotal = (N-1)+(N-2)

total number of baselines = (N-1)+(N-2)+...+1= N(N-1)/2 (36 in that case)

Typical repeatabilities (60 points => ~1800 bsl)

Repeatabilities are much larger than formal uncertainties !

SEAMERGES GPS course - Bangkok may 2004

From position to velocity uncertainty

If one measures position P_1 at time t_1 and P_2 at time t_2 with precision ΔP_1 and ΔP_2 , what is the velocity V and its precision ΔV ?

$$V = (P_2 - P_1) / (t_2 - t_1)$$

$$\Delta V = (\Delta P_2 + \Delta P_1) / (t_2 - t_1)$$

Uncertainties don't add up simply, because sigmas involve probability.

$$\Delta V = \left[(\Delta P_2)^2 + (\Delta P_1)^2 \right]^{1/2} / (t_2 - t_1)$$

Velocities uncertainties

Expected Precision of the Velocity Estimates

12

Velocities ellipses

Accuracy vs. precision (1)

Fix point : measure 1 hour every 30 s => 120 positions with dispersion ~+/- 2 cm 5 hours later, measure again 1 hour at the same location => Same dispersion but

> Precision = 2 cmAccuracy = 5 cm

Accuracy vs. precision (2)

Measure path, 1 point every 10s

=> 1 circle with 50 points10 circles describe runaboutwith dispersion ~ 2 cm

Next day, measure again

=> Same figure but constant offset of 6 cm

Precision = 2 cmAccuracy = 6 cm

Mapping in a reference frame (sketch)

Mapping in a reference frame (1)

Constraining campaign positions (and or velocities) to long term positions (and or velocities) works fine ...

... when station displacement is constant with time

Mapping in a reference frame (2)

Constraining		campaign	
positions	(2	and	or
velocities)	to	long	term
positions	(and		or
velocities)	does	not	work
when		station	
displacement		is	not
constant with time			

Mapping in a reference frame (3)

some stations are better than others ...

SEAMERGES GPS course - Bangkok may 2004

19