Leçon Prépa Agreg 2008

Les Mouvements Verticaux de la Lithosphère

Robert Alexandra (arobert@geologie.ens.fr)

1 Introduction

Différentes définitions de lithosphère :

- 1. **Géochimique** : réservoir isolé ayant une signature géochimique propre et restant séparée de la convection mantellique pendant plus de 10⁹ ans.
- 2. **Sismique** : base de la lithosphère correspond au toit d'une LVZ (Low Velocity Zone) qui est parfois associée à l'asténosphère.
- 3. **Mécanique** : la lithosphère est traitée comme une couche élastique au dessus d'un demi-espace fluide. Son épaisseur peut-être estimée à partir de la flexure des plaques sous un édifice volcanique ou au niveau d'une fosse océanique.
- 4. **Thermique**: couche dont la base est un isotherme qui correspond à la température de fusion des roches constituant le manteau (1280°)

Mise en évidence de mouvements horizontaux des plaques lithosphériques (tectonique des plaques) mais aussi mise en évidence de mouvements verticaux :

En surface:

Présence de topographie,...

Elévation des lignes de rivages, des terrasses fluviatiles et marines,...

Données satellitaires et de nivellement.

En profondeur:

Imagerie sismologique et mise en évidence de racines crustales sous les orogènes et évolution de cette racine suivant l'âge de l'orogène.

Anomalies gravimétriques.

2 Mouvements liés à la rhéologie de la lithosphère

2.1 Profil rhéologique de la lithosphère

Epaisseur élastique de la lithosphère.

2.2 Flexure élastique de la lithosphère

Flexure en réponse à la surcharge de grands appareils volcaniques (plaque océanique). Flexure d'une plaque en zones de subduction (par exemple en Inde,...)

2.3 Rebond élastique (ou isostatique) de la lithosphère

Retrait rapide de masse. Régions qui présentent des anomalies gravimétriques négatives.

3 Mouvements liés à la gravité

3.1 L'isostasie

Isostasie : comportement de type hydrostatique Modèles de Pratt, d'Airy et de Veining-Meinesz.

3.2 Réajustement isostatique

Surface de compensation et anomalies isostatiques.

Tendance au rétablissement des conditions d'équilibre.

Exemples: Magmatisme instrusif: surépaississement crustale: diminution densité: surrection

3.3 Mouvements verticaux liés à l'état thermique de la lithosphère

Subsidence thermique : augmentation de la densité (exemple de la détumescence thermique des marges continentales)

Réchauffement donc diminution de densité et soulèvement (exemple dans le Massif Central).

4 Mouvements liés à la tectonique

Implique des mouvements liés à la gravité (isostasie) et à la rhéologie de la lithosphère. Traiter cette partie par exemples régionaux?

4.1 Zones en extension et subsidence tectonique

Diminution de l'épaisseur crustale car extension régionale, failles normales en croûte supérieure, fluage en croûte inférieure : dans les rifts et marges actives.

4.2 Zone de convergence lithosphérique

Zones de collision, obduction ou transpression : épaississement crustal.

5 Conclusion

Questions possibles

- 1. Certains auteurs expliquent l'élévation du plateau du Tibet par une remontée asthénosphérique. Quel processus serait responsable de la surrection ?
- 2. Comment s'explique le soulèvement de 9 mm par an en Finlande?
- 3. Densité moyenne de la croûte continentale? et océanique? et du manteau lithosphérique?
- 4. Les différentes définitions de la lithosphère?
- 5. Comment a été réalisé le profil rhéologique de la lithosphère?
- 6. A partir du profil rhéologique de la lithosphère, où sont les zones possiblement sismogènes?
- 7. Comment est le comportement rhéologique de la lithosphère à différentes échelles de temps ? Pourquoi ?
- 8. Qu'est ce qu'une déformation élastique?
- 9. Quel est la roche qui constitue principalement la croûte continentale inférieure? le manteau lithosphérique?
- 10. Hypothèse majeure de la tectonique des plaques concernant la rhéologie de la lithosphère? Est-ce bien vrai?
- 11. Pour un relief d'environ 1000m, idée de la racine crustale selon Airy?
- 12. Formule de la pression hydrostatique?
- 13. Ordre de grandeur de la surrection verticale dans les Alpes?
- 14. En considérant uniquement l'isostasie, si tout l'eau liquide situé au dessus d'une croûte océanique "disparait", que va-t-il se passer?
- 15. Qu'est ce que l'anomalie à l'air libre, anomalie de Bouguer?
- 16. Pourquoi l'anomalie de Bouguer est-elle systématiquement positive sur les océans et négatives sur les continents?
 Par rapport au géoïde, il y a excès de masse sous les océans et déficit sous les continents, particulièrement sous les montagnes jeunes.
- 17. Que se passe-t-il quand il y a éclogitisation d'une croûte inférieure subductée?
- 18. Quel est l'unité de mesure des anomalies gravimétrique?