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Abstract We discuss the constraints on short-term asthenospheric viscosity provided by seasonal
deformation of the Earth. We use data from 195 globally distributed continuous Global Navigation Satellite
System stations. Surface loading is derived from the Gravity Recovery and Climate Experiment and used
as an input to predict geodetic displacements. We compute Green’s functions for surface displacements
for a purely elastic spherical reference Earth model and for viscoelastic Earth models. We show that a range
of transient viscoelastic rheologies derived to explain the early phase of postseismic deformation may
induce a detectable effect on the phase and amplitude of horizontal displacements induced by seasonal
loading at long wavelengths (1,300–4,000 km). By comparing predicted and observed seasonal horizontal
motion, we conclude that transient asthenospheric viscosity cannot be lower than 5 × 1017 Pa.s, suggesting
that low values of transient asthenospheric viscosities reported in some postseismic studies cannot hold
for the seasonal deformation global average.

1. Introduction

Campaign and continuous Global Navigation Satellite System (GNSS) monitoring around fault zones are often
used to characterize patterns of the earthquake cycle, delimiting and measuring coseismic, postseismic, and
interseismic deformation. However, although transient strains have been systematically observed in the years
or decades following large earthquakes (Burgmann & Dresen, 2008; Thatcher & Pollitz, 2008), constitutive
laws governing the spatial and time-dependent postseismic deformation remain an ongoing debate. Effec-
tive asthenospheric viscosities of a few 1.1018 Pa.s, typically 3.1018 Pa.s, are necessary to explain the observed
postseismic deformation after a few years following a large event (Trubienko et al., 2014). In addition, veloci-
ties recorded by continuous GNSS stations during the first months following major earthquakes are faster than
predicted using such viscosities (Figure S1 in the supporting information) (Pollitz et al., 2006; Trubienko et al.,
2014). Several mechanisms have been proposed to explain those observations: (1) rapidly decaying slip on the
ruptured fault or in its vicinity, commonly referred to as afterslip (Barbot et al., 2009; Fialko, 2004; Freed, 2007;
Klein et al., 2016; Marone et al., 1991; Perfettini & Avouac, 2004; Savage et al., 1994), a mechanism often favored
for explaining near-field observations (Ingleby & Wright, 2017), and (2) viscoelastic relaxation of coseismic
stresses in the lower crust and upper mantle, with multiple relaxation times and/or stress-dependent vis-
cosities (Chandrasekhar et al., 2009; DeVries & Meade, 2013; Freed & Bürgmann, 2004; Pollitz, 2003; Pollitz &
Thatcher, 2010; Pollitz et al., 2006; Ryder et al., 2011; Trubienko et al., 2014). Identifying the respective contri-
butions of these various mechanisms is challenging but is key to a better understanding of the seismic cycle
and to the potential link between aftershocks and postseismic deformation.

A type of model of postseismic deformation, where only viscoelastic relaxation is considered, employs a linear
viscoelastic Burgers rheology (Pollitz, 2003), a rheology supported by rock physics experiments (Chopra, 1997;
Hanson & Spetzler, 1994; Raj, 1975; Post, 1977; Sigmundsson, 1991; Sun et al., 2014) and by mechanical models
based on homogenization (Ivins, 1996). The model includes transient and steady state viscosities, to repro-
duce observations of both the early and later stage of postseismic stages. For example, Pollitz (2003) used a
biviscous Burgers rheology in the lower crust and shallow subcrustal mantle to model rapid early deformation

RESEARCH LETTER
10.1002/2017GL076451

Key Points:
• We model global seasonal horizontal

and vertical surface displacements
induced by loading derived from
GRACE in a viscoelastic framework

• We show that viscosities derived to
explain early postseismic deformation
may yield a detectable effect on
horizontal seasonal displacements

• Asthenospheric viscosity lower
bound from seasonal deformation
suggesting some postseismic studies
cannot hold for the global average

Supporting Information:
• Supporting Information S1

Correspondence to:
K. Chanard,
kristel.chanard@ign.fr

Citation:
Chanard, K., Fleitout, L., Calais, E.,
Barbot, S., & Avouac, J.-P. (2018).
Constraints on transient viscoelastic
rheology of the asthenosphere
from seasonal deformation.
Geophysical Research Letters, 45.
https://doi.org/10.1002/2017GL076451

Received 18 NOV 2017

Accepted 7 FEB 2018

Accepted article online 12 FEB 2018

©2018. American Geophysical Union.
All Rights Reserved.

CHANARD ET AL. 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://orcid.org/0000-0001-9934-9621
http://orcid.org/0000-0003-1114-3616
http://orcid.org/0000-0002-5935-8117
http://orcid.org/0000-0003-4257-7409
http://orcid.org/0000-0002-3060-8442
http://dx.doi.org/10.1002/2017GL076451
http://dx.doi.org/10.1002/2017GL076451
https://doi.org/10.1002/2017GL076451


Geophysical Research Letters 10.1002/2017GL076451

and the longer-term relaxation, following the M7.1 Hector Mine, California, earthquake, with an estimated
transient viscosity of 1.6×1017 Pa.s, corresponding to a relaxation time of about a month. Other studies found
comparable transient viscosity values for mega-earthquakes inducing deformation over more than 1,000 km,
able to sample the mechanical properties of the upper mantle: 5 × 1017 Pa.s (Pollitz et al., 2006), 4 × 1017 Pa.s
(Gunawan et al., 2014; Mikhailov et al., 2013) following the 2004 Sumatra-Andaman earthquake, 2 × 1017 Pa.s
after the 2006–2007 Kuril earthquakes (Kogan et al., 2013), or 2.5×1017 Pa.s after the 2010 Tohoku earthquake
(Sun et al., 2014).

The linear viscoelastic rheology of the asthenosphere, defined here in relation to its mechanical properties
at shallow depth, derived from these postseismic studies must be compatible with other loading sources at
comparable spatiotemporal scales. In particular, they should be consistent with the seasonal deformation of
the Earth, mainly due to continental water storage and nontidal ocean and atmospheric masses (Blewitt et al.,
2001; Van Dam et al., 2001). Indeed, far-field stress perturbations (≥500 km from the epicenter) within the
asthenosphere used to infer asthenospheric viscosities from postseismic deformation (velocities of 5 mm/yr
due to strain relaxation in a 200 km thick asthenosphere with a viscosity of 3.1018 Pa.s) are comparable to
the stress perturbations due to seasonal loading (of order of 1 kPa) so that the physical mechanisms of defor-
mation should be the same for the two processes. Note that nonlinear rheologies are not considered here
because stresses involved in both processes are negligible compared to background tectonic stresses.

In many geophysical processes, a form of transient creep is present in relation with attenuation, from seismic
to annual or even multiannual time scales. In most cases, these processes involve a low-amplitude plastic
deformation, smaller than the elastic deformation induced by the associated stresses (Anderson et al., 1965;
Bos et al., 2015; Smith & Dahlen, 1981). However, the asthenospheric creep we aim to detect using the seasonal
deformation mode involves plastic deformations larger than the elastic one.

Other studies have used surface load variations to probe the Earth’s viscoelastic rheology at a range of spa-
tiotemporal scales: filling or draining of large lakes (Bills & May, 1987; Bills et al., 2007; Doin et al., 2015) or
postglacial isostatic rebound (Lambeck et al., 1998; Larsen et al., 2005; Sigmundsson, 1991). Here we explore
this idea at the annual time scale by comparing seasonal deformation from 195 globally distributed continu-
ous Global Navigation Satellite System (cGNSS) stations to the predictions of viscoelastic models with various
rheological properties of the asthenosphere, loaded by mass variations derived from satellite gravity mea-
surements provided by the Gravity Recovery and Climate Experiment (GRACE) (Bettinelli et al., 2008; Chanard,
2015; Chanard et al., 2014; Fu & Freymueller, 2012; Fu et al., 2012, 2013; Nahmani et al., 2012).

2. Seasonal Variations of Surface Loading and Seasonal Ground Displacement
2.1. Surface Mass Variations Derived From GRACE
We use global mass redistribution at the Earth surface estimated from gravity measurements by the satel-
lite mission GRACE (Tapley et al., 2005), from 2002 to 2012. We use 10 day Level-2 solutions produced by the
Centre National d’Etudes Spatiales (CNES)/Groupe de Recherches de Géodésie Spatiale (GRGS) (http://grgs.
obsmip.fr/), to which we add back the atmospheric and nontidal oceanic loading contribution (Carrère &
Lyard, 2003). Solutions are expressed in terms of Stokes coefficients representing the residual gravitational
effects, then converted to water mass coefficients (millimeter of equivalent water height (EWH)) by isotropic
filtering (Ramillien et al., 2005). We interpolate 10 day 1-by-1 degree grids of water mass from the water
mass coefficients and remove a time average from each 10 day solution so that the solutions are expressed
with respect to the mean solution over the time span of analysis. Time series of EWH are detrended and
empirically corrected for detectable coseismic and postseismic gravity changes due to mega-earthquakes
(Chanard, 2015; Chen et al., 2007; Han et al., 2006, 2008; Ogawa & Heki, 2007). As the degree-1 loads are
not observed by GRACE, we account for their contribution as described by Chanard (2015). We invert the
residuals between GNSS time series and GRACE derived displacements, for each model of Earth, induced
by loads of spherical harmonic degree ⩾ 2 for a degree-1 deformation field together with a net translation
(and a net rotation), which aims to accommodate misalignments of the GNSS solution to the theoretical refer-
ence frame. Note that the harmonics of very low degree-2 and degree-3 of the gravity field solutions cannot
be estimated accurately by GRACE and are stabilized in the CNES/GRGS solutions using LAser GEOdynamics
Satellite orbits (Lemoine et al., 2007). Figure 1 shows the averaged annual peak-to-peak amplitude of the EWH
in millimeter for the 2002–2012 time period. The corresponding EWH time series are used as an input loading
function for deformation models.
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Figure 1. Peak-to-peak surface load variations, expressed in equivalent water height (in millimeters), derived from
Gravity Recovery and Climate Experiment for the 2002–2012 period and corrected from detectable earthquakes
coseismic contributions. Red dots show location of the continuous Global Navigation Satellite System stations used in
this study.

2.2. GNSS Data Set
We use daily position time series from continuous GNSS stations as provided by the Nevada Geodetic
Laboratory (http://geodesy.unr.edu). Note that this is an arbitrary choice of strategy processing. Differences
in processing techniques, particularly in the choice of mapping functions, can reach up to a millimeter for the
vertical component (Steigenberger et al., 2009) but do not affect significantly horizontal displacements, and
our final results will rely on horizontal components exclusively.

We favor stations of the International GNSS Service network to obtain reliable time series at a globally dis-
tributed network of sites with observation time span longer than 4 years. This leads to 452 sites from which we
further select a subset of 173 sites where time series show a clear seasonal signal with no significant data gap.
We include an additional 28 sites that are not part of the International GNSS Service but are located in areas
where strong seasonal displacements are expected and have long (≥4 years) and continuous time series. The
location of the 195 stations used in this study is shown in Figure 1. To extract nontectonic signals Ds of a GNSS
time series D, we model and remove from the raw time series: (i) their initial position D(t0); (ii) steady veloc-
ity V(t − t0); (iii) potential earthquake coseismic and postseimic (with characteristic time 𝜏 , determined from
postseismic studies of each modeled earthquake) contributions; and (iv) known material change jumps:

Ds(t) = D(t) − D(t0) + V(t − t0) +
∑

i

ai(t − ti) +
∑

i

bi(t − ti) ln

(
1 +

t − ti

𝜏

)
+
∑

j

cj(t − tj), (1)

where the (ai, bi, and cj) account, respectively, for the coseismic, postseismic, and material change corrections.
We remove outliers beyond 3 times the interquartile range of the median on any of the three components.
Note that we estimate annual, semiannual, and draconitic signals up to the sixth harmonic from the 195 GNSS
station position time series and remove the estimated draconitic signals from the time series. Finally, we com-
pute a 10 day weighted average that coincides with the GRACE temporal sampling. Figure 2 shows the daily
position time series at station SAGA (Brazil) together with the cleaned, 10 day averaged, time series. This sta-
tion, located in the Amazon basin where large annual fluctuations of EWH are observed (Figure 2), shows
peak-to-peak annual displacements of 30 mm on the vertical and 10 mm on the horizontal. A selection of
additional stations is displayed in Figures S2 and S3.
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Figure 2. Daily detrended geodetic positions, error bars for 1𝜎 uncertainties (gray), and 10 day moving average
(black crosses) determined at continuous Global Navigation Satellite System station SAGA (location in Figure 1).
Predicted displacements induced by Gravity Recovery and Climate Experiment-derived seasonal surface loading derived
are shown for a purely elastic model (red) and Burgers 1 (blue), where 𝜂T = 1.1017 Pa.s, 𝜂 = 1.1019 Pa.s, and 𝜇T = 𝜇∕10
between 70 and 270 km depth; Burgers 2 (black), where 𝜂T = 1.1018 Pa.s, 𝜂 = 1.1019 Pa.s, and 𝜇T = 𝜇∕10 between 70
and 270 km depth; and Burgers 3 (light blue), where 𝜂T = 1.1017 Pa.s, 𝜂 = 1.1019 Pa.s, and 𝜇T = 𝜇 between 70 and
270 km depth. In all models, degree-1 and reference frame issues have been addressed as proposed by Chanard (2015).

3. Global Modeling of Seasonal Ground Deformation Induced by Surface
Load Variations
3.1. Description of the Model
We compute surface displacements induced by variations of surface loading using a numerical model based
on a spherical harmonics and temporal frequencies decomposition of the GRACE-derived loads that uses the
Love number theory. Surface loads, (t, 𝜃, 𝜙), varying with time (t), longitude (𝜃), and latitude (𝜙), are decom-
posed into loads, ̂(𝜔, l,m), varying with temporal frequency (𝜔) and spherical harmonics of degree and order
(l,m) (Caron et al., 2017; Craig et al., 2016). We compute surface displacements induced by a unit load for each
spherical harmonic of the decomposition and each frequency of the load (Figure 1) by a system of equations
for the deformation of a self-gravitational spherical body, similar to classical normal modes theory used in
seismology. Love numbers are frequency-dependent complex Love numbers when considering viscoelastic
rheologies and frequency-independent real numbers in the elastic case. We then combine displacements for
each frequency, when necessary, and spherical harmonic to obtain surface displacements induced by the
global surface loading at time t, longitude 𝜃, and latitude 𝜙.

3.2. The Purely Elastic Case
We use the preliminary reference Earth model (PREM) structure (Dziewonski & Anderson, 1981), where
the oceanic crust is replaced by a continental crust (Bassin, 2000), to compute load Love numbers and
Green’s functions for horizontal and vertical displacements caused by an annual, unit, harmonic loading
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function (Figure S4). Note that the choice of the Earth’s elastic structure is arbitrary as surface displacements
induced by the long wavelengths loads reliably detected by the GRACE mission (≥700 km) will not be sen-
sitive to elastic variations within the crust where models differ significantly (Figure S4). We then convolve
the Green’s functions with the spatially and temporally varying surface load derived from GRACE from 2002
to 2012, compute model surface displacements at the selected set of continuous GNSS stations and com-
pare model results to geodetic observations. This approach has been previously used to compute the Earth’s
response to seasonal loading derived from various hydrological models (Blewitt et al., 2001; Van Dam et al.,
2001) or from GRACE observations (Bettinelli et al., 2008; Chanard, 2015; Chanard et al., 2014; Davis et al., 2004;
Fu & Freymueller, 2012; Fu et al., 2012). The fit to observations for the vertical component is usually good
(with mean weighted root-mean-square reduction of ∼50% for set of globally distributed GNSS sites) but the
horizontal component is often poorly predicted (with a mean weighted root-mean-square reduction of a few
% only). Chanard (2015) shows that predictions of horizontal components can be significantly improved by
estimating the degree-1 deformation field from a comparison between the GRACE-derived model, with no a
priori degree-1 loads, and observations rather than using published degree-1 coefficients derived from other
techniques. Figure 2 shows, for example, that the model position time series at site SAGA matches well the
observations for all three components. In particular, the horizontal component is well reproduced, both in
amplitude and in phase. See supporting information Figure S3 for similar plots at other sites.

4. Potentially Detectable Asthenosphere Transient Viscoelastic Rheology
From Seasonal Loading

We now test the effect of modifying the elastic model by including a viscoelastic asthenosphere with param-
eters in the range of typical values derived from postseismic studies. In this section, surface displacements
induced by annual harmonic loads for elastic and for various viscoelastic Earth models are compared. We con-
sider models with an elastic lithosphere of thickness He with a linear elastic behavior on top of a viscoelastic
asthenosphere of thickness H and an underlying mantle (Figure 3a). Our calculations show that even with rel-
atively low values of mantle viscosity (1019−1020 Pa.s), the model predictions are similar to an elastic response
at an annual loading period. Thus, our models use a mantle below the asthenosphere of constant Maxwell
viscosity of 1020 Pa.s and PREM elastic parameters.

We use a Burgers rheology in the asthenosphere described by a bulk modulus 𝜅, a transient viscosity and
shear modulus 𝜂T and 𝜇T , and a steady state viscosity and elastic shear modulus 𝜂 and 𝜇 (Figure 3a). We fixed
the steady state elastic parameters to the PREM values and the associated steady state viscosity to 1019 Pa.s
as lower values would not be compatible with inferences of long-term asthenospheric viscosities from con-
vective heat transfer (Dumoulin et al., 1999). The relaxation time associated with the long-term viscosity is
therefore much longer than the annual loading frequency and thus is not a dominant model parameter. Note
that the commonly used Maxwell rheology for longer term deformation is an end-member of the Burgers
rheology, where 𝜂T → ∞, or 𝜇T → ∞, or 𝜇T << 𝜇elastic. In the last case, the Burgers rheology is equivalent to
a Maxwell rheology with an effective viscosity such that 1∕𝜂eff = 1∕𝜂 + 1∕𝜂T .

Examples of model results are illustrated in Figure 3. We chose a value of the transient viscosity of 1×1017 Pa.s,
at the lower end of the range of tested values, to enhance the effect of the asthenospheric viscosity on
seasonal amplitude and phase shift. Our model shows that for spherical harmonic degrees from 10 to 30
(or loading wavelengths 1,300–4,000 km), a transient viscosity of 𝜂T = 1017 Pa.s, with 𝜇T = 𝜇 in a 70–270 km
depth Burgers asthenosphere would decrease the amplitude of horizontal seasonal surface displacement
and induce a phase lag of about 30 days, while the vertical displacements would remain close to those pre-
dicted by a purely elastic model for the low harmonics degree dominating the GRACE data (Figure 3b). We
also observe that a transient shear modulus of 𝜇T = 𝜇∕10, with 𝜂T = 1017 Pa.s in a 70–270 km depth Burgers
asthenosphere, comparable to a Maxwell rheology with an effective viscosity ∼1017 Pa.s, would, on the con-
trary, amplify seasonal horizontal signals at the 10–30 spherical harmonic degrees and create a time lag up
to 3 months between elastic and viscoelastic seasonal horizontal displacements, while vertical predictions
would remain similar (Figure 3c).

Finally, a reduced asthenospheric layer thickness H would reduce differences between elastic and viscoelas-
tic models (Figure 3d) at all spherical harmonic orders. Note that the thickness of He does not influence
the response to long wavelength loads captured by GRACE but rather acts as a filter for small wavelength
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Figure 3. (a) Scheme of viscoelastic model used in our study, including an elastic lithosphere of thickness He , an
asthenosphere of thickness H with a Burgers rheology characterized by a transient viscosity and shear modulus 𝜂T and
𝜇T , and a steady state viscosity and shear modulus 𝜂 and 𝜇. The underlying mantle has a Maxwell rheology. (b–d) Ratio
of surface displacements and phase lag between viscoelastic models with a Burgers asthenospheric rheology and a
purely elastic model for vertical (blue) and horizontal (red) components, induced by a 1 year periodic unit harmonic
loading function obtained respectively using a viscoelastic model. (b) shows the effect of 𝜂T , (c) 𝜇T , and (d) H.
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Figure 4. Maps of mean horizontal admittance (see equation (2)) between
observations at 195 continuous Global Navigation Satellite System stations
globally distributed and Gravity Recovery and Climate Experiment-derived
viscoelastic seasonal models as a function of model parameters
(see Figure 3). Transient viscosities in the asthenosphere lower than
5.1017 Pa.s, a transient shear modulus lower that 𝜇∕5, and a thickness
greater than 100 km appear rather unlikely to model accurately global
horizontal seasonal displacements observed at continuous Global
Navigation Satellite System stations and induced by seasonal loading
derived from Gravity Recovery and Climate Experiment.

harmonic loads (Figure S6). Therefore, we discard the elastic thickness He

as a first-order parameter in the following analysis.

Thus, low transient viscosity derived from postseismic studies based on a
Burgers rheology may induce a detectable signature in the annual defor-
mation of the Earth driven by surface load variations at long wavelengths,
from 1,000 to 4,000 km, seen in the GRACE time series and the seasonal
deformation mode may help constraining postseismic rheologies.

5. Constraints on Transient Viscoelastic Parameters
From Seasonal Global Deformation

We compute the horizontal and vertical surface displacements at the set
of 195 cGNSS stations described in section 2.2 for a range of models for
Earth models including a viscoelastic asthenosphere with a Burgers rhe-
ology and submitted to variations of surface loading derived from GRACE
over the period 2002–2012. The comparison of the observed and pre-
dicted signal at site SAGA shown in Figure 2 indicates that the Burgers
2 model (𝜂T = 1018 Pa.s) predicts reasonably well both the horizontal
and vertical components. This comes from the fact that independent from
the transient shear modulus values, the combination of an asthenospheric
1018 Pa.s transient viscosity and a 1019 Pa.s steady state viscosity (or here
the equivalent Maxwell rheology with an effective viscosity of 9×1017 Pa.s)
behaves similarly to a purely elastic rheology under annual loading. When
the model includes a lower transient viscosity of a few 1017 Pa.s in the
asthenosphere, its response varies significantly depending on the tran-
sient shear modulus value. When 𝜇T << 𝜇 (Burgers 1), the asthenosphere
rheology becomes equivalent to a Maxwell body, resulting in horizontal
displacements overestimated in amplitude and 3 months in advance com-
pared to observations, while the predicted vertical displacements remain
close to the elastic model. When 𝜇T = 𝜇 (Burgers 3), the model is in phase
with observations but horizontal amplitudes are underestimated. These
conclusions hold for all stations located in areas of a strong hydrological
loading signal (Figures S2 and S3). Therefore, the horizontal component of
seasonal deformation is the one that contains the most useful information
on the transient rheology of the asthenosphere. In addition, as the vertical
seasonal component is likely to contain significant other geophysical sig-
nals (poroelastic, thermoelastic effects), we will focus our study exclusively
on the horizontal components.

To quantify globally how well the model predicts the horizontal seasonal displacements, we evaluate the
scalar admittance at each station i and for each component j (east, north) between Ni observations and
predictions as follows:

Ai,j =
∑Ni

k=1 di,j,k.mi,j,k∑Ni
k=1(mi,j,k)2

, (2)

Table 1
Summary of Earth Transient Viscoelastic Rheologies With Values of Transient Viscosities 𝜂T and Transient Shear
Modulus 𝜇T in the Asthenosphere (70–200 km Depth) as Presented in Figure 2

Model Color Transient viscosity 𝜂T (Pa.s) Transient shear modulus 𝜇T

Burgers 1 blue 1 × 1017 𝜇∕10

Burgers 2 black 1 × 1018 𝜇∕10

Burgers 3 cyan 1 × 1017 𝜇

Note. All models have a steady state viscosity 𝜂 of 1 × 1019 Pa.s and elastic shear modulus 𝜇.
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Table 2
Mean, Median, and Standard Deviation (Std) of East and North Admittance as Defined by Equation (2)
for Various Rheological Models

East admittance North admittance

Model Mean Median Std Mean Median Std

Elastic 1.09 0.890 0.142 1.12 1.01 0.157

Burgers 1 0.434 0.321 0.203 0.446 0.301 0.199

Burgers 2 0.941 0.881 0.155 0.959 0.891 0.163

Burgers 3 0.583 0.514 0.161 0.621 0.603 0.148

Note. Models parameters are summarized in Table 1.

where Aij corresponds to the least squares regression coefficient of the observed versus modeled displace-
ments, di,j,k and mi,j,k the observed and modeled displacement at station i, for component j, and at time k,
respectively. It corresponds to the factor by which the model has to be multiplied in order to achieve the
best least squares fit to the data. The model is exact when the admittance equals 1, and under and over pre-
dicts the observations when the admittance is smaller or larger than 1, respectively. The purely elastic model
leads to an horizontal admittance of 1.1, indicative of good fit to the observations, although amplitudes are
underestimated by 10%.

The global horizontal admittance as a function of model parameters, shown in Figure 4, highlights that when
the transient shear modulus is smaller than the elastic one, a transient viscosity of at least 5 × 1017 Pa.s, for a
reasonably thick asthenosphere (100 to 200 km) is required to globally fit the load-induced seasonal displace-
ments observed in cGNSS time series. This result is confirmed by statistics on global admittance; results are
given in Table 2, with associated maps in Figure S6.

6. Discussion

First, one of the goals of our study was to provide independent constraints on the rheology of the astheno-
sphere and the interpretation of early postseismic displacements. We showed that values of the asthenopheric
transient viscosity lower than 5×1017 Pa.s, as previously proposed to explain deformation in the early postseis-
mic stages (Gunawan et al., 2014; Kogan et al., 2013; Mikhailov et al., 2013; Pollitz, 2003; Pollitz et al., 2006; Sun
et al., 2014), are in contradiction with the conclusions of our global seasonal deformation model. The observed
fast early postseismic motions either might be due to afterslip and/or may indicate that the asthenospheric
viscosity in active tectonics zone is lower than the Earth’s average. However, note that there is no obvious
correlation between zones of active tectonics and low admittance values (Figure S6), which seems to favor
the first explanation. Indeed, because rapid relaxation and afterslip induce signals decaying rather differently
with distance to the epicenter, Klein et al. (2016) inverted simultaneously for afterslip on the ruptured fault,
creep in a low viscosity channel deeper along the plate interface, and relaxation in the asthenosphere after
the Mw 8.8 Maule earthquake. Results from their study show that asthenospheric Burgers rheology param-
eters required to explain the early Maule postseismic motion include a 7 × 1017 Pa.s transient viscosity, with
a shear modulus equal to 4 times the elastic one, compatible with a range of seasonal deformation models,
including an asthenopheric transient viscosity greater than 5 × 1017 Pa.s (Figure 3c, dotted lines).

Then, the elastic structure of the Earth at time scales up to a few years has also been questioned inde-
pendently by tidal studies using GNSS observations. Bos et al. (2015) proposed a reduction of the shear
modulus of ∼10% in the asthenosphere for western Europe at the M2 tidal frequency, also suggested by
Goes et al. (2000) at seismic frequencies. These results are in agreement with ours, regardless of the global
Earth average asthenospheric viscosity derived from our study. Indeed, only relatively large anelastic defor-
mation in the asthenosphere (larger or equal to the elastic one) can be detected using the wavelengths loads
resolved by the GRACE mission. With a quality factor Q independent of frequency, as proposed by Bos et al.
(2015), the shear modulus reduction infered from the M2 oceanic tides but interpolated at annual frequen-
cies would be of 13% and thus undetectable in the GNSS signal induced by loads provided by the GRACE
mission (see Figure S4). Inversely, a 1017 Pa.s viscosity in the asthenosphere would yield at M2 periods to an
anelastic deformation inferior to 1% that could not be detected. Different physical mechanisms may hold for
short time scale, low-amplitude viscoelasticity and attenuation (grain boundary sliding and dislocation drag),
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and longer time scale, larger-amplitude transient deformation (viscous creep of a mixture of materials
with different viscosities). The studies involving smaller-amplitude anelastic deformation neither contradict
nor support our conclusions: they contribute to the description of mantle anelasticity for time scales and
amplitudes of the plastic deformation different from those concerned by our study.

Finally, values derived for annual periods of loading in our study must be in agreement with studies at longer
time scales. For example, Nield et al. (2014) derived from GNSS observations of the Earth’s response to recent
ice mass unloading in Antarctica an upper mantle viscosity ranging from 6 × 1017 to 2 × 1018 Pa.s which is
at the lower end of the asthenospheric viscosities deduced from pluriannual postseismic motions but is in
agreement with our constraint of a viscosity larger than 5 × 1017 Pa.s. Annual hydrological loading provides
constraints on relatively low transient viscosities. However, our results are transposable to multiples of the
loading period simply by multiplying viscosities by the corresponding factor (e.g., the curves of Figure 3c hold
for a 10 year loading period with viscosities 𝜂T = 1018 Pas and 𝜂 = 1018 Pa.s. The phase shift on the right part
of 3c would then simply be multiplied by 10). As the time series of satellite gravity measurements become
longer, records of multiannual hydrological signals, such as recent ice unloading or multiannual continental
hydrological signals, become available. This type of mass variations may interestingly lead to constraints on
asthenospheric viscosities of a few 1018 Pa.s such as required to explain postseismic observations during the
years following large earthquakes.

7. Conclusions

In the present paper, we have tested whether the seasonal deformation of the Earth under atmospheric,
oceanic and hydrological loading was compatible with the rather low transient viscosities proposed in
number of postseismic studies, affecting comparabale spatiotemporal scales. The horizontal displacement
components are found to be the most affected by the rheology of the asthenosphere. Our results show that
transient viscosities in the asthenosphere lower than 5×1017 Pa.s with a transient shear modulus smaller than
the elastic one, and for an asthenospheric thickness greater that 100 km are not compatible with the seasonal
displacements observed globally. These values provide an upper bound on the contribution of postseismic
viscoelastic relaxation of the Earth using a Burgers rheology. Our results are compatible with the attenuation
studies of the asthenosphere at seismological or tidal frequencies, involving plastic deformation of smaller
amplitude, as well as with recent ice melting studies at longer loading periods.
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