# GMT and gridded data sets

- GMT can be used to calculate and display gridded data sets
- A gridded data set is an array of regularly spaced points in space
- You can think of it as a matrix (or as a spreadsheet):
  - Rows and columns correspond to y and x axis (for instance latitude and longitude)
  - The value in each cell represents the measured quantify (for instance elevation)

# GMT and gridded data sets

- Gridded data sets in GMT are stored in net-CDF format: a binary format with a header followed by the data
- grdinfo allows you to check the contents of a GMT grid file
- Download etopo5.grd from the class web site and type grdinfo etopo5.grd to get:

```
etopo5.grd: Title: TOPO world
etopo5.grd: Command: grdmath etopo5.grd 1000 x = etopo5km.grd
etopo5.grd: Remark:
etopo5.grd: Normal node registration used
etopo5.grd: grdfile format # 0
etopo5.grd: x_min: 0 x_max: 360 x_inc: 0.0833333 units: degree nx: 4321
etopo5.grd: y_min: -90 y_max: 90 y_inc: 0.0833333 units: degree ny: 2161
etopo5.grd: z_min: -10741 z_max: 7833 units: km
etopo5.grd: scale_factor: 1 add_offset: 0
```

• This file contains the world topography and bathymetry with a grid step of 5 minutes (about 10 km)

#### **Contouring gridded data sets**

- Gridded data sets can be displayed as contour maps
- For instance:

grdcontour etopo5.grd -R0/360/-70/70 -JM7i \ -C500 -P -B30 > etopo5\_cont.ps



# **Contouring gridded data sets**

Other contouring options:

- Annotate contours with -A2000 (every 2000 unit)
- Add smoothing with -S4
- Tick highs and lows with -T
- Skip small features with -Q100 (skip if contour defined by less than 100 points)

# **Contouring gridded data sets**

Customize your contours:

• Create a contour file (cont.lev), with for instance the following 5 contour levels (note that contour 0 will be annotated):

-8000 C

- -3000 C
- -2000 C
- 0 A
- 3000 C
- Use -Ccont.lev to plot those contours:

```
grdcontour etopo5.grd -R0/360/-70/70 -JM7i \
    -Ccont.lev -P -B30 > etopo5_cont.ps
```



# **Color image of gridded data sets**

- Before you can display your gridded data set as a color image, you need to creat a color map = a table that links your data range (e.g., elevation) with colors
- There are two ways to create a color map:

| makecpt | -Ctopo | -1-12000 | /8000/20 | 00 -2 > | etopo5.cj | pt  |     |
|---------|--------|----------|----------|---------|-----------|-----|-----|
| -12000  | 201    | 119      | 217      | -10000  | 201       | 119 | 217 |
| -10000  | 138    | 162      | 230      | -8000   | 138       | 162 | 230 |
| -8000   | 138    | 243      | 207      | -6000   | 138       | 243 | 207 |
| -6000   | 189    | 243      | 133      | -4000   | 189       | 243 | 133 |
| -4000   | 240    | 176      | 134      | -2000   | 240       | 176 | 134 |
| -2000   | 116    | 163      | 179      | 0       | 116       | 163 | 179 |
| 0       | 220    | 214      | 142      | 2000    | 220       | 214 | 142 |
| 2000    | 246    | 232      | 202      | 4000    | 246       | 232 | 202 |
| 4000    | 255    | 249      | 245      | 6000    | 255       | 249 | 245 |
| 6000    | 255    | 252      | 250      | 8000    | 255       | 252 | 250 |
| В       | 236    | 140      | 255      |         |           |     |     |
| F       | 255    | 255      | 255      |         |           |     |     |
| N       | 128    | 128      | 128      |         |           |     |     |

grd2cpt etopo5.grd -Cglobe -Z > etopo5.cpt

### Color image of gridded data sets

Once you have a color map (etopo5.cpt), plot the image with grdimage:

grdimage etopo5.grd -R0/360/-70/70 -JM7i \

-Cetopo5.cpt -P -B30 > etopo5\_map.ps



# **Add illumination**

- Illumination (= shading) can be added to the color image
- But a grd file that contains the illumination data must be created first
- Illumination will be a function of the spatial gradient of the elevation in the direction of illumination ⇒ use grdgradient
- Then illumination needs to be normalized between -1 and +1  $\Rightarrow$  use grdhisteq and grdmath
- The recipe is:

```
grdgradient etopo5.grd -A300 -Getopo5.grad -Nt
grdhisteq etopo5.grad -Getopo5.hist -N
grdinfo etopo5.hist
grdmath etopo5.hist 4.41977 / = etopo5.norm
```





# **Try different color maps**

Download myglobe.cpt from the class web site and produce:



# **Global Digital Elevation Models**

- ETOPO5: global bathymetry and topography, grid spacing = 5 minutes (about 10 km)
- GTOPO30: global topography only
  - Horizontal grid spacing = 30 arc seconds (approximately 1 km).
  - http://edcdaac.usgs.gov/gtopo30/gtopo30.html
- SRTM: global topography only
  - Horizontal grid spacing = 1 arc second (30 m) for continental U.S.,
     3 arc seconds (90 m) for rest of the world
  - http://www2.jpl.nasa.gov/srtm/
  - http://edc.usgs.gov/products/elevation.html
  - http://edcsgs9.cr.usgs.gov/pub/data/srtm/

# **Global Digital Elevation Models**

• Log on to

http://edcdaac.usgs.gov/gtopo30/gtopo30.html

- Download north-east Africa: E020N40.tar.gz
- Uncompress with gunzip E020N40.tar.gz
- Untar with tar xvf E020N40.tar
- Keep E020N40.DEM but delete E020N40.tar and the all other archive files (to save space)
- Reminder: to monitor your disk quota: quota -v username

# **Converting a DEM into GMT grd format**

- Most DEMs do not come in GMT format: they need to be converted into netCDF format before they can be used and displayed with GMT
- grdraster performs this conversion from any binary format to netCDF
- grdraster reads a file called grdraster.info that describes the format of the file to be converted
- By default, GMT looks for grdraster.info in directory \$GMTHOME/share/dbase
- If you do not have write permissions in \$GMTHOME/share/dbase (which is most likely), then you need to set an environement variable to the directory that contain your grdraster.info file:

setenv GMT\_GRIDDIR my\_directory

# **Converting a DEM into GMT grd format**

• grdraster.info file contains one line per file to be converted, for instance:

17 "GTOPO30 NE AFRICA" "m" -R20/60/-10/40 -I0.5m P i 1 0 -9999 E020N40.DEM B 18 "SRTM LEVEL 3" "m" -R38/39/7/8 -I3c G i 1 0 -9999 N07E038.hgt B

• Format of grdraster.info is (for file 17):

- 17 = file number
- GTOPO30 NE AFRICA = comment
- m = unit (meters)
- -R20/60/-10/40 = boundaries of binary data file
- -IO.5m = horizontal sampling in binary file
- P/G = pixel versus grid registration
- 1 = scale to apply to binary file in conversion
- 0 = offset to apply to binary file in conversion
- -9999 = values to use if data is NaN
- E020N40.DEM = binary file name
- B/L = big/little endian computer

# **Converting a DEM into GMT grd format**

- Convert E020N40.DEM into GMT format using: grdraster 17 -R20/60/-10/40 -Gne africa.grd
- To produce a smaller file, center on the Afar depression: grdcut ne\_africa.grd -Gne\_africa\_sub.grd -R40/44/10/13
- Or directly from the grdraster command: grdraster 17 -R40/44/10/13 -Gne africa sub.grd
- Then plot:

grdimage ne\_africa\_sub.grd -Ine\_africa\_sub.norm -R40/44/10/13
 -JM7i -Cmyglobe.cpt -P -B1 > ne\_africa\_sub.ps



# More on displaying gridded files

Let's resample the grd files every 0.1 minutes:



# Merging bathymetry and topography from different files

#### • Plot bathymetry first:

grdimage -R35/60/0/20 -JM7i etopo5.grd -Cmyglobe.cpt -P -K -Y1.5 >! all.ps

#### • Cut the topography grid over land:

```
pscoast -R -JM -Dh -Gc -K -O >> all.ps
grdimage -R -JM ne_africa.grd -Cmyglobe.cpt -K -O >> all.ps
pscoast -Q -O -K >> all.ps
```

#### Plot coastlines:

```
pscoast -R -JM -B5 -Di -W2/0 -A100 -O -K >> all.ps
```

• Note that your could grdcut etopo5.grd and resample the resulting file at a higher resolution with grdsample

#### • Add a color scale:

psscale -D3.5/-0.5/7/0.15h -Ba1000:Elevation:/:m: -Cmyglobe.cpt -0 >> all.ps



# Grid files in 3D

• First, let's cut the large etopo grid into a smaller subset:

grdcut etopo5.grd -R-76/-55/9/23 -Gnecar.grd
grdcut etopo5.norm -R-76/-55/9/23 -Gnecar.norm

• Then, let's use grdview to plot:

grdview necar.grd -JM8.5i -Cmyglobe.cpt -Qs -JZ1i -E70/20 -Wc -B1a2 -Inecar.norm > necar.ps

- -Qm/s/i: plot mesh, surface, or image
- JZ: vertical scale
- -E: view point azimuth/elevation

