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Crustal rocks contain variable amount of both cracks and equant pores depending on tectonic and thermal
stresses but also on their geological origin. Crack damage and porosity change result in effects on elastic waves
velocities. When rocks are fluid saturated, dispersion of the P- and S-waves should be taken into account. This
paper deals with frequency dispersion of elastic moduli in a fluid saturated porous and cracked rock with the
assumption that squirt-flow is the dominant process. We develop a theoretical approach to calculate both
high (HF) and low (LF) frequency bulk and shear moduli. The HF moduli are derived from a new effective
medium model, called CPEM, with an isotropic distribution of pores or cracks with idealized geometry,
respectively spheres and ellipsoids. LF moduli are obtained by taking HF dry moduli from the CPEM and
substituting into Gassmann's equations. In the case of a porosity only supported by equant pores, the
calculated dispersion in elastic moduli is equal to zero. In the case of a crack porosity, no bulk dispersion is
predicted but a shear dispersion appears. Finally in the general case of a mixed porosity (pores and cracks),
dispersion in bulk and in shear is predicted. Our results show that the maximum dispersion is predicted for a
mixture of pores and spheroidal cracks with a very small aspect ratio (≤10−3). Our theoretical predictions are
compared to experimental data obtained during hydrostatic experiment performed on a basaltic rock and a
good agreement is observed. We also used our theoretical model to predict elastic waves velocities and Vp/Vs
ratio dispersion. We show that the P-waves dispersion can reach almost 20% and the Vp/Vs dispersion a
maximum value of 9% for a crack porosity of about 1%. Since laboratory data are ultrasonic measurements and
field data are obtained at much lower frequencies, these results are useful for geophysicists to interpret
seismic data in terms of fluid and rock interactions.
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1. Introduction

An important area of geophysical research is based on elastic
property variations in rocks due to fluid content/microstructure
coupling. This effect is extremely dependent on the strain frequencies
at which rocks are submitted (Guéguen et al., 2009). At seismic
frequencies (typically less than 1 kHz), fluid pressure has time to
reach equilibrium in rocks and poroelastic theory is correct to describe
elastic properties (Gassmann, 1951; Biot, 1956; Murphy, 1985). At
laboratory frequencies (typically more than 10 kHz), the poroelastic
assumption of fluid pressure equilibrium inside the pore space
becomes invalid. At such high frequencies, stress can induce fluid
flow from one inclusion to another (Mavko and Nur, 1975; Dvorkin
and Nur, 1993; Dvorkin et al., 1995). Such a process of squirt-flow is
described on Fig. 1 between two cracks and between one crack and
one equant pore. The crack orientation, relative to the compressive
stress, controls the fluid pressure gradients. As a consequence, the
Biot-Gassmann equations underestimate the rock elastic properties in
the high frequency range. This process is the only one considered in
this paper.

To predict HF moduli, a theoretical model based on rock
microstructure is necessary. However natural rock can be extremely
heterogeneous. To obviate this problem an assumption is necessary.
We consider a representative element volume (REV) in amedium that
is statistically homogeneous. It means that any part of the systemwith
a volume larger than the REV has identical properties. From literature,
a lot of inclusion-based models exist to express elastic moduli in HF
range. They usually relied on effect of inclusions on stress/strain
elastic field disruption following Eshelby (1957)'s theory. In order to
improve the effective medium theory, various schemes have been
derived. The simplest one is the dilute model (non-interaction
approximation). The self-consistent scheme (SCS) and the differential
approach (DEM) are two possible ways to account approximately for
interactions. The SCS model is based on the following idea: a single
inclusion is embedded within a large matrix whose properties are
those of an effective matrix (Budiansky and O'Connell, 1976). In the
acked rock: Theoretical predictions for squirt-flow,
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Fig. 1. Sketch of the squirt-flow process which occurs at high frequencies. The fluid flow
takes place from over-pressured areas (grey crack) to under-pressured areas (white
crack and equant pores).
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DEM approach, several inclusions are introduced in a well-identified
matrix one by one. An iterative treatment is applied to obtain elastic
moduli step by step (Henyey and Pomphrey, 1982; Norris, 1985; Le
Ravalec and Guéguen, 1996a,b). We used in the following, the non-
interaction approximation (NIA). Inclusions are introduced simulta-
neously into the free-inclusion matrix whose properties are those of
the bulk material (Kachanov, 1993; Schubnel and Guéguen, 2003;
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Fortin and Guéguen, 2007). Using the NIA, the effective elastic
properties can be completely calculated as functions of the crack
geometry and pore distribution (Bristow, 1960; Walsh, 1965;
Kachanov, 1980, 1993). One of the input data of all effective medium
models is the geometry of the rock porosity. Depending on authors
and models, the pore structure can be described as a continuous
spectrum of pore shapes or as a segregation into two categories:
equant pores and very thin cracks.

In this study, a new effective medium model is developed to
calculate dry and saturated HF moduli for a porous-cracked medium.
The LF saturated moduli are estimated by using the dry moduli and
the Gassmann equations. Frequency dispersion is defined as the
normalized difference between HF elastic moduli calculated from
effective medium modeling and LF elastic moduli calculated from
poroelastic theory. The sketch of the theoretical proposed method is
summarized in Fig. 2.

Our theoretical predictions highlight the role played by cracks
which are the major cause of elastic properties modifications. The
theoretical method and its predictions are given in Sections 2 and 3. In
addition, our theoretical predictions are compared with other
modeling studies (Endres and Knight, 1997; Le Ravalec and Guéguen,
1996b) and compared to experimental data (HF and LF bulk moduli)
obtained on an Icelandic basalt (Adelinet et al., 2010), which is a
cracked-porous rock (Section 4).Finally the P- and S-waves velocities
dispersion, i.e. the expected dispersion between seismic waves
velocities measured in the field and ultrasonic waves velocities
measured in the laboratory is predicted as well as Vp/Vs ratio
dispersion. Note that for these predictions we chose to limit the
calculations to a crack fraction range compatible with natural data, i.e.
equivalent to a crack porosity smaller than 2%, which is the case of the
most common crustal rocks (Section 5).
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2. Theoretical tools

2.1. HF moduli calculation

One of the objectives of this study is to build a model simple
enough to obtain closed formulations for bulk and shear moduli but
yet sophisticated to take into account the physical processes when
frequency effect occurs.

Based on the works of Kachanov (1993); Kachanov et al. (1994);
Shafiro and Kachanov (1997), a specific effective medium, called
CPEM (Cracks and Pores Effective Medium) is presented in this study
in order to calculate bulk and shear HFmoduli, noted as KHF and GHF. In
this model spheroidal cracks and equant pores are embedded in a
well-identified matrix (Fig. 3). The cracks are randomly distributed in
orientation within the matrix. The global porosity Φ of the CPEM can
be written as the sum of two terms:

Φ = Φp + Φcr ; ð1Þ

where Φp is the equant porosity and Φcr the crack porosity.
Such a mixed model has already been used in Fortin and Guéguen

(2007) but here different assumptions are made. Firstly we chose to
use the Non-Interaction Assumption (NIA). The low investigated
porosities (b10%) make this approximation valid in regards with
conclusions of Guéguen et al. (1997). Note that there is no conflict
between the NIA and the existence of connections that allow fluid
flow between adjacent parts of the pore–crack network at suitably
low frequencies. Second we use in this model spheroidal cracks
instead of penny-shaped geometry used in Fortin and Guéguen
(2007). Penny-shaped cracks are very useful to estimate transport
properties in cracked rocks (Guéguen and Dienes, 1989) but less
convenient to calculate HF saturated elastic moduli when fluid is
present in the medium.

The goal of this section is to introduce the results required to
express the HF elastic properties of a porous-cracked rock. The
effective medium theory is used to calculate the additional terms
corresponding to extra stiffness and extra compliance due to presence
of pores and cracks. The two different cases are firstly studied
independently before focusing on the mixed model.
Fig. 3. Sketch of the present effective medium model: we consider a mixture of sphero
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2.1.1. A simple medium with only equant pores
Considering an effective medium with only equant pores, we

introduce the parameter δp to characterize the coupling between
matrix compliance, fluid compressibility and equant pore geometry
(Kachanov, 1993):

δp =
2E0

9 1−ν0ð Þ
1
Kf

− 1
K0

 !
; ð2Þ

where E0, K0 and ν0 are the elastic parameters of the free-inclusion
matrix, respectively the Young modulus, the bulk modulus and the
Poisson ratio. Kf is the fluid bulk modulus. In the following sections we
also use G0 for the shear modulus of the free-inclusion matrix.

In the saturated case, the stress perturbation due to equant pores is
taken into account and the bulk and shear effective moduli
(respectively KHF

sat and GHF
sat) can be derived following Zimmerman

et al. (1986); Shafiro and Kachanov (1997) as

K0

Ksat
HF

= 1 + Φp
3 1−ν0ð Þ
2 1−2ν0ð Þ

δp
1 + δp

 !
; ð3Þ

G0

Gsat
HF

= 1 + Φp
15 1−ν0ð Þ
7−5ν0

: ð4Þ

The effective bulk and shear moduli can be deduced from Eqs. (3)
and (4) for the dry case using δp→∞ (Kachanov, 1993) so that

δp
1 + δp

→1. The shear effective modulus has the same expression in

the dry and wet cases.

2.1.2. A simple medium with only spheroidal cracks
Let us consider a randomly oriented spheroidal crack population ;

the crack porosity Φcr is related to the aspect ratio ξ and the crack
density ρ using

Φcr =
4
3
πρξ: ð5Þ
idal cracks and equant pores. We also used the Non-Interaction Assumption (NIA).

li in a porous-cracked rock: Theoretical predictions for squirt-flow,
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Table 1
Input data of the CPEM (based on the elastic properties of an Icelandic
basalt). Moduli of the crack and pores-free matrix are given in GPa.

K0 G0 Kf

48.8 27.9 2.2
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Aspect ratio and crack density are respectively defined as ξ =
ω
c

and ρ =
1
V

∑n
i c

3
i where ω and c are the lengths of the spheroid

semi-axis (see Fig. 3), V the Representative Elementary Volume and n
the number of cracks.

Porosity and crack parameters (ξ and ρ) are the key parameters
which control the different physical properties. Like for the effective
mediumwith only equant pores, a parameter δc is used to characterize
the coupling between matrix compliance, fluid compressibility and
crack geometry:

δc =
E0πξ

4 1−ν2
0

� � 1
Kf

− 1
K0

 !
: ð6Þ

In the saturated case, the normal compliance of a crack is changed
due to fluid saturation and the parameter δc should be taken into
account for the bulk and shear moduli. Bulk and shear moduli can be
derived following (Kachanov, 1993) as

K0

Ksat
HF

= 1 + ρ
16 1−ν2

0

� �
9 1−2ν0ð Þ

δc
1 + δc

� �
; ð7Þ

G0

Gsat
HF

= 1 + ρ
16 1−ν0ð Þ
15 1−ν0

2

� � +
32 1−ν0ð Þ

45
δc

1 + δc

� �2
64

3
75: ð8Þ

As mentioned above, the dry moduli can be deduced from Eqs. (7)

and (8) using δc→∞ δc
1 + δc

→1
� �

.

2.1.3. CPEM used equations
We consider in this section the CPEM model based on the mixture

of spheroidal cracks and equant pores. Using an assumption of non-
interaction between cracks and pores, we can calculate the HF bulk
and shear moduli for the saturated isolated regime in which there is
no fluid flow between inclusions using a combination of Eqs. (3)–(7)
and Eqs. (4)–(8). This leads to:

K0

Ksat
HF

= 1 + Φp
3 1−ν0ð Þ
2 1−2ν0ð Þ

δp
1 + δp

 !
+ ρ

16 1−ν2
0

� �
9 1−2ν0ð Þ

δc
1 + δc

� �
; ð9Þ

G0

Gsat
HF

= 1 + Φp
15 1−ν0ð Þ
7−5ν0

+ ρ
16 1−ν0ð Þ
15 1−ν0

2

� � +
32 1−ν0ð Þ

45
δc

1 + δc

� �2
64

3
75:

ð10Þ

The HF dry elastic moduli KHF
dry, KHF

dry can be deduced from Eqs. (9)
and (10) using δp→∞ and δc→∞.

2.2. LF moduli calculation: Biot-Gassmann equations

Low frequency (LF) moduli are obtained by taking the HF dry
moduli and substituting into Biot-Gassmann equations (Gassmann,
1951). The Biot-Gassmann equations are based on the assumption of
uniform pore fluid pressure. Accordingly they are relevant for the
saturated isobaric regime and no assumption is made on nature of
inclusions. It is a macroscopic approach using only the total porosity
valueΦ. The dry HF bulk modulus is equal to the dry LF one and the LF
saturated bulk modulus KLF

sat differs from the dry HF one by:

K sat
LF = K dry

HF +
β2Kf

Φ + β−Φð Þ Kf

K0

; ð11Þ

where β is a dimensionless coefficient defined by β = 1−Kdry
HF

K0
.
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The LF shear modulus GLF
sat is equal to the dry HF shear modulus,

and

Gdry
LF = Gsat

LF = Gdry
HF : ð12Þ

2.3. Frequency dispersion

Based on HF and LF moduli, we are now able to estimate the
dispersion resulting from the local flow mechanism. This key
parameter is defined as

Dispersion =
Msat

HF−Msat
LF

Msat
LF

; ð13Þ

where M is the bulk or shear modulus. In the following parts of this
article, we use the short expressions ‘bulk dispersion’ and ‘shear
dispersion’ in order to express respectively the dispersion of the bulk
and the shear moduli between the two frequency states. We compare
only full saturated moduli in order to simplify the interpretation. Note
that a frequency dispersion can occur in partially saturated rocks as
shown by Le Ravalec and Guéguen (1996a). Themeasured dispersions
are extremely different according to the saturating fluid (Dutta and
Odé, 1979; Jones, 1986; Mavko and Mukerli, 1998). In this study we
chose to focus on the phenomenon of elastic moduli dispersion with
frequency. A lot of studies deal with the notion of attenuation by using
the inverse quality factor Q−1. Seismologists use preferentially this
parameter. However dispersion and attenuation can be related by
using a specific viscoelastic model.

3. Numerical results

For the numerical simulations, we used the elastic parameters of
the Icelandic basalt investigated in Adelinet et al. (2010). Those values
are presented in Table 1.

3.1. Effect of equant pores on dispersion

We consider in this section the case of a medium containing only
equant pores. The porosity varies from 0 to 8%. No dispersion, neither
in bulk or in shear moduli, is observed. For shear dispersion, the result
is obvious. According to Eq. (4) from the effective medium, and the
Eq. (12) from Gassmann model: GHF

sat=GBF
sat, then the dispersion

(Eq. (13)) is zero. For the bulk modulus, the result is not so obvious.
But it is a consequence of the isotropic shape of the inclusions. This
implies that they are isobaric. This can be checked by an exact
calculation. Dispersion is equal to zero without any assumption.

Then for a medium containing only equant pores, both hydrostatic
stress and anisotropic shear stress fields induce identical fluid
pressures in each pore. Therefore, no pore pressure gradients are
induced and the dispersion is zero.

3.2. Effect of cracks on dispersion

Let is consider in this section a medium containing only randomly
oriented cracks.

The results are summarized in Fig. 4, where the dispersion is
plotted versus the crack porosity. The crack porosity is allowed to vary
from 0 to 8%. We also assess the validity of the effective medium
li in a porous-cracked rock: Theoretical predictions for squirt-flow,
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Fig. 4. Numerical results obtained with only cracks added in the EMmodel. No bulk dispersion is calculated whereas the shear dispersion increases with the crack fraction leading to
an asymptotic value. Moreover the smaller aspect ratio, the higher shear frequency dispersion.
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theory by testing low aspect ratio value (up to 5.10−3) and high crack
porosity (8%), which correspond to a maximum value in crack density
ρ of about 4 following Eq. (5). Then we plotted the numerical results
with plain curves when ρb1 and with dashed curves when ρN1
(limits of the model).

No dispersion in bulk modulus is observed. This can be explained by
two factors. First, cracks are randomly distributed and have all the same
aspect ratio for each simulation. Second, the bulk sensitivity is linked to
an isotropic compression. Then the fluid pressure is the same in all the
cracks. As a consequence an isotropic stress field induces no dispersion
in amediumcomposed only by cracks randomly distributed. However a
Fig. 5. Sketch of the elastic behavior of round pores and cracks to stress fields (isotropic on th
stress field than round pores, pore pressure inside cracks is different explaining the frequen

Please cite this article as: Adelinet, M., et al., Dispersion of elastic modu
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dispersion inG is observed. Shear dispersion appears to be an increasing
function of crack porosity. In this case, an anisotropic shear stress can
induce different fluid pressure in cracks according to their orientation.
Our results are consistent with other theoretical studies based on
different models (O'Connell and Budiansky, 1977; Johnston et al., 1979;
Endres and Knight, 1997; Chapman et al., 2002).

The Fig. 5 presents a sketch of the elastic behaviors of round pores
and cracks in a hydrostatic or an anisotropic stress field. A frequency
dispersion only occurs in G for the cracks medium. This dispersion is
strongly dependent on the crack fraction, a point that will be
considered in more detail below with the CPEM calculations.
e left column and anistropic on the right column). As cracks are more sensitive to shear
cy dispersion theoretically observed for shear modulus.

li in a porous-cracked rock: Theoretical predictions for squirt-flow,
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Fig. 7.Numerical results obtained for the CPEMmodel in shearmodulus. The computations
are the same as those obtained for a cracks-to-cracks medium: shear dispersion increase
with R.
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3.3. Frequency dispersion for a cracked-porous medium

To investigate the frequencydispersion in a cracked-porousmedium,

we defined the crack fraction R as R =
Φcr

Φ
. R=0 for a medium only

composed by equant pores and R=1 for a medium only composed by
cracks randomly distributed. In the following numerical simulations, the
total porosity is fixed to 8%. Fig. 6 presents the computations made for
bulk dispersion. We plotted our theoretical predictions for different
values of aspect ratio: 5 10−3, 5 10−2 and 10−2. When R=0 or 1, the
dispersion is zero as demonstrated in the previous sections. However
when both equant pores and cracks are present, a bulk dispersion
appears and reaches a maximum for a particular intermediate value of
the crack fraction. This bulk dispersion is due to a squirt flow from cracks
to pores. Indeed the induced fluid pressure in the cracks is greater than
the fluid pressure in the equant pores, leading to a HF bulk modulus
greater than the LF bulk modulus (calculated from an equilibrated fluid
pressure state).Moreover, this bulkdispersion is strongly sensitive to the
geometry of the inclusions. At low crack fraction, the amplitude of the
dispersion increases rapidly with crack porosity. And the flatter are the
cracks (small aspect ratio), the higher is the dispersion. For instance,
using cracks with aspect ratio of 5 10−3, themaximum dispersion value
is 53%. Note that the maximum dispersion values are always obtained
within the validity domain of effective medium theory (plain curves).

Fig. 7 presents the shear dispersion calculated using the CPEM. The
boundary conditions (when R=0 or 1) are those obtained in the
previous sections. When R∈]0;1[, the G dispersion is an increasing
function of the crack fraction. The dispersion value is maximum for
R=1 and reach around 40% for ξ=5 10−2. In this case, themaximum
value is out the range of validity of the NIA effective medium model.
As observed for the bulk dispersion, we note a strong sensitivity to the
crack geometry. If cracks have a low aspect ratio, shear dispersion can
be very high. On the contrary, if cracks have a high aspect ratio
(ξ≥5 10−3), dispersion is very small, less than 5%.
4. Discussion

4.1. Comparison with the study of Endres and Knight (1997)

A key requirement for our model validation is to know if our
results are consistent with other theoretical data based on a different
approach. We chose to base our comparison on Endres and Knight
(1997)'s study which is a generalization of the paper by (Budiansky
and O'Connell (1980) using the model of Kuster and Toksoz (1974).
Fig. 6.Numerical results obtained for the CPEMmodel in bulk modulus. There is no bulk
dispersion when R=0 or R=1 (medium with respectively only pores and only cracks).
As seen before, the dispersion increase with smaller aspect ratio values.
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Their formulae are valid for distributions of inclusions with any aspect
ratio between 0 and 1. They consider the case where the total porosity
is fixed (to 10%) and the geometrical configuration of that porosity is
allowed to vary, with aspect ratio ranging from 0.1 to 0.003 (Chapman
et al., 2002). The matrix parameters used in Endres and Knight
(1997)'s study are summarized in the Table 2. We inferred the crack
density values used in their study assuming that cracks are spheroidal
(Eq. (5)). For aspect ratio lower than 0.01, the crack density is higher
than 1 (Table 3), which is unrealistic.

Fig. 8 presents the comparison between the two models for the
bulk dispersion. The trend of bulk dispersion is the same in both
models, but the maximum values are different. Our computations are
always greater than Endres and Knight (1997)'s ones by about 25%.
The reason lies in the LF modulus calculation. We chose to apply
directly the Gassmann's equations whereas Endres and Knight (1997)
develop their proper relationships which tend towards Gassmann's
formulations under some assumption based on microstructure of
inclusions. For the shear dispersion calculations, both approaches
converge. Due to the equality between LF and HF shear modulus
(Eq. (12)), both models are in agreement.
4.2. Experimental data vs. theoretical predictions

In this section, experimental data are compared to the numerical
results. For this we use data from an experiment performed on an
Icelandic basalt (Adelinet et al., 2010). The rock microstructure is
characterized by a bimodal porosity: 1% of cracks and 7% of equant
pores. During hydrostatic loading, both saturatedHF and LF bulkmoduli
weremeasured: HF fromvelocitymeasurements and LF fromoscillation
tests. From experimental data and the previousmodel, we can estimate
crack parameters during loading (i.e. crack density and aspect ratio).
Two inversion processes were investigated involving each different
models: the first one introduced by Fortin and Guéguen (2007) refers to
penny-shapedcracks anduses a directmethod (called ‘simple inversion’
on Fig. 9), the second one described in this paper handles spheroidal
cracks and uses the minimization of an objective function defined
Table 2
Matrix elastic moduli used in Endres and Knight (1997) (sandstone type).
Moduli of the crack and pores-free matrix are given in GPa.

K0 G0 Fluid (Kf)

30 17 2.32

li in a porous-cracked rock: Theoretical predictions for squirt-flow,
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Table 3
Crack densities calculated with values used in Endres and Knight (1997). The porosity is
fixed to 0.1 with different aspect ratio, ranging from 0.1 to 0.003. Considering spheroidal
cracks, crack density is inferred using ρ = Φcr

4
3
ξπ

.

Aspect ratio 0.1 0.03 0.01 0.003

Crack density 0.2 0.8 2.4 8.0

Fig. 9. Inversion of experimental data using two methods. Aspect ratio and crack
density are plotted against effective pressure. The empty and plain symbols represents
the results obtained respectively by the simple inversion and the Particle Swarm
Optimization. Note that PSO is better to discretize the behavior of cracks and equant
pores.
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against aspect ratio. This one calculates the least-square difference
between the HF measured elastic moduli (Kme, Gme) and the ones
predicted by the CPEM (Ksim, Gsim):

J ξð Þ = 1
2

ck Kme−Ksimð Þ2 + cg Gme−Gsimð Þ2
h i

; ð14Þ

where (ck, cg) are weighting coefficients taken equal to 1 as first
approximation. The aspect ratio value providing the lowest
objective function is the optimal solution. We chose to obtain the
minimization of J(ξ) by PSO, Particle Swarm Optimization (Shaw
and Srivastava, 2007). Fig. 9 displays the crack densities and crack
aspect ratios determined from inversion processes. When the
effective pressure is in the range [0–100 MPa], the crack aspect
ratios deduced from the two inverted models behave the same
way. For PeffN100 MPa, discrepancies appear. The first inverted
model does not lead to important variations in the aspect ratio over
the [100–150 MPa] range. The ξ values are around 10−2. However,
the second inverted model emphasizes a significant aspect ratio
increase above Peff=90 MPa, up to a value of 1 (equant pores) at
Peff=130 MPa. These results are consistent with the crack closure
phenomenon. Indeed a link between crack aspect ratio ξ and
closure pressure Pc has been formalized by (Walsh, 1965) as
Pc∼E0ξ. This means that an effective pressure of 100 MPa would be
expected to close a crack of aspect ratio near from 2.10− 3.
Consequently it can be the preferential closure of such thin cracks
that results in the inferred increase of the average crack aspect
ratio from 7.5 10−3 at low effective pressure to 1.5 10−2 at higher
effective pressures (Fig. 10). Finally two phases can be discerned
during the hydrostatic loading experiment: (1) between 0 and
100 MPa, thin cracks are open, squirt-flow can occur and frequency
dispersion is observed; and (2) from 100 to 150 MPa, thin cracks
are closing, no fluid pressure gradients are induced and frequency
dispersion decreases.

During the experiment, porosity was also deduced from strain
gauges measurements. During loading, the reduction of porosity is
Fig. 8. Comparison in bulk dispersion between theoretical predictions computed using
Endres and Knight (1997)'s model (dashed curves) and using CPEM model (plain
curves). Crack aspect ratio are denoted above curves.
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about 1%, a value which corresponds to the initial crack porosity. Then
assuming that equant porosity do not vary during loading, the total
porosity evolution corresponds to a crack porosity evolution, i.e. to the
crack closure. In the experimental study we have only access to the
dispersion of the bulk modulus as we measured the LF bulk modulus
by oscillating tests of the confining pressure (no measurements of the
LF shear modulus). Then the bulk dispersion can be plotted against
crack fraction evolution and also compared directly to theoretical
predictions. Fig. 10 presents this comparison. The maximum crack
fraction of the investigated rock is 0.125 and corresponds to the initial
ratio (Φcr=1% and Φp=7%). Then Fig. 10 is a focus on the [0; 0.125]
crack fraction range of the Fig. 6.

Note that the general features predicted with the CPEM model are
reproduced by the experimental data. Using modeling, the crack
aspect ratio can be deduced for the basaltic sample. It is found to
increase from 7.5 10−3 (low effective pressure) to 1.5 10−2 (high
effective pressure). Then aspect ratio change slightly during loading.
These results are consistent with values obtained previously by
inversion from HF velocities measurements. From a physical point of
view, cracks have two states in the studied rock: open when a low
isotropic stress field is applied and closed above a given value of
confining pressure (about 130 MPa).

5. Extrapolation to elastic waves velocities and
VP

VS
ratio

dispersions

Based on our HF and LF calculations, P and S waves velocities
(respectively VP and VS) can be deduced using K and G from the well-
known following equations:

VP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K +

4
3
G

μ

vuuut
; ð15Þ
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Fig. 10. Comparison between experimental data and theoretical predictions for bulk dispersion in a cracked-porous rock. Aspect ratios are mentioned near from curves. The
experimental data are obtained using strain measurements during the loading of a basalt sample (Adelinet et al., 2010). Assumption is made that equant porosity does not change.
Then the porosity evolution corresponds to the crack porosity evolution.
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VS =

ffiffiffiffi
G
μ

s
; ð16Þ

where μ is the medium density. We take μ=2700 kgm−3 for our

calculations. The velocity dispersion is defined as
Vi
HF−Vi

LF

Vi
LF

. The

subscript i refers to either P- and S-waves. In crustal conditions, cracks
are always present in the rock microstructure. They represent a small
amount of the total porosity, typically around 1 or 2% (Schubnel and
Guéguen, 2003). Then we chose to represent velocity dispersion (and
Vp/Vs dispersion) on the crack fraction range [0–0.2]. As total porosity
is fixed to 8%, it represents amaximum crack porosity of 1.6%, which is
near from the maximum values encountered in the natural case.
Fig. 11 reports the calculation of the elastic P and S waves dispersion.
We observed that Vp and Vs dispersions are increasing function of the
crack fraction. Vp dispersion are higher than Vs dispersion due to the
additional effect of the dispersion in K and in G. A maximum value
of about 18% is achieved for P-wave (using 5 10−3) whereas the
maximum dispersion for S-wave and for the same aspect ratio is
only 8%.

Our results are consistent with other models developed for
isotropic rocks which suggest that a small crack effect (small crack
fraction in our case) results in a large dispersion of the seismic wave
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Fig. 11. Numerical extrapolation for seismic waves dispersion. The computation are made on
in crustal rocks.
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velocities (Mavko and Jizba, 1991; Thomsen, 1995; Le Ravalec and
Guéguen, 1996b; Sams et al., 1997; Rathore et al., 2006).

The high velocity dispersion predicted by our computations seems
also to be in agreement with experimental results. Winkler (1986)
indeed observed that several rocks have as much as about 20%
dispersion. Furthermore, in our experimental and theoretical studies,
the frequency effect is more important for compressional waves than
for shear waves as mentioned by other authors (Lucet and Zinszner,
1992).

Based on our model, we examine also the VP = VS ratio dispersion.
Fig. 12 reports the computations. Note that the dispersion increase for
high values of crack fraction, such as reported in Le Ravalec et al.
(1996) which used a differential self-consistent model. Moreover,
the VP = VS dispersion reaches a maximum value of 8.8% for a crack
fraction of 0.12 when crack ratio is equal to 5.10−3. With a total
porosity fixed to 8%, it corresponds to a crack porosity of 1%. The
theoretical predictions explain also why VP = VS values can be
extremely different from laboratory frequencies measurements to
seismic frequencies survey (Takei, 2002).

6. Conclusion

Using effective medium theory and poroelasticity theory, high and
low frequency elastic moduli were calculated. Then frequency
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the [0–0.2] crack fraction range which corresponds to the common range encountered
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dispersion was derived. As a first conclusion, in the general case
where cracks are present in a medium, the frequency dispersion can
be very large. Our predicted dispersions are strong and depend on the
crack parameters of the rock, i.e. the aspect ratio and the crack
fraction.

For natural crack fraction (b0.2), our theoretical predictions show
that we have to expect discrepancies between data measured at high
frequency (in the laboratory or in the wells) and data from the field
(seismological survey) at low frequency. The dispersion can reach 20%
in the case of P-waves velocities and 10% for the Vp/Vs ratio. This last
parameter is very useful to identify fluid processes in depth, such as
magma displacement or hydrocarbon flows.
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