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[1] In this paper we focus on the case of sandstones for
which many experimental data are available. We present a
simple 2-D model derived from granular media mechanics.
This model assumes that the granular microstructure is a key
point to understand the mechanical behavior. We consider a
periodic grain network and focus on the first-order neighbors
of a given grain. These approximations are sufficient to
explain the overall mechanical behavior in the Q versus
P stress space. In the low pressure range, the controlling
micromechanism is assumed to be tensile failure at grain
contacts. The “dilatant” envelope is found to be a straight
line in the stress space. In the high pressure range, the con-
trolling micromechanism is assumed to be grain fragmenta-
tion. The “compactant” envelope is found to be a straight
line in the stress space. We observed that this 2-D model
slightly overestimates Q versus P slopes determined exper-
imentally (2.3 instead of 1.5), which can be explained by
the approximations made. Citation: Guéguen, Y., and J. Fortin
(2013), Elastic envelopes of porous sandstones, Geophys. Res.
Lett., 40, 3550–3555, doi:10.1002/grl.50676.

1. Introduction
[2] Porous rocks are present in the upper crust probably

down to 5–10 km depth. The first 10 km of the earth are
an ambiguous medium that is solid, but has the capability
of retaining fluids. For that reason, porous rocks play a key
role as they are the sites for hydrocarbon resources and for
underground storage. These rocks have been investigated
for many years. Their transport properties are obviously of
great importance. The same is true for their elastic and, more
generally, mechanical properties.

[3] A specific property of porous rocks is that they can
compact. Field investigations [Mollema and Antonellini,
1996] have suggested earlier that compaction bands exist
in sandstones at the field scale. The result of compaction
is a drastic change of properties, in particular, of perme-
ability. Bésuelle [2001] and Klein et al. [2001] have shown
experimentally that localized failure is taking place in porous
sandstones submitted to compression. They reported that
compaction bands could be developed in laboratory condi-
tions. Whether the localized features observed at the field
scale are equivalent or not to the localized crushed zones
obtained in laboratory experiments remains however an
open question.

[4] The observed behavior indeed is theoretically
expected from bifurcation theory [Rudnicki, 2002; Rudnicki
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and Rice, 1975]. Experimentally, further studies have con-
firmed that compaction localization does occur for rocks that
have a sufficiently high porosity [Baud et al., 2004, 2006;
Fortin et al., 2006, Stanchits et al., 2009]. More recently, a
similar behavior has been observed for the first time in basalt
[Loaiza et al., 2012; Adelinet et al., 2013], showing that
nonsedimentary, but porous, rocks could exhibit localized
strain as well in compaction.

[5] Two common points are characteristic of the reported
triaxial cell experimental investigations on sandstones. The
first one is that the mechanical response is elastic within
a well-defined closed domain in the (differential stress Q,
mean effective stress P) plane. This domain is defined by
a quasi-straight line of positive slope, up to a maximum
pressure PM. This is for the brittle limit. Beyond PM, the
domain is defined by a negative slope envelope that cor-
responds to a compacting behavior and that closes the
elastic domain at P*. The second point is that the domi-
nant microstructural feature, when crossing the envelope, is
found to be a localized (dilatant) shear band below PM, and
beyond PM, localized (compactant) irregular crushed zones
approximately perpendicular to the main compressive stress.
They have been called “compaction bands”.

[6] In the present paper, we show that a 2-D simple model
derived from granular media mechanics accounts reasonably
well for both points in the case of sandstones. The model
is presented first. Its mechanical implications are com-
pared to mechanical data next. Finally, its microstructural
implications are discussed by comparison to the observed
microstructures of compacted porous sandstones.

2. 2-D Granular Model
[7] Mechanical properties of porous rocks can be ana-

lyzed from two complementary points of view. One view
is to assume a continuous medium in which pores (and
cracks) can be considered as inclusions. This approach has
been successfully developed many years ago for elastic
properties [Mackenzie, 1950; Eshelby, 1957]. The lower is
the porosity, the better is the model. At the other extreme,
another view is to consider a porous rock as a granular
medium [Brandt, 1955]. Then, grain contacts are key fea-
tures. As far as elastic properties are concerned, Mindlin
[1949] results on elastic bodies in contact are then of direct
interest. Real porous rocks, however, fall between these two
extreme viewpoints, because they are made of grains that are
cemented. Depending on the porosity value, one or the other
of the two previous simplified viewpoints may be more rele-
vant. The inclusion models are appropriate for low porosity
rocks. They have been improved to take into account higher
porosity values by using self-consistent models [Budiansky
and O’Connell, 1975] or differential self-consistent models
[Le Ravalec and Guéguen, 1996]. The granular models are
more appropriate for high porosity rocks. They have been
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Figure 1. (a) 2-D hexagonal network of grain. (b) 2-D granular model predictions (black line); averaged experimental data
(gray line) (from Figures 3a–3c).

improved by bonding grains [Digby, 1981] or considering
identical spherical grains and focusing on the contact of two
spheres [Walton, 1960] as a key feature.

[8] Because we are interested here in the inelastic behav-
ior (at the limit where the rock leaves the elastic domain) of
porous rocks of sufficiently high porosity, the second view-
point is the most appropriate in our case. This is specially
true for sandstones that are, at least partially, granular rocks.
Inelastic deformation of granular materials has been the
subject of many investigations in recent years [Radjaï et al.,
2004]. They have shown that the grains interact via contacts,
and that this is the main point to focus on for granular materi-
als inelastic deformation. The simplest, lowest-order model
should take into account the first neighbors grains [Radjaï
et al., 2004], because coordination number z is a fundamen-
tal parameter. This parameter has been shown to provide
more microstructural information than porosity ˆ, because
each grain has an integer number of contacts. The coordi-
nation number is different in 2-D or 3-D models. However,
2-D models are useful because they can capture the key
features. Although cohesive granular media have been less
investigated, Radjaï and Richefeu [2009] have taken into
account cohesion of contacts by considering local adhesion
and presented a framework that can allow examining the
shear strength of cohesive granular materials. The follow-
ing model is inspired from these results, using a simplifying
assumption: we assume here that parameter z is the basic
parameter to build a simplified model. The following model
can be considered as well as a periodic model, equivalent to
regular 3-D cubic packings (sc: simple cubic, hc: hexago-
nal close packing, or fcc: face-centered cubic). These three
periodic packings correspond to noncompact packing (sc
porosity is ˆ = 0.47, with z = 6) and compact ones (hc and
fcc porosity is ˆ = 0.26, with z = 12). These are useful to
model porosity of sandstones [Lemée and Guéguen, 1996;
Manificat and Guéguen, 1998]. More sophisticated models
could of course bring more detailed results. But because
this lowest-order model, as shown below, can explain—at
least in several cases—the main characteristics of elastic
envelopes of sandstones, we think that it is a useful one.

[9] Consider a compact structure made of identical discs
of radius R (Figure 1a). The 2-D model that is shown on
Figure 1a corresponds to z = 6 contact neighbors. Transpo-
sition to a 3-D model would imply z = 12 and a porosityˆ =
0.26, a realistic value for sandstones. As explained above,

we focus on the 2-D model. Note that we consider a compact
packing. The basic pattern to be considered in that case is the
triangle O1O2O3 that is constructed from the centers of three
neighboring grains. This granular array is isotropic for elas-
tic properties but not for strength or failure properties. Let us
consider the 2-D grain packing as a system submitted to two
stress tensors: one is isotropic (pressure P = �11 = �22), and
the other is a shear stress (Q = 2�12 = 2�21). Note that the
axes are chosen in such a way that the shear stress Q and the
segment O2O3 are parallel to the x1 axis. This point will be
discussed further later on. We are interested in the local pres-
sure at point A, PA, in the middle of segment O1O2. Point A
is the contact point between grains O1 and O2. We assume
here that the macroscopic pressure P is fully transmitted
through the local contact plane (that is normal to O1O2 seg-
ment, i.e., at 2 /3 of the horizontal axis). This is of course a
simplification, consistent with the basic assumptions of this
lowest-order model. Using the above decomposition in two
tensors, we calculate PA as the sum of P and of a second
term due to the Q tensor. This last tensor has two principal
axes at  /4 and 3 /4 from the horizontal axis. Its principal
stresses are +Q/2 and –Q/2, but they are not perpendicular
(nor parallel) to the contact plane. Again, we assume that
the two principal stresses˙Q/2 are fully transmitted to con-
tact A. Noting that the angle between the contact plane and
the first principal axis of the Q tensor is  /12 (15o), we get
the following:

PA = P +
�

cos2  

12
– sin2  

12

� Q
2

= P + 0.43 Q . (1)

[10] Contact A experiences a pressure PA higher than P,
and PA increases if Q increases. We assume that failure will
locally take place at point A when the local pressure reaches
a limit P* (Hertzian cracks). As discussed below, this is what
is evidenced from microstructural observations [Wong and
Baud, 2012]. It results that, in the P – Q space, a linear
relation is expected:

Q = 2.3(P* – P) . (2)

Using a similar calculation, pressure PB at point B in the
middle of segment O1O3 is found to be

PB = P –
�

cos2  

12
– sin2  

12

� Q
2

= P – 0.43 Q . (3)
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[11] Contact B experiences a pressure PB lower than P,
and PB decreases if Q increases. We assume that failure will
locally take place at point B when the local pressure reaches
a zero value, or maybe a small negative value (strength in
traction –T0). It results that, in the P – Q space, a linear
relation is expected:

Q = 2.3 (T0 + P) . (4)

The previous results are equivalently obtained in calculating
directly the normal component of the stress vector ni�ijnj on
the tangent planes in A and B.

[12] The model predicts an elastic domain limited by two
straight lines of slope˙2.3 in the P–Q space. The maximum
Q value is found to be QM = 1.15(P* + T0) and PM = P*–T0

2 .
[13] The overall result is shown in Figure 1b in the P – Q

space, for arbitrary values of P* = 200 MPa and T0 = 20
MPa. In a 2-D model, P = �1+�2

2 and Q = (�1 – �2) where
�1 is the maximum principal stress (using the convention
that compressive stresses are taken positive) and �2 is the
minimum compressive stress. Alternatively, in the princi-
pal stresses plane, �1, and �2 plane, the elastic domain can
be defined from the above results by the two straight lines
corresponding respectively to the compaction and dilatant
limits. The fact that linear boundaries are predicted is not
surprising, since the considered micromechanical processes
are linear.

[14] We pointed earlier that the x1 axis (Figure 1a) is
parallel to segment O2O3. In the general case, it could be
at any angle from O2O3. Let us consider a rotation of the
array such as the angle [O2O3; x1 axis] = � . Then, instead
of ( /12) in the previous calculations, the angle should
be ( /12 + �). It follows that, instead of the expression
[cos2( /12) – sin2( /12)] = cos( /6), we have cos( /6 + 2� ).
Varying � from 0 to  /6 is sufficient because of the hexag-
onal symmetry. The result is that the predicted slopes in
the (Q, P) plot are larger than 2.3, which is the minimum
possible value. Given that any real rock is not a regular array
of grains, � should be considered as variable from one place
to the other. However, the lowest slope value is reached for
� = 0, and this should be the place where failure starts.

3. Local Failure Mechanisms
[15] The local failure mechanisms are different at points

A and B, although in both cases, tensile failure is involved.
Consider first point A. Zhang et al. [1990] have analyzed the
failure process at Q = 0, P = P*, using the [Brandt, 1955]
model to relate the local force at grain contact F to pressure
P. Assuming that the local force F reaches a critical value
Fc, corresponding to the critical value of the stress intensity
factor KI, they have derived a relation between P*, grain size
R and porosity. At P*, grain fragmentation takes place. Our
model extends their analysis to pressure values lower than
P*. The basic mechanism at grain contact A is assumed to
be the same for all pressures in the interval [PM, P*]. To be
consistent with the above granular medium description, it is
more appropriate, however, to use the Walton [1960] model
to relate F and P. The Walton model assumes a random
packing of identical spheres whereas the Brandt model
assumes a kind of fractal packing. The Walton model is
thus closer to the real situation of sandstone than the Brandt
model, and this is an additional reason to use it. It predicts

that F = 4 R2P/z(1 – ˆ), where z is the number of con-
tacts/grain. Assuming z = 6, the critical P* value is reached
for a critical force Fc = 2 R2P*/3(1–ˆ). We follow Zhang et
al. [1990] and assume that local failure is reached when the
stress intensity factor KI = 1.12�r( c)–1/2 = KIc for a micro-
crack of length c, with a tensile stress �r at the crack tip. The
�r value is �r = (1 – 2�)F/2 a2 where a is the Hertz contact
radius. Then

P* = 16[(1 – �2)/E]2[KIc/(1 – 2�)]3(1 –ˆ)c–3/2 , (5)

where E is the Young modulus and � the Poisson ratio of
the grains. Note that the expression for Fc from Walton
model yields a finite value for P* at the limit of vanishingly
small porosity, whereas that of Zhang et al. [1990] diverges
because it varies asˆ–3/2. The above equation, however, pre-
dicts an increase of P* if porosity decreases, as Zhang et al.
[1990] model. Moreover, if c scales as the grain size R as
assumed by Zhang et al. [1990], the grain size dependence
is found to be R–3/2. Because (KIc)2 = GIcE, where GIc is
the critical strain release rate, the above expression can be
modified. Assuming a Poisson ratio of 0.1, an average value
realistic for quartz (this parameter is not a key one for the
exact P* value), the previous result is changed into

P* = 30(E)–1/2(GIc)3/2(1 –ˆ)c–3/2 . (6)

If we assume a P* value of 200 MPa, a porosity of 0.2 and a
Young’s modulus of 70 GPa, then c = 0.13�m if GIc = 100
J m–2. Crack length value varies linearly with GIc value if all
other parameters are constant. This small c value is in agree-
ment with the fact that local Hertz cracks are expected to
develop at a very small scale, smaller than that of contact
radius a. Therefore, c should be much smaller than the grain
size. Large c values would imply large GIc values that are not
realistic. Smaller GIc values (10 J m–2 ) would imply smaller
crack lengths (0.01�m). P* values smaller than 200 MPa
could correspond to either lower GIc values or larger crack
length compared to the above values. Figure 2 shows a com-
pilation of published data [Wong et al., 1997; Baud et al.,
2006; Fortin et al., 2007; Wong and Baud, 2012; Rutter and
Glover, 2012] plotted in a plane (P*, (1 – ˆ)R–3/2) assum-
ing that c is proportional to R and taking into account the
(1 –ˆ) factor.

[16] Let us now consider point B. The local mechanism
is completely different. In the lower pressure range [0, PM],
we assume local failure at B when PB is zero, or more
likely slightly negative if the grain contact has a local tensile
strength (–T0). The overall failure is a shear band, but the
local failure is a tensile one. Note that the T0 value is likely
to depend also on porosity and grain size. An estimate of
T0 can be found by using a similar method to that used
in the previous case for estimating P*. Tensile failure at
grain boundary takes place when the tensile local force at
grain boundary reaches a critical value such as KI = KIc,
for a microcrack of length c. An important difference with
the previous case is that the local force is applied over a
grain boundary (cemented) surface  r2 and not over the
Hertzian contact area  a2. One expects r � a. Indeed, the
r value should be smaller but close to the grain radius R.
For simplicity, we assume r = R/2. Taking into account these
modifications, one gets the following:

T0 ' 0.5[GIcE]1/2(1 –ˆ)c–1/2 (7)
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Figure 2. Critical pressure P* as a function of x =
(1 – ˆ)R–3/2, where x is in (mm–3/2). Each data point corre-
sponds to a given rock of given values (ˆ, R). The model
predicts a slope +1. The general trend is consistent with the
experimental data, with some scatter.

If, as above, we assume ˆ = 0.2, E = 70 GPa, GIc = 10
J m–2, one gets T0 � 60 MPa for c = 10�m. The c value
should be larger than in the Hertzian crack case because
the small Hertzian contact radius a has been changed into
the larger r grain boundary radius. Thus, larger crack sizes
should be considered.

4. Elastic Envelope: Predicted
and Observed Results

[17] Published data on sandstone compaction have shown
that the elastic envelope in the P – Q space is built of two
parts. The first part—low P, dilatant regime—is a linear one,
consistent with the above result. This is the well-known
Coulomb straight line. As noted by Rutter and Glover
[2012], the friction slope is 1.43 for axisymmetric loading.
Comparison of the 2-D model to the experimental results is
not straightforward, however, because experimental results
are 3-D axisymmetric loading results. According to Figure 3,
the observed slopes are close to 1.5 (with an error of ˙0.1).
This is smaller than the above predicted 2-D value (2.3).
Yet it is likely that the 2-D granular model overestimates the
slope value for a reason directly linked to the approximations
made. The main assumption is that the rock is considered to
be a granular packing, with point contacts between grains.
This seems to be a sufficiently good assumption to derive
the overall shape of the elastic envelope. It does not allow
us, however, to calculate the exact slope values. We suggest
that this is because cementation is not taken into account.
Contacts between grains are not points, like A and B, but thin

cemented zones. Such zones have a nonzero thickness and
the stress vector projection on the contact tangent plane
plays a role that has been ignored so far. A straightforward
calculation shows that this effect results in decreasing the
effect of P, and increasing the effect of Q. The consequence
is that the Q versus P slope has been overestimated. Given
that (in the above model) grain packing is a compact one,
it is not expected that the breakdown of cementation will
tend to cause a more compact arrangement. Overall dilation
is expected.

[18] The second part of the elastic envelope (high P) is
compactive, because grain fragmentation causes a decrease
of porosity and grain size according to the model. The com-
pactant boundary is in general considered to be closer to an
elliptical shape [Wong and Baud, 2012], although a straight
line of negative slope has also been reported [Fortin et al.,
2006, 2009]. The exact slope is experimentally determined
with a limited accuracy. The question is: Up to what extent
does the high P experimental envelope differ from a straight
line? Figure 3 shows several examples for different sand-
stones. Depending on the precise rock, a straight line is more
or less well evidenced.

[19] Let us first consider the P – Q domain close to
[PM, QM]. In this domain, where the dominant behavior
shifts from a dilatant regime to a compactant regime, local
grain contacts shift from decohesion (B contacts) to Hertz
cracks (A contacts). Our lowest-order model cannot capture
the detailed behavior in this intermediate regime where fluc-
tuations of coordination number z, of angular orientations of
contacts (hence of local forces), make the predictions dif-
ficult. Because the overall effects of P and Q are almost
canceling each other, small packing variations become very
important. A regular periodic packing cannot account for the
exact behavior then. Indeed, because random fluctuations
play a key role in that case, it is expected that experimen-
tal data could vary from one sample to the other (for the
same rock). We suggest thus, for fundamental reasons, that
it is not possible to rely strongly on the results obtained near
QM (unless a large set of data is obtained on similar samples
to get a statistically significant result). In addition, a more
sophisticated model, following Radjaï et al. [2004], would
be required.

[20] Let us next consider the P – Q domain at high P
values. It seems possible to fit the data points in the high
P regime with a straight line at least for Figures 3a–3c. Its
slope varies around 1.5. It is smaller than the slope pre-
dicted by the 2-D model. Again accounting for a cementation
shows that the 2-D granular model overestimates the slope
value. Is a straight line more appropriate than an elliptical
cap model to fit the data? Looking at Figure 3, it is an open
question. However, an elliptical cap (the main axis of which
is the P axis) would imply a vertical tangent close to the
P axis, at P = P*. This would imply that the behavior is
no longer Q-dependent near P*. But there are, however, no
data near the Q = 0 axis. In any case, the model can be
an associated one [Rudnicki, 2004] although Radjaï [2009]
pointed out that granular plasticity models are in general
nonassociated models.

5. Compaction Bands: Cascading Failure
[21] A striking feature of samples deformed in the com-

paction regime is that they show “compaction bands” that
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Figure 3. (a) Data for Bleurswiller sandstone (blue dots: data obtained by Fortin et al., [2006, 2009], black dots: data
obtained by Tembe et al. [2008]). The envelope is well described by two straight lines of slopes +1.5˙ 0.1 and –1˙ 0.1.
(b) Data for Rothbach sandstone from Louis et al. [2009]. The envelope is well-described by two straight lines of slopes
˙1.5˙ 0.1 and an intermediate zone. (c) Data for Diemelstadt sandstone from Tembe et al. [2008]. The envelope is well-
described by two straight lines of slopes ˙1.5 ˙ 0.1 and an intermediate zone. (d) Normalized data for Bentheim, Darley
Dale, and Berea sandstones from Wong and Baud [2012]. For these sandstones, the slope and shape of the compactant
envelopes are variable.

are narrow layers, approximately one grain size thick,
approximately horizontal, but irregular. These layers are
formed of crushed grains and collapsed pores and are about
two or three grains thick for homogeneous sandstones [Wong
and Baud, 2012]. This observation has been used as sup-
porting the Hertzian crack model. Although the layers are
approximately perpendicular to the main compressive stress,
they are made of irregular segments that are interpreted as
segments O1O2 of Figure 1. This implies that once local fail-
ure has taken place at point A, the local high normal stress is
transferred to the neighboring unfailed grain contacts. More-
over, Hertzian cracks are formed on either side of A and are
approximately normal to the A contact plane. These cracks
build up an increased local compressive stress near B, on B
contact planes. It is so because parallel microcracks add up
their effects and thus amplify the local normal stress on the
contact plane at B [Orlowsky et al., 2003]. It results that a
first local failure at A point induces a second local failure at
point B. The overall expected pattern is a zigzagging band
as the observed one (see, for example, Schultz et al. [2010,
Figure 1c], where they report field observations). A cascad-
ing failure is produced, roughly horizontal, but following a
zigzag path.

6. Conclusion
[22] Granular mechanics is potentially very useful to

investigate porous rocks mechanical behavior. The granular
microstructure is described by the network of grain con-
tacts, so that the coordination number z is a key parameter.
Considering porous sandstones as a granular medium, and
using a 2-D model where grains are packed according to
a z = 6 compact packing, the two main characteristics of
the inelastic behavior of sandstones are derived: (1) a low-
pressure elastic limit that is a straight line in the P – Q plane,
corresponding to a dilatant shear band controlled by grain
boundary tensile failure, (2) a high pressure elastic limit that
is also a straight line in the same plane, corresponding to
compaction bands and controlled by grain fragmentation. Up
to what point other porous rocks (for instance limestones,
basalts) could be investigated along similar views remain
to be explored. An improvement of the model would be to
quantitatively account for the cement at grain contacts.
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