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S U M M A R Y
The study of seismic anisotropy has become a powerful tool to decipher rock physics attributes
in reservoirs or in complex tectonic settings. We compare direct 3-D measurements of P-
wave velocity in 132 different directions on spherical rock samples to the prediction of the
approximate model proposed by Louis et al. based on a tensorial approach. The data set
includes measurements on dry spheres under confining pressure ranging from 5 to 200 MPa
for three sandstones retrieved at a depth of 850, 1365 and 1394 metres in TCDP hole A (Taiwan
Chelungpu Fault Drilling Project). As long as the P-wave velocity anisotropy is weak, we show
that the predictions of the approximate model are in good agreement with the measurements.
As the tensorial method is designed to work with cylindrical samples cored in three orthogonal
directions, a significant gain both in the number of measurements involved and in sample
preparation is achieved compared to measurements on spheres. We analysed the pressure
dependence of the velocity field and show that as the confining pressure is raised the velocity
increases, the anisotropy decreases but remains significant even at high pressure, and the shape
of the ellipsoid representing the velocity (or elastic) fabric evolves from elongated to planar.
These observations can be accounted for by considering the existence of both isotropic and
anisotropic crack distributions and their evolution with applied pressure.
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1 I N T RO D U C T I O N

The elastic anisotropy of a porous rock reflects the anisotropic at-
tributes of both the solid matrix and pore space. Bedding in sedimen-
tary rocks, cleavage in slates, preferred orientation of anisotropic
minerals and anisotropic distribution of microcracks and pores can
all contribute to elastic anisotropy, a seismic manifestation of which
is shear wave splitting (Crampin 1981). Even though analysis of
elastic wave propagation in an anisotropic medium can be highly
complex, the investigation of this phenomenon has evolved to be-
come a useful tool for deciphering rock physics attributes in a ge-
ologic formation, especially when the anisotropy is relatively weak
which would allow the analysis to be simplified (Helbig & Thomsen
2005).

∗Now at: BP America, Subsurface Technology, Houston, USA.

Extensive laboratory studies have been conducted on the elastic
or seismic anisotropy of different rock types (Lo et al. 1986; Hornby
1998). These studies show that seismic anisotropy at elevated pres-
sures arises primarily from lattice preferred orientation (Kern 1993;
Johnston & Christensen 1995), whereas at relatively low pressures
it is usually controlled by the presence of an oriented system of
open microcracks, which may develop as a result of rock forming
processes or tectonic deformation. Indeed Nur & Simmons (1969)
demonstrated in a seminal study the correspondence among seismic
anisotropy, stress-induced cracking and orientations of the applied
stress field.

In 1999 the Mw 7.6 Chi–Chi earthquake resulted in significant
casualty and damage (Shin & Teng 2001). Its main rupture along
the Chelungpu fault system was associated with surface break ex-
tending >100 km. The Taiwan Chelungpu-fault Drilling Project
(TCDP) was undertaken to drill into this thrust fault, with the over-
all research goal to gain fundamental understanding of the physics
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of earthquakes and faulting. Vertical drilling of Hole A at Takeng
to a depth of 2 km through the northern portion of Chelungpu fault
was completed in 2004. In a previous study, Louis et al. (2008)
investigated the elastic and magnetic anisotropies of a total of 15
core samples retrieved from TCDP Hole A at depths ranging from
589 to 1412 m. They systematically characterized the anisotropies
of P-wave velocity (APV) and magnetic susceptibility (AMS) as
functions of depth and porosity. Microstructural observations were
also conducted so as to establish possible correlations between the
anisotropic properties and the petrofabrics induced by tectonic de-
formation and stress field.

The sonic velocity measurements were conducted following the
protocol of Louis et al. (2004). For each available core a triplet of
cylindrical plugs were drilled along three perpendicular directions.
The velocity anisotropy of each plug was characterized by measur-
ing the traveltimes for P-wave propagation across the mid-section
along 8 diameters at an angular interval of 22.5◦. For a weakly
anisotropic rock, they demonstrated that data for the APV of the
three orthogonal plugs can be approximated by a second-rank ve-
locity tensor. Since the magnetic susceptibility is also described by
a second rank tensor (Nye 1957), this provides a common basis for
comparison of elastic and magnetic anisotropies as well as their
relations to microstructure.

With reference to Thomsen’s (1986) and Tsvankin’s (1997) re-
sults for a weakly anisotropic rock, Louis et al. (2004) argued that
the APV data of most sedimentary rocks can be approximated by a
second rank tensor with an error of <4 per cent. A primary objective
of this study is to assess the validity of this approximation, by com-
paring with direct measurement of the 3-D anisotropy in a spherical
sample under confinement using a specially designed apparatus at
the Geophysical Institute of Prague. The apparatus has been used to
acquire relatively comprehensive data on APV of samples from a
variety of geological settings (Pros et al. 1998b; Vajdova et al. 1999;

Pros et al. 2003; Machek et al. 2007; Vilhelm et al. 2008). Simi-
lar measurements on spheres have also been undertaken at Institut
Français du Pétrole, with a focus on microcrack-induced anisotropy
(Arts et al. 1994, Rasolofosaon et al. 2000) and its relation to per-
meability anisotropy (Rasolofosaon & Zinszner 2002).

However preparation of a spherical sample is quite cumbersome,
and in contrast, the tensorial method of Louis et al. (2004) is rela-
tively straightforward to implement, as long as core samples in three
mutually orthogonal orientations are available and the anisotropy is
relatively weak so that the approximation is valid. Our objective
in this work is first to compare direct P-wave velocity anisotropy
measurements on spheres to the prediction of the tensorial method
of Louis et al. (2004), secondly to provide a microstructural in-
terpretation for the observed pressure dependence of the measured
properties which complements the work of Louis et al. (2008) on
core samples from the same TCDP borehole.

2 S A M P L I N G A N D M E T H O D

2.1 TCDP overview and core locations

The main rupture of the 1999 Chi–Chi earthquake was located
along the Chelungpu fault system (Fig. 1a), with surface rupture
extending over 100 km and uplifts of 8 m in some locations. The
vertical drilling of TCDP Hole A in 2004 through the northern
portion of Chelungpu fault at Takeng (near the city of Taichung)
reached a depth of 2 km. Total recovery of the mostly continu-
ous cores from TCDP Hole A was about 97 per cent (Song et al.
2007). At least three stratigraphic sequences oriented N15–30E
could be identified from the TCDP core samples (Fig. 1b): the
Cholan formation (late Pliocene to early Pleistocene), the Chinshui
shale formation (Pliocene) at depth 1027–1268 m, the Kueichulin
formation (late Miocene to Pliocene) down to 1712 m, and the

Figure 1. (a) Map of Eastern Taiwan with the location and focal mechanism of the 1999 ChiChi devastating earthquake. The TCDP drill site is also indicated
in the northern part of the fault zone. (b) Vertical cross section showing the geological formations involved in the Chelungpu thrusting. Again the TCDP drill
hole reaching the major fault zone is shown.
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Cholan formation again at depths below 1712 m. The Cholan for-
mation at the top is characterized by thick sandstone layers and al-
ternating sandstone–siltstone–mudstone layers with weak to intense
bioturbations. The sandstone is predominately made up of quartz
and slate fragments, with some feldspar, sandstone quartzite frag-
ments and clay matrix. The Chinshui formation is primarily made
up of siltstone, with subsidiary thin layers of fine-grained sand-
stone, mudstone and alternating layers of sandstone and siltstone.
The Kueichulin formation is made up of thick sandstone layers,
with subsidiary thin layers of siltstone and shale. Structural and de-
formation features indicate the existence of several fracture zones
in the Chinshui shale formation with one particular at 1111 m depth
considered to be the plausible location that underwent significant
slip during the Chi–Chi earthquake (Song et al. 2007).

The 15 core samples investigated by Louis et al. (2008) were re-
trieved from TCDP Hole A at depths ranging from 589 to 1412 m,
including six sandstones and nine siltstones, on which the anisotropy
of magnetic susceptibility and P-wave velocity was analysed. They
concluded that the directions of anisotropy for magnetic suscepti-
bility were consistent for both sandstones and siltstones, and could
be related to the regional stress regime, whereas an additional con-
tribution of anisotropy for the P-wave velocity was detected only
in the sandstones, which could be related to the existence of an
anisotropic crack distributions at the grain scale as revealed by
quantitative characterization of three samples (#04, #09 and #14).
For this study, we investigated the velocity anisotropy of three spher-
ical sandstone from the following depths: 850 m (in the proximity

of sample #04 in the Cholan formation), 1340 m and 1365 m (in the
proximity of sample #09 in the Kueichulin formation).

2.2 3-D measurement on spherical samples

Velocity measurements on spherical dry samples were conducted
using the experimental facilities at the Geophysical Institute of
Prague described by Pros et al. (1998a). A schematic view of the
experimental setup is shown in Fig. 2(a). It is based on the classical
pulse transmission method using two ultrasonic transducers, one
transmitter (T), one receiver (R), mounted on a frame which can
rotate about two perpendicular axes (Fig. 2b) defining the angles
λ (longitude) and φ (latitude). This allows one to attach the two
transducers at diametrically opposite locations in virtually any di-
rection in space, except near the vertical direction where the sample
is firmly clamped. Typically an angular step (�φ or �λ) of 15◦

is imposed in the latitude and longitude, which would allow one
to acquire a total of 132 independent measurements. Confinement
of this experimental device inside a pressure vessel allows one to
characterize the velocity anisotropy at confining pressures ranging
up to 400 MPa. To prevent the confining fluid from penetrating into
the rock, the spherical sample (50 mm in diameter) is encapsulated
in a thin epoxy resin film (0.05 mm thickness). Both ultrasonic
transducers have a resonance frequency of 2.5 MHz. A pulse gen-
erator is connected to the transmitter, and the signal recorded by
the receiver is sent to a digital oscilloscope with a 100 MHz sam-
pling rate. Only 40 μs of the transmitted signals are stored for the

Figure 2. Sphere method: (a) Schematic representation of the experimental system for measuring the P-wave velocity anisotropy on spheres under confining
pressure. (b) Vertical and horizontal rotating frames where the ultrasonic transducers are implemented. (c) Stereonet corresponding to lower hemisphere equal
area projection of directions defined on the sphere with angular steps of 15◦ in latitude and longitude. (a and b modified from Pros et al. 2003)
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analysis, which is considered to be long enough for picking the first
arrival.

To visualize the 3-D data set for the angular distribution of P
velocity at each pressure level, we will use a 2-D stereonet that
corresponds to a lower hemisphere equal-area projection (Schmidt
stereonet). The correspondence with the (λ, φ) coordinate system is
illustrated in the inset schematic diagram in Fig. 2(c), and orienta-
tions for the 132 measurements have been labelled in the stereogram.
The solid red circle corresponds to the upward vertical direction that
is along the axis of the cylindrical core retrieved from the TCDP
hole. The strike of the bedding plane (N15E horizontal direction) is
indicated by the open circle. Accordingly the centre of the stereonet
corresponds to the N105E horizontal direction.

2.3 Tensorial method on three orthogonally cored samples

The experimental configuration used by Louis et al. (2003, 2004) is
illustrated in Fig. 3. It is necessary to have a good spatial distribution
of measuring directions to correctly characterize the anisotropy, and
this can be achieved by measuring the P-wave velocity across several
diameters in three samples cored in mutually orthogonal directions
from one single block (Fig. 3a). An optimized angular measuring
scheme was proposed as shown in Fig. 3(b). As for the measure-
ments on spheres, a classical setup for acoustic properties is used,
including a pulse generator, two ultrasonic transducers with a reso-
nance frequency of 0.5 MHz, and a digital oscilloscope connected
to a PC for data acquisition and analysis. For each measurement the
piezoelectric transmitter and receiver are located in opposite posi-
tions across a diameter on the circular surface of the sample, and
the time of flight of the P wave is measured. This is repeated eight
times per sample after rotating it with an angular shift of 22.5◦. The
velocity profiles obtained for the three orthogonal samples are then
corrected from slight variations in density from sample to sample
(Louis et al. 2004), and the set of 24 measurements provides trav-
eltimes along 21 independent orientations uniformly distributed in
three orthogonal planes. Accounting for the errors associated with
picking the first arrival and measuring the sample diameter, the
standard error for the measurements is about 0.03 km s−1 (Louis
et al. 2003).

Louis et al. (2004) showed that most sedimentary rocks can be
modelled as transversely isotropic rocks such that the P-wave ve-
locity VP as a function of θ , the angle between the axis of symmetry
and the direction of propagation, can be fitted with an error of less

than 4 per cent by the equation

VP = Vo

(
1 + κ. sin2 θ

)
, (1)

where Vo is the P-wave velocity in the direction perpendicular to
the isotropic plane, and κ is the anisotropy parameter in the tensor
approach. With reference to Thomsen’s (1986) expression for weak
anisotropy

VP = Vo

(
1 + δ. sin2 θ + (ε − δ). sin4 θ

)
(2)

this implies that the rock can be approximated as ‘elliptically
anisotropic’, with the Thomsen anisotropy parameters ε and δ being
equal such that P wave fronts emanating from a point source are
elliptical in shape (in any plane containing the symmetry axis of
the transversely isotropic rock). The approximation in eq. (1) would
also imply that the velocity can be described by a symmetric, second
rank tensor Vij, so that the P-wave velocity for propagation in the
direction of unit vector n is simply given by

VP = Vi j ni n j . (3)

Since Thomsen’s analysis has been generalized by Tsvankin (1997)
from a transversely isotropic to an orthotropic material, Louis
et al. (2004) concluded that the P-wave anisotropy in any weakly
anisotropic rock can generally be approximated by such a symmet-
ric, second rank tensor. Accordingly, they proposed a methodology
whereby the laboratory data of P-wave velocity in multiple direc-
tions are fitted to eq. (3) to find the ellipsoidal envelope of the
representation quadric, as well as the directions and magnitudes
of the three principal axes defined by the eigenvectors and eigen-
values of this symmetric tensor (Fig. 3c). Our elliptical anisotropy
best fit given by the eigenvalues of a second rank symmetric tensor
that produce the best fit with the measured data in the least-squares
sense by no means represents the best fit in terms of the approximate
stiffness tensor as compared to the true observed one, as rigorously
derived by Sevostianov & Kachanov (2008).

The six independent tensor elements Vij are calculated from the
21 independent velocities measured on diameters with known orien-
tations by a least-squares inversion method. Eigenvalues and eigen-
vectors are then obtained by diagonalization of the velocity tensor
and can be represented in 3-D on an ellipsoid (Fig. 3c). By con-
vention we will call V 1 the eigenvector with maximum magnitude,
V 2 the eigenvector with intermediate magnitude and V 3 the eigen-
vector with minimum magnitude. The advantage of the tensorial
approach is that, first, it is simpler than estimating the elastic fourth
rank tensor from which the velocities must theoretically be derived

Figure 3. Tensor method: (a) Coring scheme with three orthogonal samples are cored from a large core retrieved at depth. (b) The three samples with the
angular sampling for the measurements on diameters. (c) Schematic view of a 3-D ellipsoid used to represent the second-rank pseudo tensor for P-wave
velocities.
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(Mavko et al. 1998), and secondly, the velocity tensor can conve-
niently be compared to any other second rank tensor representing
other physical properties like permeability, electrical conductivity
or magnetic susceptibility (e.g. David et al. 2007). To represent
the 3-D orientation of the velocity eigenvectors, one can use a 2-D
stereonet like for the sphere measurements.

3 R E S U LT S

We first present and discuss the measurements obtained on the
spherical sample in terms of anisotropy and compare those results
to the prediction of the tensorial approximation. Then we focus on

the pressure dependence of P-wave velocity and anisotropy up to
200 MPa also obtained in the same experiments on the spherical
samples.

3.1 Velocity anisotropy measured on spherical samples

We plotted in Fig. 4 the results of the sphere measurements for the
three sandstone samples from cores retrieved at depths 850, 1365
and 1394 m, at six different confining pressures: 5, 10 and 20 MPa on
Fig. 4(a); 50, 100 and 200 MPa on Fig. 4(b). For each pressure, the
stereonets on the left correspond to the raw velocity measurements
in the 132 different directions investigated in the sphere analysis,

Figure 4. Comparison of the raw P-wave velocity measurements in 132 different directions and the prediction of the tensor method for the three samples
at 850, 1365 and 1394 m depth, at different confining pressures. For each pressure the stereonets on the left are the raw measurements with the specified
colour coding. Solid symbols are the maximum (square) and minimum (circle) velocities, Open symbols are the eigenvectors of the velocity tensor obtained
by a least-square method from the raw velocity data (open triangle is for intermediate eigenvector). (a) Confining pressures from 5 to 20 MPa. (b) Confining
pressures from 50 to 200 MPa.
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which correspond to an angular sampling of 15◦ in latitude and
longitude. As explained above the directions are represented on an
equal area lower hemisphere projection. The colour scale next to the
stereonet indicates the range of velocities measured in each sample.
The range of measured velocities is quite large, from 1900 m s−1

at low pressure up to 4600 m s−1 at the highest pressure. Note that
the colour scale is kept constant and systematically adjusted to the
extreme velocity values, therefore the velocity scale for a given
sample is not exactly the same from one pressure to the other. The
solid squares show the location of the maximum velocity measured
Vmax, and the solid circle where the minimum velocity Vmin was
found.

The measurements were made on the intersections of the 15◦ ×
15◦ angular grid, and the stereonet is made up of 60 quadrilateral
elements that surround a central, circular element (Fig. 2c). To
each quadrilateral element we assigned a constant velocity equal
to the arithmetic mean of the velocities measured along the four
adjacent nodes. The centre of the projection, which corresponds to
the direction along which the sample is clamped, was attributed the
average velocity of the 12 surrounding nodes. After each element
was assigned a value, a light Gaussian smoothing was finally applied
to facilitate observation. This operation did not affect the colour
scale extrema since the filter radius was smaller than the half-length
of the elements.

On the stereonets, for the spherical sample data acquired at the
lowest pressure (5 MPa), the solid red circle marks upward verti-
cal direction and the open circle marks the strike of the bedding
plane (N15E horizontal direction). As can be seen there is a good
agreement for our three samples between the location of minimum
velocities on the stereonet and the position of the bedding strike, in
agreement with the series of room pressure measurements of Louis
et al. (2008) on many TCDP sandstone samples using the tensor
method.

Let us next describe briefly the evolution of the directions of
maximum and minimum measured velocity. If we look at the colour
patterns, it is clear that for both samples at 1365 m and 1394 m the
overall velocity distribution is pretty the same for all the pressure
range and the position of maximum and minimum velocities (solid
symbols) do not change significantly with increasing pressure. A
slightly different picture is obtained for the sample at 850 m where
at low pressure the dominant colour on the stereonet is blue, then
evolves towards dominant red tones at higher pressure. This change
in colour is associated with a rotation of the velocity maximum. For
the three samples, the orientation of the minimum velocity direction
remains stable, except for sample at 850 m and 20 MPa confining
pressure where the minimum rotates by about 60◦ in azimuth, al-
though the location of the larger low velocity sector remains con-
sistent with the ones at other pressures. For samples at 1365 m and
1394 m, the maximum velocity direction also remains fairly stable
across the pressure range. In the sample at 850 m, two distinct high
velocity zones are sequentially observed upon pressurization with
a transition at 50 MPa. As discussed later, this observation suggests
the participation of several sources of anisotropy, of which one at
least is pressure dependent. Note also that, as they result from mea-
surements, the directions of maximum and minimum velocities are
not necessarily orthogonal, in contrast with the principal directions
implicitly assumed in the tensor analysis.

3.2 Prediction of second rank tensor approximation

The velocity versus orientation data set obtained on the spherical
samples was used as input data for the tensor method described

above. The velocity tensor defined in eq. (3) is built, and the eigen-
values and eigenvectors are calculated using a least-squares scheme
(Louis et al. 2004). The maximum and minimum velocity values
obtained with the tensor approximation are given in Table 1 for
comparison with the direct measurements. We also provide for each
pressure step a residual value that corresponds to the average of the
differences between direct measurements and values recalculated
from the best-fitting tensor. In Fig. 4 the directions of the three
eigenvectors, necessarily orthogonal, are plotted as open symbols
on the same stereonets as the measured velocities for comparison.
The open square correspond to the eigenvector with maximum am-
plitude V 1, the open circle to the one with the smaller amplitude
V 3 and the open triangle to the intermediate eigenvector V 2. Look-
ing at the spatial location of these eigenvectors with respect to the
measured maxima and minima velocities, we can see that in general
there is a good agreement between the orientation of measured and
predicted velocity extrema. On the average, the discrepancy is of
the order of the width of the angular sectors, say +/− 15◦ which
is rather good. To go further in the comparison between measured
and predicted values, the stereonet plotted on the right next to the
measured data represents for each pressure the predicted velocity
data field calculated at each location where a measurement was
done on the spheres. Therefore if the tensor approach provides a
valid description of the actual velocity anisotropy, the distribution
of colours in adjacent stereonets should be similar (although the ve-
locity scale might slightly change as mentioned above). In general
we observe a very good agreement between the prediction of the
tensorial approach and the measured values, for the three different
samples, at all the pressures: this gives us some confidence in our
assumption that velocity anisotropy in rocks can be approximated
by a second-rank tensor.

The results from the tensor approximation may also be compared
with what was obtained by Louis et al. (2008) at virtually ambient
pressure condition in the same samples. Fig. 5 is a stereoplot taken
from Louis et al. (2008) showing in grey the eigenvectors obtained
for all of their sandstone samples in the geographic reference. We
overlay on the same figure the maximum and minimum velocity
directions obtained from the direct measurements on spheres (solid
symbols) at 5 MPa, and the directions corresponding to the three
eigenvectors obtained with the tensor approximation (open sym-
bols). As compared to Fig. 4, the directions have been rotated to
fit the geographic reference. First, the location for the minimum
velocity direction is very well constrained overall, with an N15
subhorizontal orientation parallel to the strike of the bedding. For
the maximum and intermediate velocity directions, two observa-
tions can be made. First, the maximum velocity directions gener-
ally scatter within the plane perpendicular to the average minimum
velocity direction, which is standard for the tensor-derived vectors
(open squares) but not forced as far as the direct measurements
are concerned (solid squares). Secondly, while the tensor-derived
maximum and intermediate velocity directions are a good match
for samples at 850 m, a poorer match is observed between maxi-
mum and intermediate velocity directions for the two other samples
(1365 m and 1394 m) as compared to the results of Louis et al.
(2008). This discrepancy, which will be addressed in the discussion
section, can be associated with the two independent observations
that (1) there is a 5 MPa difference in confining pressure between
the two data sets, and (2) as can be seen in Fig. 4(a), the plane
within which intermediate and maximum velocity values are lo-
cated is nearly isotropic, and therefore unlikely to result in well
constrained positions for the eigenvectors. It is worth mentioning
here that this nearly isotropic plane matches exactly the orientation
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Table 1. Maximum and minimum velocities (Vmax, Vmin) measured on the sphere samples for each pressure step with corresponding anisotropy
factor, and predicted values derived from the tensor approach (V1, V3) with anisotropy parameters Pj and Tj and average residuals.

3-D Measurements Tensor analysis

Total Total Average
Pressure Vmax Vmin anisotropy V1 V2 V3 anisotropy residual

Sample (MPa) (m s–1) (m s–1) (per cent) (m s–1) (m s–1) (m s–1) (per cent) Pj Tj (m s–1; per cent)

850 3 2267 1625 34.2 2076 1770 1713 19.6 1.23 −0.66 74.4; 3.96

5 2285 1825 22.9 2143 1942 1852 14.7 1.16 −0.35 48.8; 2.43
10 2595 2209 16.0 2509 2385 2297 8.8 1.09 −0.16 51.7; 2.15
15 2831 2437 15.1 2721 2581 2514 8.0 1.08 −0.34 49.7; 1.90

20 2974 2638 11.9 2931 2787 2718 7.6 1.08 −0.34 44.3; 1.59
35 3357 3053 9.4 3292 3240 3105 5.8 1.06 0.46 41.7; 1.29

50 3613 3314 8.6 3568 3502 3365 5.8 1.06 0.37 42.7; 1.22
100 4047 3721 8.3 4005 3916 3774 5.9 1.06 0.24 43.3; 1.11
200 4365 4001 8.6 4339 4213 4077 6.2 1.06 0.06 32.7; 0.77
100 4068 3724 8.8 4045 3921 3777 6.9 1.07 0.09 37.5; 0.96

1365 0.1 2081 1570 26.9 2048 1929 1664 20.4 1.24 0.42 44.8; 2.39
1 2191 1784 20.2 2111 2017 1917 9.6 1.10 0.05 34.4; 1.71

5 2537 2175 15.1 2483 2418 2259 9.4 1.10 0.44 30.1; 1.27
10 2829 2483 12.9 2764 2713 2560 7.6 1.08 0.51 23.4; 0.87
20 3265 2860 13.0 3200 3170 2958 7.8 1.09 0.76 31.7; 1.02
50 3910 3536 9.9 3863 3840 3626 6.3 1.07 0.81 33.4; 0.89
100 4363 3853 12.1 4318 4278 4006 7.4 1.09 0.75 38.2; 0.91
200 4706 4251 10.0 4642 4602 4372 5.9 1.07 0.71 39.8; 0.88
100 4414 4008 9.5 4353 4309 4130 5.2 1.06 0.61 35.6; 0.84

1394 0.1 1987 1375 36.6 1913 1681 1346 34.5 1.43 0.26 42.7; 2.58

5 2678 2029 26.5 2651 2504 2119 21.9 1.26 0.49 41.9; 1.75
10 2980 2324 24.0 2929 2816 2412 19.0 1.23 0.60 39.0; 1.46
20 3375 2663 22.7 3349 3242 2789 17.9 1.22 0.65 42.0; 1.37
50 3915 3151 20.8 3885 3770 3292 16.2 1.19 0.64 41.4; 1.15
100 4240 3500 18.4 4230 4117 3674 13.9 1.16 0.62 43.2; 1.10
200 4601 3999 13.7 4616 4432 4122 11.2 1.12 0.28 34.3; 0.79
100 4452 3756 16.5 4438 4260 3908 12.6 1.14 0.36 36.8; 0.88

Note: the grey-shaded lines contain data plotted in the equal area projections (common pressures).

of the network of parallel microcracks observed by Louis et al.
(2008).

3.3 Pressure dependence of velocity and anisotropy

Let us now focus on the pressure dependence of P-wave velocity in
the tested rock samples. Again we will compare the measured data
and the results predicted by the tensor approximation, focusing on
the maximum and minimum velocities. In Fig. 6(a) we plotted for
each sample the evolution of the maximum (Vmax) and minimum
(Vmin) velocities measured on the spheres (solid squares and circles,
respectively) as well as the maximum (V 1) and minimum (V 3) eigen-
values given by the model (open squares and circles, respectively)
as a function of applied pressure. The red symbols correspond to the
eigenvalues derived from measurements on three orthogonal core
samples at the same depth under room conditions: these data come
from our previous study on TCDP samples (Louis et al. 2008) and
are in very good agreement with the measurements on spheres at
the lowest confining pressure. Note that the data of Fig. 6 provides
the results obtained for all pressure steps (see Table 1) and not
only the ones plotted in Fig. 4. As expected the P-wave velocity
increases with applied pressure due to progressive compaction and
crack closure, a well-known observation (e.g. Mavko et al. 1998).
At the highest-pressure steps (100–200 MPa) the increasing trend
is still present although with a milder slope, showing that there are

still cracks remaining open. After completion of the loading stage,
the samples were unloaded and another measurement was made at
100 MPa confining pressure (the stereonet is not shown for this un-
loading stage). We can see in Fig. 6(a) that for most of the samples
the velocity after unloading is higher than in the loading stage. This
is particularly true for the sample cored at the highest depth, where
irreversible compaction and/or crack closure makes the velocity at
100 MPa be 10 per cent higher after unloading. Again, like for
the spatial distribution of velocities (Fig. 4), there is a very good
agreement between the pressure dependent magnitude of maximum
and minimum velocities, and the magnitudes retrieved by the tensor
approach. In Fig. 6(b) we plotted the P-wave anisotropy parameter
A defined as

A(per cent) = 200 (max (VP ) − min (VP ))
/

(max (VP ) +min (VP )),
(4)

where max(VP) and min(VP) represent either the maximum and
minimum velocities measured on the spheres, or the maximum and
minimum eigenvalues estimated by the tensor approximation (see
also Table 1). The initial value at low pressure is compared to the
one found by Louis et al. (2008) on three orthogonal cylindrical
samples (red circle): whereas a good agreement is found for the
sample at 850 m, there is a discrepancy of +/−15 per cent in
absolute values for the other samples. As pressure increases, the
P-wave anisotropy decreases sharply from an initial value close to
30–35 per cent, then flattens to become almost constant at a value
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Figure 5. Principal directions derived from the tensor analysis for the three
samples at 850, 1365 and 1394 m depth (open symbols) at 5 MPa compared
to the extrema velocities measured on the spheres (solid symbols) and the
directions found by Louis et al. 2008 (grey symbols). The star indicates the
orientation of the bedding pole, the inclined plane correspond to the bedding
plane (plain line) with +/− 10◦ uncertainty (dashed lines).

of about 10 per cent for pressures higher that 20 MPa. There is
therefore a large change in anisotropy by a factor 3, and a residual
anisotropy at the highest pressure, which persists after unloading.
Comparing the measured and the predicted anisotropy, we can see in
Fig. 6(b) that the predicted results are systematically lower than the
measured data, with an almost constant shift by about 5 per cent in
absolute value. Tentatively we explain this discrepancy by the fact
that the values predicted by the tensor analysis are smoother than
the raw data set which is sensitive to local heterogeneities: milder
contrasts between extreme values should then be expected from the
tensor approximation, leading to a reduced anisotropy. However the
shape of the anisotropy decreasing trend is preserved and compares
satisfactorily with the measured data.

In Fig. 7 we analysed in more details our predicted directional
results using the so-called Pj/Tj plot which compares the corrected
degree of anisotropy Pj to the shape parameter Tj (Jelinek 1981), two
parameters which depend on the velocity eigenvalues, and which
definition can be found in our previous work (Louis et al. 2008).
Typically, Pj is a measure of the sphericity of the ellipsoid (with
Pj ≥ 1, with Pj = 1 for a perfect sphere), and Tj is the shape
parameter taking negative values (−1 < Tj < 0) when the fab-
ric is elongated in one direction and positive values (0 < Tj < 1)
when the fabric is planar (Jelinek 1981). When Tj = 0, the ellip-
soid is said ‘triaxial’, meaning that the ratio between maximum and
intermediate eigenvalues is identical to the one between intermedi-
ate and minimum eigenvalues. The use of these parameters, which
is fairly extensive in magnetic susceptibility studies (e.g. Tarling
& Hrouda 1993; Borradaile & Henry 1997), may inform on the
amount, shape and/or distribution of the elements responsible for
the measured signal, which can be in some cases compared with
the finite strain ellipsoid. Starting from the initial values at room
conditions (solid symbols) obtained on core samples by Louis et al.
(2008), the anisotropy parameter Pj decreases while the shape pa-
rameter Tj globally increases when the confining pressure is raised

up to 200 MPa. The decrease in Pj basically repeats what was shown
in Fig. 6(b), with the difference that here the anisotropy is calculated
using the three eigenvalues as opposed to the maximum and mini-
mum ones only. The global increase in Tj shows that for the three
samples, the P-wave velocity fabric becomes more planar as pres-
sure increases, which suggests changes in the relative contributions
of the microstructural sources of anisotropy, and more specifically
an enhanced contribution of the set of parallel microcracks observed
by Louis et al. (2008). A closer look at the evolution of Tj with pres-
sure shows that a decrease seems to occur at higher pressure steps,
which at least for the sample at 850 m seems to reflect the displace-
ment of the maximum velocity zone in Figs 4(a) and (b), although
irrecoverable mechanical deformation past 50 MPa cannot be ruled
out.

4 D I S C U S S I O N A N D C O N C LU S I O N

We have shown that the data set of P-wave velocity measured in
132 independent directions on dry spherical samples machined in
TCDP samples cored at three different depths can reasonably well
be described by the tensorial method proposed by Louis et al. (2003,
2004). Furthermore, the directions of anisotropy are in good agree-
ment with the previous results obtained by Louis et al. (2008) on
a larger set of core samples. Let us first discuss the validity of the
tensorial method for describing P-wave velocity anisotropy, then we
intend to give an interpretation of our results in terms of microstruc-
ture on the basis of theoretical models for the pressure dependence
of seismic properties.

4 . 1 VA L I D I T Y O F T H E T E N S O R I A L
A P P ROA C H F O R D E S C R I B I N G P - WAV E
V E L O C I T Y A N I S O T RO P Y

As mentioned earlier, the rationale for using a simple tensorial
method for P-wave velocity anisotropy, such as presented in Louis
et al. (2003, 2004) on various core samples, is the possibility of de-
scribing efficiently the full 3-D velocity anisotropy using a limited
number of measurements (as low as 6, minimum required for cal-
culating a second-order symmetric tensor), hence of incorporating
the richness of P-wave velocity data into structural studies along
with other tools such as the anisotropy of magnetic susceptibility.
Although such an approach would obviously prove to be wrong in
the case of a monocrystal, we demonstrate here that a geologically
processed aggregate does present anisotropy characteristics, which
are necessarily related to a certain extent to experienced stresses
and strains.

In our comparison between thorough P-wave velocity measure-
ments on spheres and their tensorial best fit, we showed that overall
we were able to recover a large portion of the original information.
First the locations of the maximum and minimum velocity directions
were preserved through the tensorial analysis (Fig. 4). Secondly, the
general picture of the velocity magnitudes were also very well repro-
duced, including the anisotropies and their evolution across pressure
steps, despite a slight misfit explained by a smoothing effect of the
tensorial approach on the extreme measurements (Figs 4 and 6). Fi-
nally, in terms of geological significance, we showed that the results
obtained from the spheres are virtually identical to the ones ob-
tained with the tensorial method by Louis et al. (2008), with a very
well constrained location for the minimum velocity direction, and a
slight mismatch between the other principal directions which might
be related to pressure effects (Fig. 5). It is useful to recall here that,
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Figure 6. (a) Evolution of maximum and minimum P-wave velocities measured on spheres (solid symbols), and maximum and minimum eigenvectors derived
from tensor analysis (open symbols with confining pressure. (b) Evolution of measured and derived P wave anisotropies versus confining pressure. The value
obtained by Louis et al. (2008) for TCDP samples at similar depths is plotted in red for comparison.

Figure 7. Tj versus Pj plot in the three samples showing the evolution of the shape of the velocity tensor ellipsoid.

although the maximum and minimum velocity directions obtained
on the spheres were not geometrically constrained, the maximum
velocity directions were observed in Fig. 5 to lay within the plane
perpendicular to the minimum velocity direction, along with the
ones obtained using the tensor method.

An intrinsic limitation of our approach is the case where two high
(respectively low) velocity zones coexist, a situation that cannot
be accounted for by a second-order symmetric tensor. However,
among all the sample/pressure configurations studied here (Figs 4a
and b), only one might correspond to this limiting case (sample at
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850 m and 50 MPa), an interpretation of which is provided in the
following.

4.2 Pressure dependence of P-wave velocity and inferred
crack densities

The most remarkable observation made when mapping the 3-D ve-
locity anisotropies in Figs 4(a) and (b) is that, for every sample,
the direction of the minimum value remains very stable across all
pressure steps, and is in geometrical agreement with the network
of subparallel microcracks already described by Louis et al. (2008)
in the sandstone samples, as was checked in Fig. 5 by rotating the
directions obtained at 5 MPa from both the directly measured ex-
trema and the recalculated eigenvalues. This observation implies
that the ‘velocity (or elastic) fabric’ corresponding to the network
of parallel microcracks persists at high confinement, which might
appear counter-intuitive since microcracks are generally expected
to close early in the deformation process. The possibility that the
anisotropy signal is influenced by lattice preferred orientation of
constituent minerals (like phyllosilicates) is not ruled out. Even
more surprising is the fact that the value of the shape parameter Tj

globally increases with pressure, suggesting that the crack effect is
enhanced throughout the process as the fabric becomes more planar
(Fig. 7). The persistence of the microcrack-related velocity fabric
may be explained by the recent findings of Humbert et al. (2011).
In that study, the authors employed a series of magnetic anisotropy
measurement techniques to investigate a possible magnetic signa-
ture of the same TCDP sandstone microcracks. They were able
to propose that (1) the vertical microcracks had been coated by a
late generation of magnetite grains, and that (2) these microcracks
however were not sealed, and therefore were likely to remain open
at depth. If the microcracks are coated by neocrystallizations of
micron-sized hard cubic crystals, it becomes much more difficult
for the applied pressure to achieve complete closure, allowing the
persistence of a high compliance direction normal to the plane of
the microcracks.

Our data set on directional P-wave velocities measured under
increasing pressure permits to estimate the so-called crack density
tensor and its variation with pressure. Two different approaches
were used, both of them based on the work of Sayers & Kachanov
(1995). First, we applied a numerical inversion scheme described by
Fortin et al. (2011), secondly we calculated the analytical solution
proposed by Wong & Zhu (2007). To do so several assumptions
had to be made to make the calculations easier. First, we assume
that the velocity distribution in space is transversely isotropic with
a symmetry axis corresponding to the direction of minimum ve-
locity (which is close to the bedding strike). This assumption is
not supported by the results of Louis et al. (2008) who found a
‘triaxial’ distribution of clustered eigenvectors (Fig. 5): however if
we look at the distribution of maximum and intermediate princi-
pal axes derived from this study, we observe that these axes are
scattered in a plane roughly orthogonal to the bedding strike, in
agreement with what would be observed in the case of transversely
isotropic symmetry. Given this assumption it is possible to calcu-
late the elastic parameters Cexp

11 and Cexp
33 (in the simplified Voigt

notation) from the measured maximum and minimum P-wave ve-
locities at each pressure step (Cexp

11 = ρV 2
max and Cexp

33 =ρV 2
min).

The second assumption is that there are two populations of cracks
in the rock, one considered to be isotropic with crack density
ρ iso, and a second one made of parallel cracks oriented perpen-
dicular to the bedding strike as shown by the study of Louis et al.

(2008), with a crack density ρv (‘v’ is for vertical as the crack planes
are subvertical).

The first method is based on the numerical scheme proposed by
Fortin et al. (2011). The compliance tensor of the sandstone can
be written as: Si jkl = So

i jkl + �Si jkl , where So
i jkl is the compliance

tensor of the crack free solid matrix, and �Si jkl is the additional
compliance resulting from the presence of cracks. Here, we will
restrict our attention to the case when the rock matrix is isotropic,
so that its elastic stiffness can be specified in terms of the Young’s
modulus Eo and Poisson’s ratio νo. To model the additional compli-
ance, �Si jkl , we consider the case of a medium containing circular
cracks. Thus, a crack density,ρ, can be defined as ρ = 1

V

∑N
0 c3

i ,
where ci is the radius of the ith crack and N is the total number
of cracks embedded in the representative volume V (Bristow 1960,
Walsh 1965). In sandstones, microcracks are the result of imper-
fectly bonded interfaces at grain boundaries. These cracks may not
be circular, but can be considered in a first approximation as flat
cracks (Schoenberg 1980). In this case, the distribution of cracks
of irregular shapes can be replaced by an equivalent distribution
of circular cracks. Thus, the crack density as defined above is an
effective density of the equivalent distribution of the circular cracks
(Sevostianov & Kachanov 2002, Guéguen & Kachanov 2011). This
parameter, ρ, is adequate for the isotropic case of randomly oriented
cracks but cannot be used for other distributions of crack orientation.
Following the work of Kachanov (1980), the scalar crack density,
ρ, can be generalized to a second crack density tensor, α, defined
as: α = 1

V

∑
(c3nn)

i
, where n is the unit vector normal to a crack,

and nn is the dyadic product. The linear invariant αkk = ρ so that
α is a natural tensorial generalization of ρ.

In the case, where contributions of cracks are evaluated in the
non-interaction approximation (NIA)—without accounting for the
interaction between cracks—the additional compliance, �Si jkl , due
to multiple circular cracks in arbitrary orientational distribution is
given by Kachanov (1980), as

�Si jkl = h

(
1

4

(
δikα jl + δilα jk + δ jkαil + δ jlαik

) − vo

2
βi jkl

)
, (5)

where δi j is the Kronecker delta and h, a scalar defined as h =
32(1−ν2

0 )

3(2−ν0)Eo
. Eq. (5) shows that the additional compliance is expressed

as a function of the second-order crack density tensor α, but also as a
function of a fourth rank tensor β, defined as : β = 1

V

∑
(c3nnnn)

i
.

However as discussed by Sayers & Kachanov (1995) and Guéguen
& Kachanov (2011), the fourth rank tensor will be small and in
most rocks Poisson’s ratio νo << 2, thus neglecting the β-term and
retaining α as the sole crack density parameter usually constitutes
a good approximation, especially in the case of a dry rock.

If we focus on a transversely isotropic rock (with symmetry axis
x3) associated with an axisymmetric distribution of microcracks em-
bedded in an isotropic elastic matrix, then the symmetry condition
necessarily requires that α11 = α22. Using the Voigt notation the
non-vanishing components of the elastic compliance of a cracked
rock are given by

S11 = S22 = 1

Eo
+ hα11, (6a)

S33 = 1

Eo
+ hα33, (6b)

S44 = 1

Go
+ h (α11 + α33) , (6c)
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S66 = 1

Go
+ 2hα11, (6d)

S12 = S13 = S23 = − ν0

Eo
, (6e)

where G0 is the shear modulus of the crack-free matrix. The elastic
stiffness of a cracked rock C11 and C33, in the Voigt notation, are
deduced using Ci j = (Si j )

−1 and

C11 = (
S2

12 − S11S33

)
/D (7a)

C33 = (
S2

12 − S2
11

)
/D (7b)

with D = S2
12(2S11 + S33) − S33S2

11 − 2S3
12. The eqs. (6a)–(6e) are

valid, in the case of transversely isotropic symmetry for any arbi-
trary distributions of cracks. For a medium containing randomly
oriented cracks, the elastic compliance can be simplified using
α11 = α22 = α33. However, as it can be seen from Fig. 6, P-wave
velocity anisotropy exists with a minimum value in the direction
of the symmetry axis x3. This implies α11 �= α33 and α33 ≥ α11.
Thus, to interpret the second crack density tensor α in terms of
microstructural attributes, it is possible to rewrite α as:

α = α11I + (α33 − α11)e3e3, (8)

where I is the unit tensor, and e3 the unit vector along the x3 axis. The
difference ρv = α33 −α11 characterizes the crack density of parallel
cracks with normal along (Ox3), whereas the tensor α11I character-
izes cracks randomly oriented with a crack density ρiso = 3α11. As
a consequence, the elastic compliance of a cracked rock (eqs 6a–6e)
can be rewritten as a function of these two crack densities, ρiso and
ρv , using α11 = ρiso

3 and α33 = ρiso
3 + ρv .

Finally, the theoretical prediction of the effective medium model
provided by eqs (7) and (6) in terms of effective stiffness C11 and
C33 are compared to the elastic stiffness Cexp

11 and Cexp
33 obtained

from the elastic wave velocities measurements, and the distance
between them is defined by a least-square function F given by

F = (Cexp
11 − C11)2 + (

Cexp
33 − C33

)2
that needs to be minimized at

each loading stage with respect to the unknown variables ρiso and
ρv .

In the second method we used Wong & Zhu’s (2007) analyti-
cal solution for weakly anisotropic cracked rocks, which was also
based on Kachanov’s (1980) formulation. In particular, their eq.
(10a) gives the following expression for one of Thomsen’s (1986)
anisotropy parameters

ε = C11 − C33

2C33
= Eoh

2

(α33 − α11) (1 + Eohα11)[
(1 + Eohα11)

2 − ν2
o

]

= Eoh

2

ρv

(
1 + Eohρiso

/
3
)

[(
1 + Eohρiso

/
3
)2 − ν2

o

] (8a)

It should be noted that our two crack density parameters ρiso = 3α11

and ρv = α33−α11 here correspond to the parameters a and b defined
by Wong & Zhu (2007). Since we typically have v2

0 ≤ 1, the above
can be approximated by:

ε = C11 − C33

2C33
≈ Eoh

2

ρv(
1 + Eohρiso

/
3
) (8b)

Substituting eq. (6) into eq. (7b), we can also obtain:

C33

Eo
= (1 − νo + Eohρiso/3)

(1 + Eoh(ρiso/3 + ρv)) (1 − νo + Eohρiso/3) − 2ν2
o

≈ 1

(1 + Eoh(ρiso/3 + ρv))
.

(9)

Solving the above simultaneous equations, we arrive at these
analytic expressions for the two crack density parameters (and cor-
responding ratio) in terms of the measured velocities (and corre-
sponding elastic stiffnesses and Thomsen parameter ε)

ρiso ≈ 3

Eoh

[
Eo/C33

(1 + 2ε)
− 1

]
(10a)

ρv ≈ 2

Eoh

ε

1 + 2ε

Eo

C33
(10b)

ρv

ρiso
≈ 2

3
ε

[
(Eo/C33)

(Eo/C33) − (1 + 2ε)

]
. (10c)

It is of interest to note that this ratio is independent of the Poisson’s
ratio, and the crack anisotropy is manifested by coupled effects on
the normalized stiffness and Thomsen’s parameter.

In Fig. 8(a) we plotted the results for the numerical model, and
in Fig. 8(b) the results given by the analytical solution, for the pres-
sure dependence of both crack densities. For the calculation we took
Eo = 51 GPa, νo = 0.2 and a bulk density of 2240 kg m−3 (Louis
et al. 2008). The input data for the inversion were the minimum and
maximum measured P-wave velocities. The first striking observa-
tion is that both methods give almost the same results, which in a
sense validates the numerical approach. The only visible difference
is at the highest confining pressure where the analytical solution pre-
dicts smaller values for the crack density of the isotropic population.
This will have some consequences as discussed below. The second
striking observation is that at low pressure, the crack densities reach
relatively high values: this is in agreement with the microstructural
analysis conducted by Louis et al. (2008) who observed that most
of the grains in their sandstone samples were cracked (see their fig.
12 in Louis et al. 2008). As expected both crack densities ρ iso and
ρv decrease significantly with increasing pressure, but the ampli-
tude of the decrease is not the same for both distributions. Indeed,
the isotropic crack density has a sharper decrease compared to the
anisotropic one which becomes almost constant after applying 50
MPa confining pressure. The inserted graphs in Fig. 9 represent the
evolution of the crack density ratio ρv/ρ iso as a function of confining
pressure. The small discrepancy at high pressure in crack density
for the isotropic distributions especially in samples at 1394 m and
1365 m has a significant impact on the crack density ratio and the
shape of the curves are slightly different. Nevertheless the impor-
tant result is that in both cases the crack density ratio increases
with pressure, providing quantitative estimates on the contrasting
behaviours of vertical and randomly oriented sets of microcracks: as
the pressure is increasing, the influence of crack anisotropy becomes
relatively more important. Consequently we expect that the elastic
fabric becomes more and more planar. Nevertheless reminding that
the measurements have been done on dry samples, one should be
cautious in extrapolating the results to rocks under in situ conditions
where fluids are present in cracks and pores.

4.3 Evidence for higher order of anisotropy

The analysis in Section 4.2 was done assuming a transversely
isotropic symmetry for the elastic fabric. Actually this assumption
is not in complete agreement with our data set as three independent
clustered velocity axes are found. In fact, it is possible that additional
anisotropic features are present in the tested samples. The increase
in the value of Tj, at least up to 50 MPa of applied pressure, may
in fact be associated with the transition from one (or a combination
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of) anisotropy source(s) to another. In Section 3.3, we pointed out
the tendency for Tj to also decrease slightly for the highest pressure
steps, and suggested for the sample at 850 m and 50 MPa that this
behaviour might reflect a displacement of the maximum velocity
sector in Figs 4(a) and (b). To obtain such a substitution, it is nec-
essary that (1) several sources of anisotropy are present and that
(2) these sources exhibit different pressure sensitivities. Louis et al.
(2008) interpreted the orientation of the eigenvectors as resulting
from a combination of vertical microcracks anisotropy and bedding
anisotropy. The maximum velocity would be found at the geometric
intersection between these two features (i.e. within both the plane of
microcracks and the bedding plane). The concept of the maximum
velocity direction lying parallel to the intersection direction of two
fabric elements has also been described by Healy et al. (2009) and

Lloyd et al. (2009) with combinations of cracks and ductile fabric
elements. We saw in the present work that the velocity anisotropy
deviates from this pattern as pressure rises. Indeed, although the
minimum velocity tends to remain in the same location, the max-
imum velocity travels within the plane transverse to the minimum
direction and is not systematically found at the intersection between
the microcracks and the bedding plane (Fig. 5). In an early com-
parison between elastic and magnetic anisotropies in rock samples
from the Bohemian Massif in Czech Republic, Hrouda et al. (1993)
inferred the presence in a set of undeformed samples of bed paral-
lel cracks potentially formed during erosion and uplift. Alternately,
such microcracks may also simply form as collateral to the coring
process. We suggest that the anisotropy associated with the bed-
ding in our sandstone samples be due to intergranular microcracks

Figure 8. Crack densities estimated using the Sayers & Kachanov (1995) scheme as a function of applied confining pressure. Inserted is a plot of the crack
density ratio between the isotropic and the anisotropic crack distributions. (a) Predictions of the numerical scheme proposed by Fortin et al. (2011) (b)
Predictions derived from the analytical solution of Wong & Zhu (2007).

Figure 9. Conceptual model showing two different contributions to the rock anisotropy associated with cracks either vertical or parallel to the bedding plane.
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that can close more readily than the partially filled vertical ones.
Such bed parallel microcracks possibly related to cleavage planes in
phyllosilicates would be difficult to identify in the microstructures
as opposed to intragranular ones. This scheme, which refines the
one proposed by Louis et al. (2008) by adding a pressure sensitive
component to the velocity anisotropy, is illustrated in Fig. 9. In the
absence of confining stress, both sources of anisotropy (bed parallel
and vertical microcracks) cause the maximum P-wave velocity to
be observed along the intersection between the two planes. As the
pressure rises, the bedding parallel cracks readily close, causing the
maximum velocity direction to be released from the intersection
direction and scattered into the plane transverse to the minimum
velocity direction.
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Pros, Z., Lokajı́ček, T., Přikryl, R. & Klı́ma, K. 2003. Direct measurement
of 3D elastic anisotropy on rocks from the Ivrea zone (Southern Alps,
NW Italy), Tectonophysics, 370(1–4), 31–47.

Rasolofosaon, N.P.J., Rabbel, W., Siegesmund, S. & Vollbrecht, A., 2000.
Characterization of crack distribution: fabric analysis versus ultrasonic
inversion, Geophys. J. Int., 141, 413–424.

Rasolofosaon, N.P.J. & Zinszner, B.E., 2002. Comparison between perme-
ability anisotropy and elasticity anisotropy of reservoir rocks, Geophysics,
67, 230–240.

Sayers, C.M. & Kachanov, M., 1995. Microcrack-induced elastic wave
anisotropy of brittle rocks, J. geophys. Res., 100, 4149–4156.

Schoenberg, M., 1980. Elastic wave behaviour across linear slip interfaces,
J. acoust. Soc. Am., 68(5), 1516–1521.

Sevostianov, I. & Kachanov, M., 2002. On elastic compliances of irregularly
shaped cracks, Int. J. Fract., 114, 245–257.

Sevostianov, I. & Kachanov, M., 2008. On approximate symmetries of
the elastic properties and elliptic orthotropy, Int. J. Eng. Sci., 46, 211–
223.

Shin, T.C. & Teng, T.L., 2001. An overview of the 1999 Chi-Chi, Taiwan,
earthquake, Bull. seism. Soc. Am., 91, 895–913.

Song, S.R., Wang, C.Y., Hung, J.H. & Ma, K.F., 2007. Preface to the special
issue on Taiwan Chelungpu-fault Drilling Project (TCDP): site character-
istics and on-site measurements. Terr. Atmos. Oceanic Sci., 18(2), I–V.

Tarling, D.H. & Hrouda, F., 1993. The Magnetic Anisotropy of Rocks. Chap-
man and Hall, London, 217 pp.

Thomsen, L., 1986. Weak elastic anisotropy, Geophysics, 51(10),
1954–1966.

C© 2011 The Authors, GJI, 188, 239–252

Geophysical Journal International C© 2011 RAS



252 L. Louis et al.

Tsvankin, I., 1997. Anisotropic parameters and P-wave velocity for or-
thorhombic media, Geophysics, 62(4), 1292–1309.
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