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Autonomous extraction of millimeter-scale
deformation in InSAR time series using deep
learning
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Systematically characterizing slip behaviours on active faults is key to unraveling the physics

of tectonic faulting and the interplay between slow and fast earthquakes. Interferometric

Synthetic Aperture Radar (InSAR), by enabling measurement of ground deformation at a

global scale every few days, may hold the key to those interactions. However, atmospheric

propagation delays often exceed ground deformation of interest despite state-of-the art

processing, and thus InSAR analysis requires expert interpretation and a priori knowledge of

fault systems, precluding global investigations of deformation dynamics. Here, we show that

a deep auto-encoder architecture tailored to untangle ground deformation from noise in

InSAR time series autonomously extracts deformation signals, without prior knowledge of a

fault’s location or slip behaviour. Applied to InSAR data over the North Anatolian Fault, our

method reaches 2 mm detection, revealing a slow earthquake twice as extensive as pre-

viously recognized. We further explore the generalization of our approach to inflation/

deflation-induced deformation, applying the same methodology to the geothermal field of

Coso, California.
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Faults slip in a variety of modes, from dynamic earthquakes
to transient slow-slip events and aseismic slip1,2. The clas-
sical picture of faults being either locked and prone to

dynamic and damaging earthquakes or unlocked and quietly
slipping to accommodate tectonic stress is evolving. Growing
evidence indicates complex fault behaviors and interactions
among and between modes of slip3. Evidence includes fault seg-
ments hosting both slow and dynamic earthquakes, as well as
slow earthquakes preceding and possibly triggering the nucleation
phase of dynamic earthquakes4–6. Answering a number of fun-
damental questions, such as what controls the slip mode on a
fault, whether there exists a continuous spectrum of slip modes
on faults, and what determines the possible evolution of a slow
earthquake into a dynamic seismic rupture, requires exhaustive
characterization of all slip phenomena. Interferometric Synthetic
Aperture Radar (InSAR) holds the promise of continuous geo-
detic monitoring of fault systems at a global scale, which may well
hold the key to address these questions. However, although the
data exists, current algorithms are not suited for global mon-
itoring because they require time-consuming manual interven-
tion, and the final product requires exhaustive expert
interpretation.

InSAR is routinely used to measure ground deformation due to
hydrologic, volcanic, and tectonic processes7–9. The apparent
range change in the satellite Line Of Sight (LOS) between two
SAR acquisitions is, after corrections from orbital configurations
and topography, the combination of atmospheric propagation
delay, changes in soil moisture and vegetation, and actual ground
deformation. Rapid, large-amplitude deformation signals such as
coseismic displacement fields often exceed the amplitude of
sources of noise10. Similarly, slow but steady accumulation of
deformation over long periods of time may be quantified using
InSAR either through stacking11 or time-series analysis12,13.
However, detecting low-amplitude deformation related to tran-
sient sources such as slow-slip events, episodes of volcanic
activity, or hydrologic-related motion remains challenging and
requires significant human intervention and interpretation8,14,15.
Measuring Earth surface deformation is fundamental to char-
acterizing diverse tectonic processes, as well as surface and
underground changes induced by human activities.

The most pressing issue in InSAR processing for small, milli-
meter-scale, deformation monitoring remains the separation
between atmospheric propagation delays and ground deforma-
tion. Spatial and temporal variations in atmospheric pressure,
temperature, and relative humidity modify the refraction index of
the air, resulting in spatial and temporal delay variations in the
two-way travel time of the radar carrier between a SAR imaging
satellite and the ground16,17. Such delays directly affect the phase
of an interferogram, which combines two SAR acquisitions.
Atmospheric propagation delays in a single interferogram can be
equivalent to tens of centimeters in apparent range change16.
Current correction methods based either on empirical
estimations18,19 or on independent data20–23 reduce the con-
tribution of the stratified atmosphere—the long-wavelength
atmospheric perturbation that, to a first order, correlates with
topography. Nonetheless, remaining delays, corresponding to the
turbulent portion of the troposphere may represent centimeters
of apparent range change. Propagation delays in the atmosphere
decorrelate after periods of 6–24 h, as shown by the temporal
structure–function of Global Navigation Satellite System (GNSS)
zenith delays24. Therefore, remaining tropospheric delays, which
are coherent in space, can be considered random in the time
given the time span between SAR acquisitions (e.g., 6 days for
Sentinel 1, 46 days for ALOS-2). Moreover, it can be shown that,
because of potential temporal aliasing17 and loss of spatial
coherence of the radar phase echo, spatio-temporal filtering can

lead to biased results. Therefore, deciphering a consistent, days-
to month-long transient signal in the time series of InSAR data
remains a critical challenge, especially when automation is
envisioned.

Convolutional neural networks are central to the most recent
dramatic advances in computer vision and natural language
processing. Autoencoders have been developed to create sparse
representations of data—the model copies its input to its output
through a bottleneck that forces a reduction of dimension
equivalent to a compressed knowledge representation of the
original input, enabling noise removal. Of note are recent
developments applied to classify InSAR data in order to detect
ground uplift and subsidence, and specifically to identify volcanic
unrest25–28. Although promising, these developments do not
make use of the different temporal signatures of signals of interest
to reconstruct denoised deformation patterns.

Here, we describe a deep learning-based method to auto-
matically detect and extract transient ground deformation signals
from noisy InSAR time series. Our approach, based on a purely
convolutional autoencoder, is specifically designed for removing
noise in InSAR time series. In the following, we consider the
evolution of the interferometric phase with time with respect to a
reference both in space and time. We consider classical Small
Baseline (SBAS)-like approaches for the reconstruction of the
time series29,30. The time series we analyze stem from the
inversion of a sequence of SAR interferograms previously cor-
rected from orbital and topographic contributions31, with a first-
order atmospheric correction derived from global atmospheric
reanalysis products21,32. Our autoencoder takes as input a noisy
InSAR time series reconstructed from successive SAR acquisi-
tions, and outputs accumulated ground deformation taking place
during the time-series interval, with the atmospheric noise
removed.

In this work, we first introduce the notion of autoencoders
before describing the architecture of our neural network. We then
describe our training set and perform preliminary tests on syn-
thetic data. We finally highlight the efficiency of our algorithm on
two reconstructed time series of ground deformation, the first one
derived from COSMO-SkyMed acquisitions and the second one
derived from Sentinel 1A–B SAR acquisitions.

Results
Description and validation of the deep autoencoder
Autoencoder architecture. Our goal is to extract ground defor-
mation from noisy InSAR time series. For the purpose of training
our deep learning model, we assume that input time series are the
combination of three physical contributions: ground deformation,
the stratified component of the atmosphere, and the turbulent
component of the atmosphere. In most cases, the stratified
component can be corrected for using Global Atmospheric
Models (hereafter referred to as GAMs, often corresponding to
reanalysis products), e.g.32,33, or GNSS data, e.g.34, for instance.
However, such a correction is often incomplete and part of the
remaining, often turbulent, atmospheric delays may still correlate
with topography. Attempts have been made to estimate tropo-
spheric delays using multispectral radiometric data20; however,
the acquisition of such independent data must be coincident with
the SAR acquisition and over a terrain with minimal cloud cover
for optimal performance, conditions rarely met. In addition, it
can be shown that GAM-derived correction sometimes worsens
the situation as the local estimate of the state of atmospheric
variables may be incorrect32.

Our deep learning model must recognize transient deformation
in InSAR time series in the presence of remaining atmospheric
noise. To this end, it must distinguish the spatial and temporal
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statistical differences between deformation signals and atmo-
spheric patterns. As mentioned above, the structure of atmo-
spheric delays decorrelates for periods longer than 6 h24. Ground
deformation related to transient tectonic events takes place over
seconds to minutes for dynamic rupture and to weeks or months
or even years for slow-slip events14,15,35,36, and remains until
further deformation occurs. Therefore, the temporal signature of
deformation signals is very different from that of atmospheric
delays. We make use of this different temporal signature to learn
appropriate filters to remove atmospheric perturbations and
extract ground deformation in the InSAR time series.

Here, we build and train an autoencoding architecture to
directly output the deformation signal, formulating the problem
as a regression task. We rely on the following assumptions: (1)
atmospheric delays are random in time, considering two
successive SAR acquisitions, (2) ground deformation has a
temporal coherence considering the rate at which SAR images
are acquired, and (3) part of the atmospheric delay correlates with
topography. We, therefore, use as inputs a time series of
interferometric phase change and a map of ground elevation to
produce a time series of cumulative surface displacements.

In order to separate deformation from atmospheric delays, we
developed the deep learning architecture shown in Fig. 1. This
architecture consists of 11 purely convolutional layers. The first
six layers of the model are tasked with encoding signals that are
persistent in time, by progressively removing the time dimension
of the input. At the seventh layer, ground elevation (topography)
is added as a secondary input. The remaining layers decode the
ground deformation map. In short, we build a model tasked with
reconstructing ground deformation given input InSAR time series
and ground elevation from noisy input.

Initially developed for feature extraction by projecting high-
dimensional data sets onto a lower-dimension manifold by
forcing the reconstruction of the data through a bottleneck in
deep learning architectures37, autoencoders have also evolved into
powerful denoising38,39 and image enhancing techniques40,41. In
this work, we exploit this aspect of deep learning autoencoding
and tailor it to the problem of cleaning InSAR time series,
building a deep learning autoencoder to effectively automate the
design of filters in time and space to recover ground deformation.

Training on synthetic data. Because deep learning models require
large amounts of data and there exists no ground truth for InSAR
time series, we rely on synthetic data to train the deep auto-
encoder. The synthetic data are randomly generated cumulative
surface deformation time series mimicking nine successive maps
of range change. These cumulative deformation maps include
surface displacements in the LOS due either to a slipping fault
(either strike-slip or dip-slip) with random latitude and longitude
(position in a virtual box), depth, strike angle, dip angle, and
width (based on Okada’s model42) or to an inflating or deflating
point source (Mogi’s model43). Deformation onset occurs at a
random time as a pulse with a random duration within the time
series, excluding the first and last time steps, which are taken as
nondeforming references by the model (see Supplementary
Fig. S1). The model is therefore tasked with finding cumulative
deformation in the seven middle time steps of the time series
arising from a wide variety of transient processes. We then cor-
rupt each map of these ground deformation time series with
different noise signals. At each time step, we create both turbulent
and stratified synthetic atmospheric delays. Spatially correlated
Gaussian noise mimics delays from atmospheric turbulence of
various length scales44,45 (Fig. 1, top row) and a quadratic
function of pixels’ elevation mimics the atmospheric delays that
correlate with topography16,46 (also randomly generated47).
Lastly, we add random pixels, in patches and isolated, to mimic

incoherent pixels and unwrapping errors commonly encountered
in real data. Each of the steps of the time-series results from a
random realization of noise built following these assumptions.

We train two independent models with the synthetic time
series of deformation, one tasked with recovering point source
deformation and the other with recovering deformation on faults.
All other phase delays are identified as noise. Both models are
trained to map synthetic noisy time series to the synthetic
cumulative displacements. We trained our deep autoencoder with
2.5 × 107 randomly generated time series for which we provide as
input the apparent LOS deformation time series, corrupted by the
sum of synthetic noise described above. The training includes a
LOS with random orientation (30–45° incidence and any
azimuth), so that the model is directly trained for various SAR
satellite configurations and for any fault azimuth. The output is
the target ground deformation accumulated during the time
series. All 482,185 trainable parameters are adjusted during that
training phase with the Adam variation of stochastic gradient
descent48 (see Supplementary Fig. S2 for the training curves).

We note that our deep autoencoder only considers time series
of nine time steps, as a good compromise on the input duration,
such that the input time series are long enough for the model to
learn the temporal differences between signal and noise. When
applying our models to longer time series of n time steps, we
apply the algorithm using a sliding window with a width of nine
time steps and obtain n− 8 images of cumulative deformation. In
this way, our model acts as a moving integral of actual
deformation.

Performance on a synthetic data set. Once trained, we test the
deep autoencoder on synthetic realizations of time series that
have not been used to train the model. We randomly generate 105

time series of nine time frames using the same procedure as that
described for the training phase. For each of the 105 time series,
we evaluate the signal-to-noise ratio (hereafter referred to as
SNR) as the ratio of signal power to noise power. We then apply
the deep autoencoder to these time series in order to evaluate the
performance of the model. We evaluate the resulting, cleaned
time series using the structural similarity index49 (SSIM, see
“Methods”), a standard denoising evaluation metric, which makes
a nonlocal comparison between two images, and is bound
between −1 and 1.

We find that the deep autoencoder applied to synthetic data
accurately reconstructs deformation signals on faults, even in
circumstances very challenging to expert interpretation (SNRs
well below 1; Fig. 2). For SNRs above 20%, our algorithm provides
a very accurate reconstruction, as shown by the SSIM between
model output and deformation ground truth (0.7 < SSIM < 1.0).
For low SNRs (10% and below), no signal can be visually
observed, while the structural similarity is still correct and the
overall deformation signal is recovered down to SNRs of ~0.5%,
below which our model starts to fail. Supplementary Fig. S1
shows the pairwise distributions of different properties of the
synthetic data as well as the SNR and performance of our model.
For comparison, the performance on synthetic data of the same
architecture as in Fig. 1 but trained on single time steps is shown
in Supplementary Fig. S3, and the performance of a simple
temporal filter is shown for comparison in the Supplementary
Fig. S4. The model is trained on single patches, but interestingly
performs almost as well on synthetic time series with more
complex fault geometry (see Supplementary Fig. S5). We note
that for point sources of deformation, the limit of our model is
~20% SNR (Supplementary Figs. S9 and S10), but that such
signals are also much harder to distinguish from the noise for the
eye. Therefore, our architecture allows us to exceed the ability of
the expert eye to detect signals in noisy time series of
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deformation, provided their noise structure resembles the training
set.

In the following, we show the application of our autoencoder to
two case studies that have been independently analyzed by InSAR
experts.

Application to real data
Extracting deformation from a slow earthquake along the North
Anatolian Fault, Turkey. Our deep autoencoder is trained to
isolate and reconstruct cumulative ground deformation signals in
48 × 48 pixels series of nine time steps. However, a fundamental
property of purely convolutional deep learning models is that the
filters they learn do not depend on input size. As a result, we can
create an autoencoder with exactly the same architecture as
the model described in Fig. 1, but with an input size matching the
number of pixels in the InSAR time series of interest. Because the
parameters of the model do not depend on the input size, we can
copy every parameter (i.e., weights and biases of the filters) of the

model trained on synthetics to the new model, which can then be
applied to InSAR data of any size.

Here, we apply the model to a time series built from images
acquired by the COSMO-SkyMed constellation over the central
section of the North Anatolian fault in Turkey (Fig. 3). This
major plate boundary fault accommodates the motion of rotation
of the Anatolia plate with respect to Eurasia and has ruptured in
large, moment magnitude (Mw) 7 earthquakes multiple times
over the past century50. An 80-km-long section of the fault has
been slipping aseismically, at least since 1944, Mw 7.3, earthquake
located near the small town of Ismetpasa51. In situ measurements
based on creepmeters indicate that this fault experiences transient
aseismic slip episodes52–54.

Rousset et al. produced an ~1-year-long time series from
COSMO-SkyMed SAR acquisitions and detected a significant
slow-slip episode that lasted 1 month during 2013 with a
maximum of 2 cm of fault-parallel slip14. Average long-term
velocity maps covering the whole region derived from InSAR data
show aseismic slip over an 80-km-long section of the fault. This

Fig. 1 Autoencoding InSAR time series. Schematic of our deep learning model. Top row (left to right): a sequence of synthetic InSAR time series on which
the model is trained, where ground deformation signal is corrupted with atmospheric noise, including turbulence and layering of the atmosphere. Second to
fourth rows: the architecture of our model. Our model is purely convolutional with progressive pooling on the time dimension during the encoding. After
the time is removed, at the seventh layer, ground elevation is added as a secondary input. Fourth row: the last layers of the model are tasked with decoding
ground deformation accumulated during the input time series, here compared with actual deformation that takes place in the synthetic time series shown
above. A detailed description of this neural network can be found in the “Methods” section.
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average relative displacement was found to result from successive
transient events14,53, which were not apparent in data from older
constellations of SAR satellites due to the long time span between
acquisitions. In the InSAR time series processed by Rousset et al.,
large atmospheric delays are apparent, despite careful correction
of atmospheric delays using ECMWF reanalysis products14,21.
Therefore, knowledge of the fault location was key in the
interpretation of the surface displacement field. We revisit the
same time series in order to assess if our model is able to recover
the known surface slip in real-time series of data. We stress that
we do not provide the location of the fault to the model. With no
human intervention and no a priori knowledge of the local
tectonics and fault location, the model automatically isolates and
recovers clean deformation signals where expert analysis
previously found signals attributed to tectonic activity (Fig. 3).
Importantly, the recovered deformation is obtained after training
only on synthetic data and with no further fine-tuning on real
data. Our model finds up to 1.5 cm LOS relative displacement
across the fault, which we interpret as the signature of surface slip,
as previously found14.

Fault-perpendicular cross-sections illustrate that even in
regions where a slip would not have been convincingly identified
by an expert (Fig. 4), our model recovers 2 mm of slip, extending

the previous estimate of the along-strike length of this slip event.
Rousset et al. identified a 5-km-long slow-slip event while the
deep learning model determines that the portion that slipped was
8.5 km in length. Interestingly, the new 2mm slow slip we find is
on a segment adjacent to the previously identified 1 cm slow slip,
and the two segments are separated by a kink on the fault,
suggesting a potential interplay between fault geometry and
slip55,56. What we presume to be the remaining noise can be seen
to the north-west and to the south-east of the slow-slip event in
the output of the deep denoiser (see Supplementary Fig. S8 for
cross-sections). We suspect these errors may arise from errors in
the elevation model that propagated in the time series.

We finally note that our current model interprets wavelengths
longer than a kilometer as noise, although experts might interpret
those as the signature of slip at depth. This limitation however is
related to the size of pixels with respect to the size of the training
samples. The same network architecture trained on larger
synthetics would circumvent this limitation (at the cost of
increased computation and training time). An alternative
approach consists of rescaling input data (see Supplementary
Fig. S7) to ensure consistency of the model output in deformation
wavelength (which is the case here for the North Anatolian Fault
event).

Fig. 2 Performance on synthetic test data. Top: performance of the reconstruction of fault deformation by our deep autoencoder, on synthetic noisy time
series, as measured by structural similarity index (SSIM) between model output and deformation ground truth, as a function of signal-to-noise ratio (SNR,
see “Methods”). Shades of blue show the distribution of SSIM as a function of SNR (counts per bins for 105 test samples). The black and gray lines show
the median and 25th and 75th percentile of the SSIM in SNR bins, respectively. Bottom: examples of the data showing input time series, ground truth, and
its reconstruction, for different signal-to-noise ratios, shown with matching numbers in the plot above. Note that the model outperforms the eye,
recovering with reasonable fidelity deformation signals with SNRs down to a few percent.
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Fig. 3 Application to real data: the North Anatolian Fault 2013 slow earthquake. In order to identify ground deformation signals in the noisy COSMO-
SkyMed InSAR time series, we create a deep autoencoder that has an input size equal to the size of each frame of the time series, 200 × 650 pixels, and the
same parameters as the autoencoder trained on synthetic data, shown in Fig. 1. Inputs are the InSAR time series and the topography of the same area (not
shown). The autoencoder outputs ground deformation (bottom plot). The ground deformation is manifest as an offset across the fault. The deep
autoencoder finds a strong slip signal of about 1 cm (in LOS) on the fault, in agreement with previous expert analysis of the time series14, with no a priori
knowledge of the fault’s existence. a. Seismic setting of the region of the creeping section of the North Anatolian Fault. Thick red lines are the main faults of
the NAF system, separating the Eurasia plate from the Anatolia microplate. Thin red lines are other mapped structures. Colored lines indicate the extent of
historical ruptures. b Input raw time series from COSMO-SkyMed data (a subset of the data from Rousset et al., 2016). Color is the apparent range change
between the ground and the satellite. c Denoised cumulative deformation as output by the deep autoencoder. The color scale shows ground deformation in
the direction of the LOS. Dark lines are the surface trace of the NAF, shown here for reference. Thin dashed lines indicate the cross-sections shown in Fig. 4.
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Extracting ground deformation signal at the Coso geothermal
system, California. In a second example, we use our deep learning
architecture to detect surface deformation caused by under-
ground pressure changes. As above, our model is trained on
several million examples of synthetic noisy InSAR time series. In
this case, surface deformation is modeled by a point pressure
source using Mogi’s equation of elastic deformation57, corrupted
as before by synthetic atmospheric delays. Mogi pressure sources
are used extensively for the modeling of volcanic inflation and
deflation signals, e.g. refs. 58,59. Further, the combination of
multiple sources allows one to model complex subsidence/uplift
patterns.

After training exclusively on synthetic data, we apply our
model to real data from the Coso geothermal field (California,
USA), again without further training (details on the InSAR
processing are in the “Methods” section). Because InSAR time
series may be very noisy, even after correcting predicted
atmospheric effects32, analysis of inflation or subsidence of less
than a few centimeters per year in InSAR have relied to date on
deriving long-term cumulative deformation60, such that random
atmospheric delays cancel out. Detecting transient subsidence
and uplift signals in SBAS time series below a few centimeters
remains challenging, just as it does for faulting.

As with identifying deformation on faults, our model is able to
disentangle actual ground deformation from atmospheric noise at
short time scales, with a resolution of a few millimeters. In Fig. 5
we show the application of our deep denoising model to a time
series over Coso in 2016. Contrary to what could be inferred from
long-term cumulative deformation, we find that ground sub-
sidence at Coso is primarily due to transient episodes of
deformation. The cumulative deformation from these transients

we detect accounts for most of the cumulative deformation
observed in the data (see Supplementary Figs. S11–S14 for details
and for other examples of transient deformation). Interestingly,
we find a number of transient events that are constituted of well-
separated deflation sources, in agreement with geochemical
observations showing that the geothermal field is constituted of
isolated reservoirs61.

Discussion
As the properties of the atmosphere cannot be measured at the
same spatial and temporal resolution as SAR acquisitions, InSAR
time series still contain large-amplitude atmospheric delays, on
the order of centimeters, in spite of recent marked improvements
in atmospheric correction and processing strategies23,32. For this
reason, expert processing and analysis is required to interpret
InSAR data. Furthermore, since the onset of the Sentinel 1 mis-
sion, the amount of available InSAR data has grown at a pace that
is already challenging the ability of the community to process and
analyze it, and the upcoming NISAR mission will increase the
amount of available InSAR data several fold. Therefore, sig-
nificant effort has been put into developing strategies to build
time series with such vast data sets, e.g., refs. 13,30,62. Nonetheless
automatic, autonomous InSAR interpretation methods are poised
to become essential, if just to leverage the increasing spatial and
temporal resolution of the data.

We note that several avenues of improvement should enhance
the ability of our neural network to detect finer and finer defor-
mation signals in the future. First, we did not include sources of
noise representative of ionospheric perturbations. The total
electronic content of the ionosphere introduces a differential

Fig. 4 Application to real data: the North Anatolian Fault 2013 slow earthquake. LOS deformation along fault-perpendicular cross-sections. Locations of
the cross-sections are shown in Fig. 3. Blacks dots are the difference between the range change averaged between frames of the time series from 5th to
21st September 2013 (the last four frames) and the range change averaged between frames of the time series from 4th to 28th August 2013 (the first five
frames), taken along a fault-perpendicular line. The main slow-slip event detected by Rousset et al. occurred during this period. Red dots are the output of
the deep autoencoder highlighting the cleaned deformation pattern. The sharp offset in the input InSAR data observed exactly on the fault was interpreted
as a slow-slip event by Rousset et al., in spite of the very high noise level presumably caused by atmospheric delays. Such interpretation was only made
possible owing to the knowledge of the location of the fault and knowledge that this segment of the North Anatolian Fault slips aseismically. Our model
knows neither and automatically extracts actual ground deformation.
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delay in interferograms that can bias analysis further16. Although
this effect is more pronounced for L-band SAR satellites16,63,
long-wavelength ionosphere delays can be problematic for large
images acquired with C-band SAR systems such as Sentinel 164.
Although these delays can be corrected by using techniques such
as the range split-spectrum method64,65, the structure of the
remaining noise associated with imperfect corrections must still
be evaluated and could then be used in the training of our model.

Second, we considered atmospheric turbulence to be isotropic
and equivalent everywhere in the image (i.e., noise is second-
order stationary) while some anisotropy can be observed in the
phase delay of some interferograms. However, such anisotropy
depends on the scale of the image observed, which would involve
complex considerations in the construction of an adequate tro-
pospheric noise model to train our model. In general, any
improvement in the forward modeling of the nature of noise in
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InSAR should lead to a significant improvement in the detection
capability of the models. Finally, the receptive field of the auto-
encoder and the pixel size of the input InSAR data restrict the size
of the deformation signal that can be deciphered. For instance,
interseismic deformation related to loading of a fault by plate
motion extends over 10 s of kilometers, e.g., refs. 11,12,66. Addi-
tional developments may be necessary for the detection and
cleaning of long-wavelength deformation patterns.

The initial application of our method on InSAR time series
enables the direct observation of a slow earthquake, refining
previous estimates, autonomously and without prior knowledge.
In particular, we expect that the ability to systematically observe
fault and pressure source deformation at a global scale will further
the understanding of hydrologic, volcanic, and tectonic processes,
and may bring us closer to bridging the observational gap that
exists for transient surface deformation.

Methods
Autoencoder architecture. Here, we provide additional details regarding the
autoencoder architecture developed for ground deformation extraction from
InSAR time series (Fig. 1). This architecture consists of 11 purely convolutional
layers. The first six layers of the model are tasked with encoding signals that are
persistent in time, by progressively removing the time dimension of the input. At
the seventh layer, topography (a digital elevation model) is added as a secondary
input, before the remaining layers decode the ground deformation map. Because
our model is comprised of purely convolutional layers, it can be applied to arbi-
trarily sized inputs (in terms of the spatial dimension, not the time dimension
because of the pooling in time).

At each layer, the input is passed through 64 different filters to form as many
channels, which are simplified representations of the data. During the encoding, 3D
filters (two dimensions of space and one in time) of size 3 × 3 × 2 are applied to the
data, until time has been completely eliminated by max-pooling operations. During
decoding, 2D filters of size 3 × 3 are applied to the data (two dimensions of space)
and summed for the output layer to reconstruct the cumulative ground
deformation.

For each of the 64 filters within the encoder layers, each of the input filtered
channels are summed and passed through a biased leaky reLU activation function.
Each layer has a number of trainable parameters given by
nkernel × ninput × noutput+ noutput, with nkernel the convolutional kernel size (product
of its shape in all dimensions), ninput the number of input channels to the layer, and
noutput the number of output channels of the layer. This procedure gives
3 × 3 × 2 × 64 × 64+ 64 trainable parameters for each encoding layer, except for the
first one, which has 3 × 3 × 2 × 1 × 64+ 64 parameters, and 3 × 3 × 64 × 64+ 64
trainable parameters for each decoding layer, except for the layer where ground
elevation is added as an additional channel, that has 3 × 3 × 65 × 64+ 64 trainable
parameters, and except for the last decoding layer that has 3 × 3 × 64 × 1+ 1
trainable weights. This gives our deep autoencoder a total of 482,185 trainable
parameters, a modest amount when compared to natural image classification
networks such as AlexNet67, which has 62,378,344 trainable parameters. The last
layer of our model has a linear activation instead of a leaky reLU, such that positive
and negative deformations can be equally output for the final reconstruction. Final
reconstruction is a single image of the cumulative deformation that occurred
during the nine time steps used as input. Our model was implemented on GPUs
using the keras and tensorflow python libraries.

Evaluation metrics. To assess the performance of our model on synthetic test sets,
we use the SSIM, a common denoising performance metric in image processing.
This measure of resemblance between two images is nonlocal and compares
intensity, luminance, and contrast of the two images in moving windows, resulting
in a metric closer to perceived similarity. We use the formulation and parameters

from the original paper49:

MSSIMðX;YÞ ¼ 1
M

∑
M

j¼1
SSIMðxj; yjÞ ð1Þ

SSIMðx; yÞ ¼
ð2μxμy þ C1Þð2σxy þ C2Þ

ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þ
ð2Þ

μx ¼ ∑
N

i¼1
wixi ð3Þ

σx ¼ ∑
N

i¼1
wi xi � μx
� �2

� �1=2

ð4Þ

σxy ¼ ∑
N

i¼1
wi xi � μx
� �ðyi � μyÞ; ð5Þ

with C1= (0.01L)2, C2= (0.03L)2, L the range of the pixel values, xi the pixel values
of patch x of image X, and wi weights given by the unit Gaussian function with a
standard deviation of 1.5 pixels. The SSIM values we report here are the average
SSIM of aligned patches x and y of size 8 × 8 from the two compared images X and
Y.

We use a standard definition of SNR, as the ratio of signal power to noise
power:

SNRðXÞ ¼ PðXsignalÞ
PðXnoiseÞ

¼ RMS2ðXsignalÞ
RMS2ðXnoiseÞ

ð6Þ

RMSðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
9
1

N2 ∑
9

t¼1
∑
N

i;j¼1
x2ijt

s

ð7Þ

where Xsignal is a nine frames long time series of synthetic deformation (e.g.,
deformation on a fault patch), and Xnoise is a nine frames long time series of
synthetic noise, as described in the main text.

COSMO-SkyMed data processing over Turkey. We use the ISCE framework to
combine COSMO-SkyMed acquisitions into coregistred interferograms and then
filter and unwrap these interferograms14,68. After interferogram generation, we use
the ERA-Interim atmospheric reanalysis to perform a first-order correction of the
atmospheric phase delay21,32. Finally, we use the New Small Baseline Subset
(NSBAS) method implemented in the GIAnT toolbox69 to construct a time series
of phase change, e.g.12 (extended details about the processing and the data set can
be found in ref. 14).

Sentinel 1 InSAR time series over Coso. We process the Synthetic Aperture
Radar (SAR) images collected along ascending track 64 of Sentinel 1A–B from
October 2015 to July 2019. We build 244 unwrapped interferograms (Supple-
mentary Fig. S15) using the ISCE package68. We coregister SAR images with a
network-based enhanced spectral diversity approach70 and correct for atmospheric
perturbations using ERA-5 ECMWF global reanalysis of atmospheric data21. We
apply a phase-preserving filter and multilooking (i.e., averaging of adjacent pixels)
so that the final pixel size is about 70 m in range and azimuth71. Potential
unwrapping errors are corrected using CorPhu72. Interferograms are unwrapped
using a branch-cut method73 in areas for which coherence exceeds 0.5. We subtract
a best-fitting ramp (i.e., linear function in range and azimuth) to each inter-
ferogram to correct long-wavelength perturbations due to orbital errors or iono-
spheric content, in order to focus on local, kilometer-scale deformation. Finally, we
computed the optimal time series of displacement with the NSBAS approach as it is
implemented in GIAnT74. Any pixel for which one interferogram could not be
unwrapped is not included in the study. This restrains the spatial coverage of our
InSAR time series, but ensures maximum (and equivalent) redundancy to all pixels.

Data availability
All the InSAR data used here is freely available from the European Space Agency. The
COSMO-SkyMED archives and the Sentinel 1 data can be found at https://earth.esa.int.

Fig. 5 Application to real data: the Coso Geothermal Field in California. After training our deep autoencoder architecture exclusively on synthetic InSAR
time series of point sources of deformation corrupted with atmospheric noise, we apply it to the time series obtained from Sentinel 1A–B from 14 April 2016
to 16 November 2016, which spans the Coso Geothermal Field in California. Our model detects a transient episode of subsidence of 5–7 mm (in line of
sight), where the operational wells are located, with no a priori knowledge of the area. a Geographic setting with the coverage of the subset of the Sentinel 1
track used here. Red and blue dots indicate the geothermal wells, respectively, for injection and production. b Input raw time series of nine successive
images from Sentinel 1 data. Color is the apparent range change between the satellite and the ground along the LOS. c Denoised cumulative deformation as
output by our deep autoencoder. Color is ground deformation in the LOS. The thin dashed line indicates the location of the cross-section shown in
the Supplementary.
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Code availability
The synthetic data used to train the model are based on the open-source code CSI from
R. Jolivet and can be found at http://www.geologie.ens.fr/jolivet/csi/. The deep learning
model has been developed using the open-source Python package, Tensorflow.
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