gpstimeseries class¶
- class csi.gpstimeseries(name, utmzone=None, verbose=True, lon0=None, lat0=None, ellps='WGS84')¶
A class that handles a time series of gps data
- Args:
name : Name of the dataset.
- Kwargs:
utmzone : UTM zone (optional, default=None)
lon0 : Longitude of the center of the UTM zone
lat0 : Latitude of the center of the UTM zone
ellps : ellipsoid (optional, default=’WGS84’)
verbose : Speak to me (default=True)
- addPointInTime(time, east=0.0, north=0.0, up=0.0, std_east=0.0, std_north=0.0, std_up=0.0)¶
Augments the time series by one point.
- Args:
time: datetime object.a
- Kwargs:
east, north, up : Time series values. Default is 0
std_east, std_north, std_up: Uncertainty values. Default is 0
- Returns:
None
- fitFunction(function, m0, solver='L-BFGS-B', iteration=1000, tol=1e-08)¶
Fits a function to the timeseries
- Args:
function : Prediction function,
m0 : Initial model
- Kwargs:
solver : Solver type (see list of solver in scipy.optimize.minimize)
iteration : Number of iteration for the solver
tol : Tolerance
- Returns:
None. Parameters are stored in attribute {m} of each time series object
- fitTidalConstituents(steps=None, linear=False, tZero=datetime.datetime(2000, 1, 1, 0, 0), chunks=None, cossin=False, constituents='all')¶
Fits tidal constituents on the time series.
- Args:
steps : list of datetime instances to add step functions in the estimation process.
linear : estimate a linear trend.
tZero : origin time (datetime instance).
chunks : List [ [start1, end1], [start2, end2]] where the fit is performed.
cossin : Add an extra cosine+sine term (weird…)
constituents: list of constituents to fit (default is ‘all’)
- Returns:
None
- getOffset(date1, date2, nodate=nan, data='data')¶
Get the offset between date1 and date2. If the 2 dates are not available, returns NaN.
- Args:
date1 : datetime object
date2 : datetime object
- Kwargs:
data : can be ‘data’ or ‘std’
nodate : If there is no date, return this value
- Returns:
tuple of floats
- initializeTimeSeries(time=None, start=None, end=None, interval=1, los=False)¶
Initializes the time series by creating whatever is necessary.
- Kwargs:
time Time vector
starttime: Begining of the time series.
endtime: End of the time series.
interval: In days.
los: True/False
- plot(figure=1, styles=['.r'], show=True, data='data')¶
Plots the time series.
- Kwargs:
figure : Figure id number (default=1)
styles : List of styles (default=[‘.r’])
show : Show to me (default=True)
data : What do you show (data, synth)
- Returns:
None
- project2InSAR(los)¶
Projects the time series of east, north and up displacements into the line-of-sight given as argument
- Args:
los : list of three component. L2-norm of los must be equal to 1
- Returns:
None. Results are stored in attribute {losvector}
- read_from_JPL(filename)¶
Reads the time series from a file which has been sent from JPL. Format is a bit awkward and you should not see that a lot. Look inside the code to find out…
- read_from_caltech(filename)¶
Reads the data from a time series file from CalTech (Avouac’s group). Time is in decimal year…
- Args:
filename : Input file
- Returns:
None
- read_from_file(filename, verbose=False)¶
Reads the time series from a file which has been written by write2file
- Args:
filename : name of the file
- Kwargs:
verbose : talk to me
- Returns:
None
- read_from_renoxyz(filename, verbose=False)¶
Reads the time series from a file which has been downloaded on http://geodesy.unr.edu/NGLStationPages/gpsnetmap/GPSNetMap.html
This was true on 2015.
- Args:
filename : name of file
- Kwargs:
verbose : talk to me
- Returns:
None
- read_from_sql(filename, tables={'e': 'east', 'n': 'north', 'u': 'up'}, sigma={'e': 'sigma_east', 'n': 'sigma_north', 'u': 'sigma_up'}, factor=1.0)¶
Reads the East, North and Up components of the station in a sql file. This follows the organization of M. Simons’ group at Caltech. The sql file has tables called as indicated in the dictionary tables and sigma.
This method requires pandas and sqlalchemy
- Args:
filename : Name of the sql file
- Kwargs:
tables : Dictionary of the names of the table for the east, north and up displacement time series
sigma : Dictionary of the names of the tables for the east, north and up uncertainties time series
factor : scaling factor
- Returns:
None
- reference2timeseries(timeseries, verbose=True)¶
Removes to another gps timeseries the difference between self and timeseries
- Args:
timeseries : Another gpstimeseries
- Kwargs:
verbose : Talk to me
- Returns:
None
- removeNaNs()¶
Remove NaNs in the time series
- Returns:
None
- removePointsInTime(u)¶
Remove points from the time series.
- Args:
u : List or array of indexes to remove
- Returns:
None
- trimTime(start, end=datetime.datetime(2100, 1, 1, 0, 0))¶
Keeps the epochs between start and end
- Args:
start: starting date (datetime instance)
- Kwargs:
end: ending date (datetime instance)
- Returns:
None
- write2file(outfile, steplike=False)¶
Writes the time series to a file.
- Args:
outfile : output file.
- Kwargs:
steplike : doubles the output each time so that the plot looks like steps.
- Returns:
None