transformation class¶
- class csi.transformation(name, utmzone=None, ellps='WGS84', lon0=None, lat0=None, verbose=True)¶
- assembleCd(datas, add_prediction=None, verbose=False)¶
Assembles the data covariance matrices that have been built for each data structure.
- Args:
datas : List of data instances or one data instance
- Kwargs:
- add_prediction: Precentage of displacement to add to the Cd
diagonal to simulate a Cp (dirty version of a prediction error covariance, see Duputel et al 2013, GJI).
verbose : Talk to me (overwrites self.verbose)
- Returns:
None
- assembleGFs(datas, verbose=True)¶
Assemble the Green’s functions corresponding to the data in datas. Assembled Greens’ functions are stored in self.Gassembled
Special case: If ‘strain’ is in self.transformations, this parameter will be placed as first and will be common to all data sets (i.e. there is only one strain tensor for a region, although there can be multiple translation, rotations, etc for individual networks)
- Args:
datas : list of data objects
- Returns:
None
- assembled(datas, verbose=True)¶
Assembles a data vector for inversion using the list datas Assembled vector is stored in self.dassembled
- Args:
datas : list of data objects
- Returns:
None
- buildCm(sigma)¶
Builds a model covariance matrix from std deviation values. The matrix is diagonal with sigma**2 values. Requires an assembled Green’s function matrix.
- Args:
sigma : float, list or array
- buildGFs(datas, transformations, verbose=True, computeNormFact=True)¶
Builds the design matrix for the datasets given.
The GFs are stored in a dictionary. Each entry of the dictionary is named after the corresponding dataset. Each of these entry is a dictionary that contains the different cases of transformations.
- Args:
datas : List of datasets (gps, insar, optical, …)
transformations : List of transformation types
- Kwargs:
verbose : Talk to me
computeNormFact : Compute the Normalization factors or not
- Returns:
None
Transformation types can be:
- For InSAR, Optical, GPS:
1 -> estimate a constant offset 3 -> estimate z = ax + by + c 4 -> estimate z = axy + bx + cy + d ‘strain’ -> Estimates a strain tensor
- For GPS only:
- ‘full’ -> Estimates a rotation,
translation and scaling (Helmert transform).
‘translation’ -> Estimates a translation ‘rotation’ -> Estimates a rotation
- computeNormFactors(datas)¶
Sets a common reference for the computation of the transformations
- Args:
datas : list of data
- Returns:
None
- computeTransformNormFactor(data)¶
Computes quantities needed to build the transformation object for a dataset
- Args:
data : instance of a data class
- distributem()¶
Uses self.mpost to distribute the values to self.m following the organization of self.Gassembled.
- Args:
None
- Returns:
None
- removePredictions(datas, verbose=True)¶
Given a list of data, predicts the surface displacements from what is stored in the self.m dictionary and corrects the data
- Args:
datas : list of data instances
- Kwargs:
verbose : Talk to me