triangularDisp tools

csi.triangularDisp.LinePlaneIntersect(sx, sy, sz, p1, p2, p3)

Calculate the intersection of a line and a plane using a parametric representation of the plane. This is hardcoded for a vertical line.

Args:
  • sx : x coordinates of ground points

  • sy : y coordinates of ground points

  • sz : z coordinates of ground points

  • p1 : xyz tuple or list of first triangle vertex

  • p2 : xyz tuple or list of second triangle vertex

  • p3 : xyz tuple or list of third triangle vertex

csi.triangularDisp.RotateXyVec(x, y, alpha)

Rotate components by an angle alpha.

csi.triangularDisp.adv(y1, y2, y3, a, beta, nu, B1, B2, B3)

These are the displacements in a uniform elastic half space due to slip on an angular dislocation (Comninou and Dunders, 1975). Some of the equations for the B2 and B3 cases have been corrected following Thomas 1993. The equations are coded in way such that they roughly correspond to each line in original text. Exceptions have been made where it made more sense because of grouping symbols.

csi.triangularDisp.displacement(sx, sy, sz, vertices, ss, ds, ts, nu=0.25)

Computes the displacement vector at an observation point due to slip on one triangular patch at depth.

Args:
  • sx : x coordinates of ground points

  • sy : y coordinates of ground points

  • sz : z coordinates of ground points

  • vertices : list of 3-component vertices of the triangle

  • ss : amount of strike-slip

  • ds : amount of dip-slip

  • ts : amount of tensile/opening-slip

  • nu : Poisson’s ratio

Returns:
  • ux : x component of displacement

  • uy : y component of displacement

  • uz : z component of displacement