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Complexity of seismicity due to highly rate-dependent friction

A. Cochard® and R. Madariaga
Département de Sismologie, Institut de Physique du Globe de Paris

Abstract. We study a simple antiplane fault of finite length embedded in a
homogeneous, isotropic, elastic solid in order to understand the origin of seismic
source heterogeneity in the presence of nonlinear rate-dependent friction. All the
mechanical properties of the medium and friction are assumed to be homogeneous.
Starting from a heterogeneous initial stress distribution, we apply a slowly increasing
uniform stress load far from the fault and we simulate the seismicity for more than
20,000 events, in some cases. The style of seismicity produced by this model is
determined by a control parameter which measures the degree of rate dependence of
friction. For classical friction models with rate-independent friction, no complexity
appears and seismicity is perfectly periodic. For weakly rate-dependent friction,
seismicity becomes slightly nonperiodic but most events are still characteristic
earthquakes. When friction is highly rate-dependent, seismicity is completely
irregular and ruptures of all sizes occur inside the fault. Highly rate-dependent
friction destabilizes the healing process, producing premature healing of slip and
partial stress drop. Premature healing causes rupture to take the form of narrow,
propagating slip episodes, the so-called Heaton’s [1990] pulses. Partial stress drop
produces large variations in the state of stress which, in turn, produce earthquakes
of different sizes. We make the conjecture that all models in which static stress

drop is only a fraction of the dynamic stress drop produce stress heterogeneity.

Introduction

A fundamental problem for the understanding of seis-
micity and the nature of large earthquakes is the origin
of stress and slip complexity on seismic faults. Care-
ful studies of seismicity have evidenced the complex-
ity of its space-time distribution. Similarly, numerous
detailed studies of slip distribution during individual
earthquakes show extremely large variations of slip on
the fault. A common feature of these studies is the
clear presence of irregularities and complexity of seismic
sources. Although the evidence for complexity is over-
whelming, the dynamics of faulting is still poorly under-
stood. Many authors seem to favor a model where com-
plexity is attributed to fault segmentation or to varia-
tions of material properties of the fault plane. The most
common model used to explain complexity is the ubiqui-
tous presence of heterogeneities called barriers or asper-
ities. Barriers are places of high strength that can stop
ruptures [Das and Aki, 1977]. Asperities, on the other
hand, are places of high stress release or, equivalently, of
relatively large slip [Kanamori and Stewart, 1978]. As-
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perities are sometimes also considered as places of high
strength that fail with a relatively large stress release
because stress has been accumulated on these places
that did not fail during previous earthquakes which oc-
curred in their vicinity. Indeed, Das and Kostrov [1988]
define barriers and asperities by the same constitutive
law. '

A common feature of these models is that barriers
and asperities are considered to be due to fixed geo-
metrical or material properties of the fault. However,
asperities viewed as regions of high stress release may be
dynamically created. This was demonstrated by Carl-
son and Langer [1989] for the very simple Burridge
and Knopoff [1967] model (hereinafter referred to as
the Burridge-Knopoff model) using a particular rate-
weakening friction law. They showed that in an other-
wise perfectly homogeneous model, stress may become
spontaneously heterogeneous due to nonlinear instabil-
ities in the velocity-weakening friction law they used.
Rice [1993] argued that this model was, in fact, “intrin-
sically discrete” because it lacked an intrinsic length
scale in the friction law. Using a quasi-static approx-
imation of the wave equation, he showed that if the
grid size was smaller than a characteristic length scale
(the nucleation size) related to the friction law he used,
small-event complexity disappeared. Only when “over-
sized” cells were used, roughly simulating independent
fault segment, did he observed small-event complex-
ity [see also Ben-Zion and Rice, 1993]. Recently, Rice
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and Ben-Zion [1996] have extended Rice’s [1993] quasi-
static study to the fully elastodynamic case; the results
remain unchanged: no small-event complexity develops.
On the other hand, more recent studies of the Burridge-
Knopoff model [Shaw, 1995] or a more sophisticated
version of it that incorporates long-range interactions
[Langer et al., 1996] have shown that heterogeneity per-
sists even when a friction law that has a characteristic
length is used. In order to reduce computer time, earth-
quakes in these studies were triggered by a more or less
instantaneous stress drop, during which no characteris-
tic length acts, allowing again for small-event complex-
ity. Indeed, often in these studies, no events with length
between the nucleation size and the analog of the seis-
mogenic depth are observed and changing the triggering
mechanism results in a change of the properties of the
small events (i.e., less than the seismogenic depth).

We use a simple antiplane fracture model with a fric-
tion law that can be highly rate-dependent but that is
regularized by a slip-weakening zone which introduces a
finite nucleation zone [Madariaga and Cochard, 1996).
We also use an artificial stress drop in order to trig-
ger the events and generally also observe a small-event
complexity associated with this triggering. When fric-
tion is not or is mildly rate-dependent, we observe a
periodic sequence of crack events; but, when friction
is highly rate-dependent, we observe, in addition to the
artificial small-event complexity, a broad range of short-
time rupture duration events (pulses) of length between
the nucleation zone and the system size.

We think that the opposition between intrinsic ver-
sus dynamically sustained strength heterogeneity comes
from a problem of interpretation of what rupture resis-
tance on an active fault really is. Like in fracture me-
chanics, rupture resistance is not a simple point func-
tion like stress but is the product of the square of
peak frictional stress times a certain length scale. Thus
fault segments that have very narrow stress concentra-
tions are likely to be very strong, while areas that have
longer (fatter) stress concentrations are much weaker
and prone to generate small and large events. In models
with intrinsic heterogeneity, rupture resistance is fixed
(quenched) on the fault. In our model, rupture resis-
tance changes dynamically because the length scale of
the stress concentrations evolves with time. The only
difference between intrinsically heterogeneous models
and ours is that in our case, rupture resistance changes
slowly with time due to elastodynamic interaction and
partial stress drop. It is clear that material heterogene-
ity is likely to play an important part in the Earth, es-
pecially to explain repetitive earthquakes such as those
studied by Vidale et al. [1994] or earthquakes at Park-
field. Also, material heterogeneity may also be respon-
sible for pulses, as shown by Das and Kostrov [1988].
We wanted to study effects of nonlinear dynamics only
and so used a homogeneous fault. If we had introduced
some quenched heterogeneity in rupture resistance, this
would have simply increased the instability of the lock-
ing mechanism and thus enhanced heterogeneity.
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Definition of the Model: Antiplane Fault

We study the elastodynamic field due to a flat an-
tiplane crack I' that extends along the z = 0 line in a
homogeneous, linearly elastic medium of rigidity p, den-
sity p, and shear wave velocity 3 = \/u/p (Figure 1).

The only displacement component in this case is
uy(z, z,t) that will be denoted simply u in the follow-
ing, and the only nonzero elements of the stress ten-
sor are 0y, and oy,. Antiplane displacement satisfies
a scalar wave equation B~2%i# = V2u, where the dots
indicate the time derivative. Boundary conditions on
the plane of the fault z = 0 are oy, (z,t) = AT(x,1)
on I', D(z,t) = 0 out of I', where the slip across the
fault is defined as D(z,t) = u(z,0%,t) — u(z,07,1).
The traction change AT(z,t) is related to the friction
law that applies between the two walls of the crack.
We are interested in studying the effect of a friction
such that the absolute traction Typs 1s a nonlinear func-
tion of slip D(z,t) and of the slip velocity discontinu-
ity V(z,t) = D(z,t). This boundary value problem
can be solved only by numerical methods. As discussed
by Virieuz and Madariaga [1982] and also noticed by
Andrews [1976, 1985], finite differences are too inac-
curate because of high-frequency dispersion, so that
we adopted the new boundary integral equation (BIE)
method proposed by Cochard and Madariaga [1994].

The BIE relating traction (stress) change AT to slip
velocity on the fault is

Aﬂaﬂ:—%vwﬁ

(€,7)drde
(1)

with 7,,, = max(0,t— ||z —£||/B3). This integral equation
has a removable singularity at £ — z, where it has to be
interpreted in the usual sense of Cauchy integrals. The
first term of the right-hand side is the instantaneous
traction change produced by a corresponding change in
slip velocity. The second term is the effect of long-range
interactions between the dislocation distribution at dif-
ferent places on the fault. The negative signs mean that
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Figure 1. Geometry of the antiplane shear crack. The
fault area is located on the z = 0 plane of an infinite,
homogeneous, isotropic medium. The system is invari-
ant with respect to translation along the y axis. No
opening of the crack is allowed. Slip u and discontinu-
ity of slip are allowed only along the y direction. The
fault can expand along the z axis.
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positive slip produces negative stress increase (positive
stress drop).

As noted above, the BIE (1) relates slip rate to trac-
tion changes on the fault. The absolute traction on the
fault is the sum of the stress change and the externally
imposed stress load or driving stress Text(z,1):

Tops(2,t) = AT(z,) + Texe (2, 1) - 2)

At t = 0, before slip occurs, the absolute traction
Tabs(,0) = Text(z,0), which is the initial stress. Af-
ter an earthquake occurs and all elastic wave activity
comes to an end, we reset the system and redefine the
initial stress from the final stress of the previous event.
External stress is assumed to increase at a low tectonic
rate ¢ defined by

Tuxe(2,1) = €t . (3)

Numerical Simulation of Earthquakes
Discretization of the Integral Equation

We divide the fault line z = 0 into segments of equal
length Az, and we discretize time by taking equal inter-

vals At. We introduce the following simple discretiza-
tion of the slip velocity field

Viz,t) = Z Vimd(z,t;25,tm) 4)
j)m
where d(z,t;2;,tm) is the boxcar function:

z; Sz <Tjp1
0 otherwise.

d(z, t;zj,tm) =
d(z,t;zj,tm) =

This makes the slip velocity field, and any other vari-
able such as traction, constant on each space-time grid
element. Cochard and Madariaga [1994] reduced the
BIE (1) to a discrete problem by collocation at the knots
z; + Az /2 and times t, + ¢, At, with ¢; € [0, 1]. Writing

AT; n = AT (zi + Az /2,1, + € Al) (6)

we get the linear system

where the analytic formula for the kernel K; . is com-
puted replacing the velocity distribution expression (4)
into the BIE (1). Explicit expressions are given by
Cochard and Madariaga [1994] (in which the first term
of equation (15) should be removed; it affects only Kg o
which does not appear in the summation (7)). By trial
and error we adopted €; = 1, which gives the best and
most stable numerical results. Then using the relation
between absolute and relative stress (2), we obtain the
following discrete BIE (DBIE)
7

Tabs,',,, = _é'BVi,n + Texti,n
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n—1
- El“ﬂ‘ Z 2 Vj,mKi—-j,n—m (8)

m=0 j

where Taps, ,, is the highly nonlinear friction across the
fault plane (for moving points).

Numerical Solution of the Boundary Integral
Equation

At time step n we distinguish slipping boundary el-
ements for which we want to calculate the slip rate
Vi n from boundary elements that are locked, for which
we only want to calculate the absolute traction Taps, ,,.
At step n we make an initial estimate of Ty, , us-
ing the DBIE (8) assuming that V; , = 0. If the ve-
locity of a given point was zero at the previous time
step (Vi,n—1 = 0) and if Typs, , is less than the rupture
threshold Tihres, at this point, then the point remains
locked and Tips, , becomes the value of the absolute
traction for the current time step. On the other hand,
if the velocity of a given point was not zero in the previ-
ous time step (V; n—1 # 0) or if Taps, , becomes greater
than the threshold, the point begins to move and the
absolute traction is then given by the friction law that
applies at this point and one has to solve the DBIE (8)
simultaneously for the velocity and for the friction, as
described in the next section.

Most of the computer time in each time step is con-
sumed by the evaluation of the discrete space-time con-
volution in (8). The space convolution is computed by
fast Fourier transform (FFT) methods, while the time
convolution is computed directly by explicit summation.
We get '

n—1
Si,n, = Z ZKi—j,n—mVj,m

m= g ©)

n—1
= Z Ki,n—m * Vi,m
m=0
where star states for space convolution. Defining the
Fourier transform by F and using the convolution the-
orem, we find

Sin = F1 {Zf[[{,-,n_m] x f[v,,m]} :
m (10)

A similar scheme has been used by Andrews [1985], and
this is also formally equivalent to the procedure devised
by Perrin et al. [1995], in which a spectral instead of a
cellular method is used. The results of the direct FFTs
can be saved at each time step and used for subsequent
time intervals.

At time step n the evaluation of S; ,, involves one FFT
on a one-dimensional (1-D) array of length 2 (where
I Az is the total size of the fault and the factor of 2 takes
into account the necessary zero padding), one multipli-
cation, one summation along the time dimension on a
2-D array of size n x 2 I, and one inverse FFT on an
array of the same size as for the direct FFT. Thus, for
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the evolution of a fault of I elements up to time step N,
the number of operations required for the computation
of Sip is

2IN [a log,(I) + ﬁ—_—l]

: (1)
where « is the proportionality constant or order 1 in-
volved in the FFT algorithm. Therefore the number
of operations is O(IN?). The computation of the time
convolution by FFT would not be efficient because we
need the result of the convolution at only one time step
(the current step n). However, time domain FFTs are
useful once all points of the fault have healed because
we can then evaluate the stress field up to any desired
time in a single step.

Slip- and State-Dependent Friction Law

Extensive work on rock friction has been discussed
recently by Dieterich [1992]. Experimental evidence
shows that friction laws at low slip rates should at
least include three elements: (1) Direct stress change
for abrupt changes in slip velocity followed by (2) an
evolving phase characterized by an intrinsic time con-
stant leading through exponential decay to (3) a ve-
locity weakening or strengthening at steady state (ss)
slip. When the friction is velocity weakening (a nec-
essary condition for instability), steady state frictional
stress is related to the logarithm of steady state slip
rate by Tis(Ves) = A1 — Ap log(Vas), A12 constants
greater than zero. This type of friction laws (includ-
ing those of Ruina [1983]) will be hereinafter referred
to as Dieterich-Ruina laws. Previous simulations using
rate and state friction laws [Okubo, 1989] have shown
that slip-weakening and rate- and state-dependent fric-
tions produce similar behavior near the rupture front.
As the contribution of the direct effect is likely to be
strongest precisely near the rupture front (i.e., for fast
rate changes), we have decided, after considering sev-
eral alternatives, for the sake of simplicity, to approxi-
mately mimic the direct effect by using a slip-weakening
model instead. Indeed, other simulations [Shibazaki and
Matsu’ura, 1992] using slip-weakening friction laws are
in qualitative agreement with experiments of stick-slip
shear failure as regards to the beginning of slip. The
characteristic distance introduced by this way in the
friction law makes it impossible for events less than a
certain small length to become unstable and grow into
fully fledged earthquakes. This minimum earthquake
size is also a well-known feature of rate- and state-
dependent frictions [e.g., Dieterich, 1992; Rice, 1993].
Finally, for reasons explained later, we chose a linear
decrease of friction with steady state velocity instead of
a logarithmic one. The laboratory-based friction laws
were obtained for low values of slip rate (less than the
seismic slip rate by 2 orders of magnitude), so that
they are strictly valid only during the nucleation pro-
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cess. It is not unlikely that friction laws during earth-
quakes be very different from those obtained in the lab-
oratory because of other phenomena that can become
predominant, e.g., frictional heating, opening modes,
etc. In fact, using a Dieterich-Ruina type friction law
at seismogenic confining pressures would lead to exten-
sive melting during the rupture process, which is seldom
observed on exhumed faults. Actually, any physical pro-
cess that introduces variations in normal stress during
slip may cause a velocity weakening behavior such as
the “acoustic fluidization” of Melosh [1979, 1996], due
to the propagation of acoustic waves along the interface,
or such as faulting with different elastic properties on
each side of the fault [Andrews and Ben-Zion, 1996).

In order to avoid the numerical problems that ap-
pear during the transition from steady slip to unstable,
fully dynamic faulting, we introduced a small artificial
instantaneous stress drop Ao in order to initiate fault
slip. If this parameter were not present, the initiation
would be induced only by the tectonic loading: simu-
lating this accelerating slip phase is beyond the scope
of the present paper. The same kind of small artifi-
cial stress drop has been used by Carlson et al. [1991]
in their Burridge-Knopoff model and by Langer et al.
[1996] for a 2-D antiplane fault that obeys the Klein-
Gordon equation instead of the wave equation. This
arbitrary stress drop makes the system intrinsically dis-
crete in the terminology of Rice [1993] because events
that affect only one grid element are possible, whereas
the minimum size of events should not be less than the
nucleation size. The effects of nonzero Ao will be dis-
cussed in the appendix.

Besides this instantaneous stress drop, friction as a
function of slip D and state 6, at a given point of the
fault, is given by the intersection of the following three
plane segments:

Tabs(Daa)
D D<U
= Tihres — A 1—— -
(e =) (1= 72) {75
D > U
= 0 =70 (12)
6> 6
¢ 0 <ty
= T 11— — -
”( %> %s%
with
D-U;
#, = 00——U0_U1
’Tsp - ,Tthres + Ao
U = -l Tihres — A .

This apparently complex definition becomes much
clearer when one looks, instead, at its graphical rep-
resentation in Figure 2. The slip D is measured from
the beginning of the current slip episode, and the state
(memory) variable § follows the evolution law
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Figure 2. The constitutive law studied in this paper.
The solid line shows a typical point trajectory. The fric-
tion is slip weakening (with characteristic distance Up)
at the beginning of the movement and state-dependent
at the end. State dependence is related throughout
equation (13) to rate dependence, which will be varied
in the simulations by varying the parameter Ty, keep-
ing the others parameters 6y and Uj fixed. At the very
beginning of the movement, slip is triggered by a small
stress drop characterized by Ag.

dé B
== Y) (13)
where D, is a characteristic distance. At steady state
(6 = 0), Bss is equal to the slip rate V; thus @ differs from
V only during rapid changes of slip rate. If Ty, = 0, fric-
tion is pure slip-weakening friction with slip-weakening
distance Up. During the process of rupture a particu-
lar point of the fault schematically follows the curve in
Figure 2. At the beginning of the movement the point
is located on the slip-weakening plane. As slip rate and
@ increase, friction reduces to zero and becomes inde-
pendent of D and @ as in the classical friction laws with
constant static and kinematic friction. Finally, at the
end of the movement, as slip rate decreases, the point
climbs up the rate-dependent plane. For moderately big
events the point trajectory can switch directly from the
slip-weakening plane to the rate-dependent plane. The
most important feature of the friction law is that it pro-
duces partial stress drop whenever Ty, is larger than 0.
The reason is that residual stress on the fault increases
as slip rate decreases. As we will show, this produces
early healing of the fault, reduced slip, and therefore
partial stress drop [Brune, 1970; Heaton, 1990].

The friction law, (12) and (13), possesses two char-
acteristic lengths Uy and D, that are required to avoid
numerical artifacts caused by fast changes in slip veloc-
ity at the beginning and at the healing of slip. In mas-
sive wave equations (like the Klein-Gordon equation of
Langer et al. [1996]) these rapid changes are limited by
the presence of the pseudomass term. Of course, this
regularization at small length scale is also provided by
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the classical rate and state friction laws. The advan-
tage of the present formulation is that we can study the
healing phases independently from the beginning of slip,
varying the parameters Ty, and 6. This was done also
(for a single seismic event) by Beeler and Tullis [1996],
who had a pure slip-weakening friction law at the be-
ginning of the movement, and once the displacement
became greater than the slip-weakening distance, the
friction became rate- and state-dependent. The partic-
ular choice of friction law (12) has the advantage that
the nonlinear integral equation (8) has an analytical so-
lution at every time step, so that it does not require
an iterative procedure as would be necessary if we used
the Dieterich-Ruina logarithmic friction laws. More im-
portantly, the linear velocity dependence allows a high
velocity dependence over a wide velocity range.

Modeling Long-Term Seismicity
in a Uniform Antiplane Fault

In order to study the seismicity on the fault, we start
the simulation from an initial random stress Ty on a
locked fault (V; , = 0 for all 7). The initial stress can be
either a random distribution smoothed in order that a
big event occurs soon (as for the simulations presented
in this paper) or the stress field obtained at the end of
a previous simulation. The advantage of using a stress
distribution taken from a previous run is that steady
state seismicity is quickly reached. Tectonic loading is
simulated by increasing Teyt uniformly across the fault
and linearly with time as shown by (3). When frictional
resistance Tinres is eventually overcome somewhere on
the fault, an event occurs. The event is triggered by
the small stress drop Ae, and it either stops quickly
before reaching the critical size or it reaches this criti-
cal size and it becomes a “seismic” event in our fault.
Once all the points of the fault have locked, the stress
field keeps changing for a while until all the available
energy is evacuated by the seismic waves. When the
stress variation is less than a prescribed accuracy, the
event 1s considered to be finished. Then Ty can be in-
creased instantaneously (in the program) by a uniform
amount such that the point of the fault of maximum
stress reaches the threshold Tipres. Then the next dy-
namic event begins.

The variables in the numerical simulations were ren-
dered nondimensional by the following choices: stresses
were scaled with respect to the threshold Tipyes, and we
scaled fault length by the unit step Az used to discretize
the fault. Scaling of all the other variables in the BIE
is determined by these two choices. For instance, slip
velocity scales like (2Tthres/1t) 8, slip by (2Ttnres/p) Az,
and time by Az/B. The factor of 2 is introduced to
eliminate the 1/2 factor in the dimensionless version of
the DBIE (8). There are two main timescales in our
problem. The fast one, related to fast “seismic” rup-
tures, is scaled by Az/B. The slow timescale is due
to the slowly increasing tectonic load defined by ¢ in
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(3). We observe from this equation that Tex: can be
used as a measure of the time involved in the seismic
cycle. Assuming complete stress drop during an event,
an estimate of the recurrence interval between event is
tcye = Tinres/€. The duration of an event, on the other
hand, is teyt ~ L/B3, where L = I Az is the total length
of the fault. Thus we estimate the dimensionless loading
rate parameter € by € ~ (fevt/tcyc)/! (here and in the
following we use the circumflex notation to designate
dimensionless variables). A value of 10~7 is a realistic
value of teyt/tcyc. Here é has been fixed to 2 x 10710
for all the simulations presented in this paper. In order
to relate the two timescales, one simply has to multiply
(or divide) by the value of €.

In order to study the statistical properties of the ob-
served seismicity, we have to introduce some additional
parameters. Here £ is the length of a broken patch dur-
ing an event. It is often different from the overall size
of the event because for many events the rupture zone
is discontinuous along the fault. Next, we define the
moment M of an event as

M D¢ (14)

with

1

D= _/ [Dﬁnal(x) _ Dinitial(x)] dz . (15)

£
D is the average slip, and we do not consider the con-
stant p factor in the definition of M. In the plots the
normalized values of £ and M will be further divided by
the number I of elements of the fault in order to com-

pare simulations with different I. Let us finally define
the average stress drop for one event as

ATw =7 / [T (2) - Tk (2)] de
(16)

where the summation extends over the broken patch.
The parameters that appear in the friction law were
adopted as follows, unless otherwise stated: Ao =
5 x 1072 Tinres, Uo = (20 Tihres/p)Az, and D, = 3 Az;
this corresponds to Aé& = 5 x 1072, Uy = 10, and
D. = 3. (Let us remark on the different units of Uy
and D.; the former is measured in units of fault slip,
while D, is measured in units of fault length.) Here
0o = (2 Ttnres/p)B (that is by = 1) is measured in units
of slip velocity. It corresponds to a typical value of
the slip rate, given by the radiation damping term (the
instantaneous one) in the BIE (1) assuming complete
stress drop. T5p, measured in units of peak stress Tinres,
will be varied between 0 and its highest acceptable value
Tihres— Ao, which means that Tsp will be varied between
0 and 1 — Aé.

In our simulations we have to chose a dimensionless
time step (h = BAt/Az) and used a value of 0.5 [see
Cochard and Madariaga, 1994]. We used a CM-5 super-
computer. To give an idea, the simulation of an event
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on a fault of I = 1025 elements up to N = 2048 time
steps requires about 45 s using 32 nodes.

Seismicity on a Fault With Increasing
Rate Dependence of Friction

As noted by Madariaga and Cochard [1996] from a
limited number of numerical simulations, the parame-
ter that controls the spontaneous development of het-
erogeneity on the fault in our friction law is T3,. The
0o does intervene also but we have not performed a de-
tailed study of its role so far. Let us just mention that
its value has to be of order 1 (in dimensionless units) in
order for the complexity to appear; this is intuitive since
its contribution to the rate dependence is symmetric to
that of Tyy: for 6y approaching zero, the friction law be-
comes effectively rate-independent, whatever the value
of Typ. In our numerical experiments we observe that
the main characteristics of seismicity change radically
as Typ increases from 0 (i.e., classical slip-weakening
friction) to Tihres- Seismic complexity increases as the
control parameter increases. The increasing complexity

Percentage
© O =« : ;
g
.ol
o
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Figure 3. Histograms of lengths of each earthquake
(normalized by the total length of the fault) for various

values of the control parameter Ty,. Each plot corre-
sponds to the seismicity on a single, homogeneous fault,
starting from a heterogeneous stress field and continu-
ously increasing the loading stress. The circumflex in-
dicates a dimensionless variable. The ordinate axis is
truncated at 1% to allow for legibility owing to the high

proportion of small and large events. (For Ty, = 0 and
0.1 all the events break the whole fault.)
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Figure 4. Seismicity on the fault as a function of
time without any rate dependence of the constitutive

law STSP = 0). Each dot (and on similar figures to
come) indicates that the cell at the corresponding fault
position broke; hence a continuous horizontal segment
represents an earthquake, the length of which is given
by the length of the line. We thus see that in this case,
seismicity 1is periodic and that all earthquakes break the
whole fault. Stars indicate the locus of the epicenters,
which are, after an initial transient stage, located alter-
natively on each end of the fault.

can be clearly appreciated in Figure 3, which shows the
histograms of the distribution of the sizes of the bro-
ken patches £ as a function of TSp ranging from 0.2 to
0.9 by step increments of 0.1. For each value of Ts,p
all the earthquakes for one seismic cycle are included.
Only values between 0 and 1% are shown to allow for
legibility because of the large proportion of very large
and very small events. The histograms for Tsp =0 and
0.1 are not shown because in those cases all the events
break the whole fault. We can see that as Tsp increases,
events of increasingly different lengths £ occur until fi-
nally, events of all sizes occur for Ty, = 0.9. Let us
describe in more detail the evolution of the seismicity
as Ty, increases.

When T3, = 0, after a transient state whose dura-
tion depend on the initial stress, seismicity becomes
perfectly periodic as shown in Figure 4. Each dot on
this plot indicates that the corresponding point of the
fault has slipped during one event. We thus see that for
Tsp = 0 the whole fault breaks during each earthquake.
The stars in Figure 4 show the locus of the epicenters.
Except for the first events of the sequence, all the other
events are identical “characteristic” earthquakes. Ve-
locity and stress field of one of these events are shown
in Figures 5 and 6, respectively. The event starts at one
end of the fault. The rupture propagates to the other
end, where a stopping phase is emitted that propagates
backward inside the fault and induces the arrest of the
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Figure 5. Slip velocity field for a typical event of the

sequence for T = 0. It is typical of a crack-like event:
each point on t lfle fault plane stops moving when it re-
ceives the stopping phase owing to the abrupt arrest of
the rupture front at the barrier.

movement of all the points of the fault. This rupture
is thus typical of a crack-like event. After all points
have locked, the stress field decreases because of slip
overshoot [Madariaga, 1976]. The points closest to the
edges of the fault are the most strongly tied (the fault is
stiffer near the edges), so that stress decreases less than
for points situated near the middle of the fault. This
explains why all the events begin near one end of the
fault. Depending on details of the initial stress, the epi-
centers can be alternatively located on the two edges of
the fault (as for the case shown) or always on the same
side.

o™
200 ¢ eu\\ e os

Figure 6. Stress field for the same event as in Fig-
ure 5 (Typ = 0). The stress is very homogeneous on the
fault plane at the end of the event (after time 2000 the
stress field is still evolving significantly but the plot is
truncated for clarity).
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Figure 7. Seismicity on the fault as a function of
time for a mild rate dependence of the constitutive law
(Tsp = 0.3). We now see a large number of small and
localized events preceding a large one. These events are
artifacts of the artificial initial stress drop Ao (see text
for details). The other “real” earthquakes still break
the whole fault but are now irregularly spaced in time.
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These results are not completely in agreement with
those of Nielsen et al. [1995], who used a friction law
resembling slip-weakening friction, in which the ratio of
the relaxation distance to the total length of the fault
is small enough (and yet much bigger than the corre-
sponding value of the present study). They observe an
aperiodic sequence of events. We wonder if this can be
due to the use of the finite difference method, whose de-
fects have been noted above. Nevertheless, they observe
the following two distinct categories of events: small
ones and big events that rupture the entire fault.

For Tsp = 0.1 the characteristics of seismicity are
qualitatively the same as in Figure 4. Because stress
drop is no longer complete, the final stress after each
event is higher and therefore closer to the threshold than
for Tsp = 0, resulting in earthquakes closer in time.

When T‘sp = 0.2 or 0.3, the seismicity (shown in Fig-
ure 7 for Tsp = 0.3) is qualitatively different. It is now
irregular in time, and the epicenters are located every-
where on the fault plane. We also see in Figure 3 a
group of events with length less than 0.03 and a small
moment. We discuss in the appendix the significance of
these small events. Most of the other events break the
whole fault, and in fact, those who do not break the
whole fault have been stopped anyway by the barrier
at one end of the fault. Let us note, however, that the
stress field is now heterogeneous enough to stop these
ruptures at the other end. The velocity and stress fields
for a typical big event of the cycle for Tsp =0.3 are
shown in Figures 8 and 9, respectively. This is still a
crack-like event, as all of these big events are. As a
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Slip Velocity

Figure 8. Slip velocity field for one event of the sim-
ulation for Tgp, = 0.3. It is typical of a crack-like event
(with two stopping phases) but is much more irregular
than for Tsp =0.

consequence of having the epicenters in the middle of
the fault, there are now two stopping phases (instead of
only one for Tsp = 0). The difference with the previous
case is more important for the stress field. Tsp is now
high enough to allow for the stress field to be higher
somewhere inside the fault than on the edges (the rea-
son is still the same; that is, the regions near the edges
are more coupled to the fixed edges, but now this acts
in the opposite way). This explains that the epicenters
are no longer located near the edges of the fault.
When Ty, = 0.4, the situation is qualitatively the
same as for 0.3 except that some events do not reach

Traction
05 00 05

0 10

Figure 9. Stress field for the same event as in Fig-
ure 8 (Ts, = 0.3). The stress is more heterogeneous on

the fault plane than for Ts,p = 0, but it is not enough
to allow for stopping events before the barriers.
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Figure 10. Another example of the slip velocity field

for Tsp = 0.9. It is in the form of a single self-healing
Heaton’s [1990] pulse. Both ends of the rupture are far
from the barriers.

any of the boundaries but are, instead, stopped very
close to one of the boundaries by the stress depletion
created there by the overshoot of a previous event hav-
ing reached this boundary. An example of such a stress
depletion can be seen in Figure 9 near position 1000.
For Tsp equal to or greater than 0.5, ruptures no
longer occur in the form of crack-like ruptures. The
rate dependence of the friction law becomes now strong
enough to induce an abrupt locking of the fault very
soon after the passage of the rupture front, i.e., before
the arriving of the stopping phases. This mechanism
was proposed by Heaton [1990] and was analyzed for
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Figure 11. Time sequence of position of epicenters for
Tsp = 0.9. Each dot indicates the locus of one earth-
quake of the sequence. The epicenters are rarely located
near the boundaries, and their positions are (weakly)
correlated from event to event (see text).
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Figure 12. Seismicity on the fault as a function of
time for a strong rate dependence of the constitutive
law (Tgp = 0.9). There are still a lot of events that
break the whole fault, but there are some that break
only part of it and which are not artifacts of the trig-
gering procedure. Furthermore, the time sequence is
also completely irregular.

antiplane faults by Cochard and Madariaga [1994]. It
produces the typical narrow rupture episodes known as
Heaton’s pulses as shown in Figure 10 for Ty, = 0.9.
Because of this premature healing, the rehealed points
receive waves from those still moving, just like the ar-
eas of the fault that have not ruptured yet. As a con-
sequence, stress increases in the parts of the fault that
have already healed and other pulses may be triggered
in their trail, producing complex rupture sequences (see
a two pulse rupture in Figure 13, for ’f’sp = 0.9). Often,
more than two pulses are observed. Often, also, bi-
lateral propagation is observed. Another consequence
of this stress increase due to premature healing is that
after the event the stress remains higher near the epi-
center, so that the next event is likely to be initiated
again in the same region as the present one. It is thus
observed, as in Figure 11 for TSP = 0.9, a slow migra-
tion of the epicenters. This peculiar behavior is very
likely to disappear if we would introduce material het-
erogeneities (in the threshold, for instance) because the
stress distribution near the end of an event depends, to
first order, on the value of Tsp at this point, whereas,
of course, the initiation is related to how far the final
stress at one point is from the threshold.

From Tsp = 0.5 to Tsp = 0.8 the complexity gradu-
ally increases without any clear qualitative change. For
Tsp = 0.5 or 0.6 all of the (big) earthquakes of the cycles
are stopped by at least one of the two edges of the fault
or by the stress heterogeneity induced by it (see above).
For TSP = 0.7 or 0.8, only one earthquake is stopped by
none of the boundaries but, instead, only by the initial
stress heterogeneities.
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This is, however, the general situation with Tsp =0.9,
as can be seen partly on the seismicity plot (Figure 12)
for most of the events whose length is less than around
0.5, and this still happens frequently for greater lengths
(of course, the greater the length, the more likely one
of the boundaries is to play a part). The velocity and
stress fields for one event of the cycle are shown in Fig-
ures 13 and 14, respectively. The slip velocity field of an
event stopped far from the boundaries is shown in Fig-
ure 10. We can see how heterogeneous the stress field
is at the end of the rupture. The persistence of stress
heterogeneity after each successive event is clearly ob-
served in Figure 15, which shows the final stress after
each event in the time range displayed.

For greater clarity we now show, in figure Figure 16,
slip velocity and stress as a function of time at point 400
of the fault during events shown on previous figures for
Tsp = 0 and Ty, = 0.9. We clearly see overshoot when
ﬁp = 0 and partial stress drop when ’f"sp =0.9.

Let us assume that g = 3 x 101° Pa (300 bars), 8 =
3 x 103 m/s, and Tipres = 30 MPa (300 bars). For
Tsp = 0.9 we have a maximum velocity (in Figure 16)
V = 1.2. Thus the “real” velocity is (2Ttnres/p)/B =
7.2 m/s. If we further assume that the whole fault is
200 km long, then the risetime f, at that particular
point is Az/B x . ~ 1 s (taking , = 193 — 178). The
dynamic stress drop at that point is about 90% of the
total possible stress drop, i.e., about 27 MPa (270 bars).
The static stress drop is only about 30% of the total
stress drop, thus about 10 MPa (100 bars); but the
average static stress drop is even less (see Figure 18) at
about 0.1 (i.e., 10% of the total stress drop), hence 1
MPa (10 bars).

Properties of Complex Seismicity

We now discuss some statistical properties of the
“complex” case of our model: Ty, = 0.9. In Figures 17,
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Figure 13. Slip velocity field for one event of the simu-

lation for Tsp = 0.9. It is in the form of two self-healing
Heaton’s [1990] pulses.
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Figure 14. Stress field for the same event as in Fig-

ure 13 (Tsp = 0.9). The stress is now heterogeneous
enough on the fault plane in this case to stop the rup-
ture at one end far from the geometrical barrier.

18, and 19 are plotted the seismic moment M, the aver-
age stress drop AT,, as a function of the broken patch
f, and the frequency-“magnitude” distribution, respec-
tively. Figure 19 also shows the distribution with a
smaller fault (I = 513), the friction parameters being
the same.

With the value of Ag used (0.05), the big events are
not distinct from the “artificial” small events. How-
ever, we can guess from Figure 17 that the transition is
at about £ = 0.02 (about 20 Az), which corresponds
to M = 0.005, and as log;((0.005) = —2.3, we see

Traction

A-_Q_oo“
o comeosT
Figure 15. Stress field after each event in the time
window shown for Ty, = 0.9. We see how variable in
space and time the stress field organizes itself. The

lines are equally spaced in time owing to the plotting
algorithm (to allow for better legibility).
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Figure 16. Slip velocity (triangles) and traction (cir-
cles) at point 400 of the fault (top) for Ty, = 0 (corre-
sponds to event shown in Figures 5 and 6) and (bottom)

for Ty, = 0.9 (corresponds to event shown in Figure 10).
We see overshoot in the first case and partial stress drop
in the second.

that it roughly corresponds also to the clear change in
the frequency-magnitude relation at log;o(M) = —2.
So, above this transition the seismic moment of these
events is proportional to £2, which is expected for our
2-D model.

The frequency-magnitude plot (Figure 19) does not
exhibit a Gutenberg-Richter behavior. Note, however,
that just before the “bump” of big events at the right
of Figure 19, there is a decrease of frequency with in-
creasing magnitude. This happens in the range —0.25 <
log;o(M) < 0.5, and the relation is roughly linear with a
negative slope. The upper limit corresponds to £=04
(about 400 Az), above which it is precisely observed
that the effect of the boundaries becomes predominant.
With the smaller fault the “depression” in the distribu-
tion is hardly visible at log,o(M) = 0.5. We can thus
anticipate that this power law behavior would continue
if we could increase the number of elements used in the
simulations (still expecting a larger proportion of big
events).

The static stress drop obeys the relation

100 o

0.01 0.1 1
Length

Figure 17. Moment length distribution for Tsp =0.9

and Ac = 5 x 1072, The straight line has a slope 2,

thus showing that the distribution has the property ex-

trapolated from nature to the present two-dimensional
model.

D

AT,, = const x rx (17

where A is a characteristic length of the rupture which

can only be £ in our model, D is the average slip dis-

placement, and the constant is of order 1. The seismic
moment is

M = uD? (18)

so having the moment M proportional to £2 is exactly

equivalent to have AT, constant. This is shown in Fig-

ure 18, where we plot stress drop as a function of patch
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Figure 18. Stress drop length distribution for Tsp =
0.9 and Ac = 5 x 1072. The stress drop is rather
constant, as expected. The scatter for the events is
due to the overshoot created by interaction with the
boundaries. This overshoot is also responsible for the
slightly smaller stress drop for events of length less than
about 0.3. See text for details. (The point with £ =1
and ATy, > 0.7 corresponds to the first event in the
simulation.)
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Figure 19. Frequency-magnitude distribution for
Tip = 0.9, Ac = 5 x 1072, and two different dis-
cretizations (thus modeling two different fault sizes)
using (top) 513 points and (bottom) 1025 points. The
transition between small and big events is at about

log,o(M) = —2. An interesting feature is the transi-
tion occurring at about log,y(M) = 0.5. It is scarcely
visible for the small fault, but it is seen much better
for the large one.

length £. The scatter for the big events is due to the
interaction with the edges of the fault: when a pulse
reaches one of the edges, the overshoot gives rise to a
very important stress drop (see Figure 14) compared to
the case when it is stopped more gradually by stress
heterogeneities. The even greater scatter at the right of
the distribution is because events of length equal to the
total length obviously reach the two boundaries. Nev-
ertheless, the overshoot is still larger when the rupture
is being stopped by a strong stress depletion like the
one near the barriers than when the depletion is milder,
which is the situation near the center of the fault. (A
strong barrier is equivalent to an infinitely deep stress
depletion.) This is the reason why stress drop is a little
lower for events with length less that about 0.3. The
probability for an event exceeding this limit to interact
with one of the boundaries increases, of course, with
length.

Considering again relation (18) for the moment, the
relation M o €2 is also equivalent to have D o £. This
would be the expected result with a crack-like rupture
propagation, and it is indeed the argument used to ex-
plain the scaling law M o £3 in the (3-D) real Earth
for earthquakes with £ < W, W being the width of the
seismogenic crust. When the propagation is crack-like,
the risetime is controlled by stopping phases coming
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from the edge of the rupture; so the larger the rupture,
the longer the risetime, and, consequently, the bigger
D. Tt is much more surprising that D o £ when the
propagation is in the form of short risetime self-healing -
pulses. The rupture propagation, in fact, “adjusts” it-
self to satisfy the scaling law. This can be done with
a varying risetime, a varying slip velocity, or even by
a rupture with two or more pulses in sequence (which
is, in fact, another way of varying the risetime). This
is an argument to suggest that we have reached a state
resembling that of self-organized criticality even if the
dynamic range reached is still too small to allow for
definitive conclusions. In the earth, for earthquakes
with £ > W, it is not clear yet if the scaling law satis-
fies M o« W£? as suggested by Scholz [1982, 1994] and
Pegler and Das [1996] or M « W?2/{ as suggested by Ro-
manowicz [1992]. The former relation implies D o £,
while the later implies D o W = const. So our results
are certainly consistent with the scaling M o« W£? and
also provide a natural physical explanation to this sur-
prising scaling as suggested by Heaton [1990].

Let us also remark that for the Burridge-Knopoff
model (1-D spring-block chain but to be compared in
this respect with our 2-D model) the scaling relation
tends to be M o £ for the large events (Carlson et al.
[1991, Figure 9], velocity-weakening friction used). This
is most probably due to the flat springs (strength k)
linking each block to the driving block, which introduce
another length scale in the problem (ﬂh;es /kp). For the
big events the displacement of the blocks become high
enough for these spring to prevent them from going far-
ther and so the displacement D tends to be indepen-
dent of the length of the event. The same happens in
a more sophisticated version of the Burridge-Knopoff
model including long-range interactions (Langer et al.
[1996], slip-weakening friction used). In fact, these flat
springs can be seen as an approximate modeling of
the coupling of the crust to the underlying substrate
[Lehner et al., 1981; Johnson, 1992], and their effects
are similar to what happens when the friction is not
or is not enough rate-dependent [Rice and Ben-Zion,
1996]: the propagation is in the form of an enlarging
crack, so that the stress concentration at the crack tip
scales with the ruptured area and makes the rupture
unstoppable until it reaches the edge of the fault; then
interaction with the boundaries (the analog to the cou-
pling due to the flat spring) may (or may not) allow
for the stress fluctuations to stop the rupture. Notice
that after reaching the boundaries the rupture is in the
form of a (very large) pulse [Day, 1982]. In our case
the friction has enough rate dependence to induce heal-
ing very soon and thus allows for narrow propagating
pulses. Thus the stress concentration scales only with
the (rather constant) “width” of the pulse and is thus
much lower than for an enlarging crack. This explains
why the propagation is more easily stopped by (poten-
tially weaker) stress heterogeneities.

For rate-independent friction (7y, = 0), static and
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dynamic stress drop are almost the same. Actually, for
antiplane faults, static stress drop overshoots the dy-
namic stress drop by about 24%. For higher values of
Tsp the fault locks prematurely, so that static stress
drop becomes less that the dynamic one and varies sig-
nificantly from point to point. This lateral variation de-
velops because slip arrest occurs locally, not in response
to stopping phases propagating inside the fault that in-
troduce a correlation between neighboring points. Be-
cause of this early, disorganized healing, the final slip
at neighboring points on the fault may be quite vari-
able. Since, roughly speaking, stress changes on the
fault are related to the gradient of slip, even small vari-
ations of slip can produce strong heterogeneities in the
static stress field after the event. Since stress can only
change inside a limited range (0 < T < Tinres), these
lateral variations put some fault elements closer to rup-
ture than others. As a consequence, the future seis-
micity of the fault is completely determined by these
heterogeneities in the residual stress field. Thus the
mechanism that generates complexity in our model is
clearly identified. We propose that the key to the cre-
ation of heterogeneity in our model is partial stress
drop. This is not at all a new concept in seismology:
Brune [1970] proposed from observational arguments
that most earthquakes presented partial stress drop and
suggested that dynamic stress drop (the maximum is
Tinres in our case) was much larger than static stress
drop, and this seems to have been confirmed by more
recent studies [Ramdn Ziriiga, 1993]. The main differ-
ence between our results and the suggestion by Brune
[1970] is that he considered a model where partial stress
drop was uniform along the fault, while in our models,
partial stress drop triggers strong lateral variations of
static stress drop.

Note that the fault is assumed to be clamped at the
ends by unbreakable barriers, and we cannot exclude
the possibility that this plays a significant part in the
behavior of the model. Even if this were the case, such
a configuration would be intended to model a deeply
buried fault as, e.g., in a subduction zone, whereas a
fault with one free boundary would more likely model
a fault such as the San Andreas fault as in the work
by Rice and Ben-Zion [1996]. (A complete modeling
should, of course, include a transition from an elastic
material to a plastic one to avoid infinitely increasing
stresses out of the fault (in the barriers).)

Summary

We have demonstrated that for certain highly rate-
dependent friction laws a simple antiplane fault embed-
ded in a homogeneous medium can spontaneously be-
come complex. This complexity has several interesting
features:

1. Premature locking of the fault occurs, so that slip
duration at any point of the fault is independent of the
total size of the fault. Premature healing is associated
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with partial stress drop, so that stress heterogeneity
may be simply due to the extreme sensitivity of fault
stress to very small changes in the slip distribution. Pre-
mature healing is also associated with the generation of
self-healing pulses proposed by Heaton [1990] and ex-
plained in our previous work [Cochard and Madariaga,
1994].

2. Stress heterogeneity and partial stress drop are
manifestations of the same underlying instability. Par-
tial stress drop occurs for all friction models that have a
strong rate-dependent friction. Partial stress drop dis-
organizes the fault for the simple reason that stress drop
of neighboring points will be highly variable.

3. Slip gradient (dislocation density) and stress het-
erogeneity appear when small-scale modes of slip on the
fault can express themselves. For full stress drop mod-
els like rate-independent friction laws, these small-scale
modes are suppressed by the requirement that stress
drop be fixed and uniform and determined only by the
constitutive parameters. In that case, only material
heterogeneity can produce complexity.

4. Seismic events, i.e., events whose length is greater
than the length of the “nucleation” zone follow an ¢2
scaling law, in which seismic moment scales like the
product of partial stress drop and the square of the
length of the zone that actually slipped during the
event. Thus the regularization length that is included in
our slip-weakening model has no influence on the prop-
erties of large seismic events. The rupture propagation .
of these events “adapts” its slip velocity or risetime to
satisfy the scaling law.

In conclusion, we have shown that a rate-dependent
friction can spontaneously produce heterogeneity for
Jarge values of a control parameter. At the other ex-
treme, the rate-independent friction suppresses these in-
stabilities for the very simple reason that partial stress
drop is eliminated from the outset. It is very likely
that both material heterogeneities and dynamically gen-
erated complexity play a role in determining the ob-
served complexity of faulting and seismic events. Given
the sparse knowledge that we currently have about the
friction laws at high slip rates in real faults, we firmly
believe that heterogeneity should be explored without
preconceived assumptions about which material and
dynamically generated heterogeneity dominates in the
Earth. We anticipate that complexity will develop much
more easily in three dimensions and (based on a few
preliminary studies) that in the presence of a small de-
gree of material heterogeneities, a smaller degree of rate
dependence would be necessary to generate complexity
that would not exist without this rate dependence.

Appendix: Does the Instantaneous
Initial Stress Drop Have Any Influence?
As already mentioned above, the small stress drop

(Ac) at the initiation of slip was introduced to reduce
computer time and storage. We show here that this
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procedure changes only the properties of the small-event
distribution but does not affect the properties of large
events.

If Ao were 0, then an element of the fault reaching
the friction threshold would not move dynamically im-
mediately; instead, it would slowly accelerate, driven
quasi-statically by the increase of Tex(z,t). As this
element slips, it drives its neighbors, in turn, to the
threshold, creating a larger and larger zone of creeping
elements. As the size of the slipping patch increases,
it will eventually reach the so-called nucleation length.
This is the minimum patch that can become unstable
and break dynamically. For antiplane faults and pure
slip weakening this patch length is approximately given
by (2uUo)/ (7 Tinres) [€-8-, Dieterich, 1992], around 13 in
our nondimensional units. Since the numerical solution
of the integral equation (8) is controlled by the faster
timescales present in it, the slow evolution of the fault
in the interseismic period would have to be computed
at the time step (constant in our simulation) that is ap-
propriate for the dynamic regime and is several orders
of magnitude less than those that are actually needed.
Equations of this type are called stiff and require spe-
cial techniques for their solution as shown by Tse and
Rice [1986] for a spring loaded massive slider.

When Ao # 0, dynamic events that involve a sin-
gle fault element become possible, since no length scale
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Figure A1l. Influence of the small initial stress drop

Ao for Ty, = 0.95. The seismic moment is shown as
a function of rupture length for three different values
of Aco. For clarity the plots have been shifted in the
vertical direction. The diamonds near the end of each
distribution have the same coordinates, and the straight
line joining those of each distribution has a slope 2.
Diminishing Ao leads to an increase of the proportion
and a change in the statistical properties of the small
(artificial) events but does not alter the statistics for
the big events.
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acts during the small initial stress drop. We thus see in
Figure 3 events of all sizes, ranging from one element to
the total size of the fault. What happens if we decrease
the magnitude of Ao? The moment/size distribution is
shown in Figure Al for Ty, = 0.95 with three values of
A (5x1072,5x 1073, and 5 x 10~*%). For clarity of the
figure the plots have been shifted in the vertical direc-
tion. The diamonds near the end of each distribution
have the same coordinates and indicate a slope 2 in this
bilogarithmic plot. For Ag = 5 x 1072 the whole dis-
tribution thus approximately obeys the same statistics.
For A6 = 5 x 103 we can discern a cluster of small
events of size £ less than 0.03. For Ag = 5 x 10™* the
cluster of small events, of size less than 0.05, is clearly
distinct from the larger events. The form of the distri-
bution for the small events changes, and its width slowly
increases with diminishing Ae. On the other hand, the
distribution of large events remains unaffected by the
variation of Ag. In our previous paper [Madariaga and
Cochard, 1996], Ao was different from zero only for
the first point initiating an event. The large-event dis-
tribution of Madariaga and Cochard showed the same
properties as here, an additional proof that the small
triggering stress drop does not affect the large-event
dynamics.

The main consequence of the introduction of the
small artificial stress drop A¢ at the beginning of rup-
ture is to produce a large number of small events. The
number of these small events increases as Ao decreases.
This zone, also present in the Burridge-Knopoff model
and whose length is sometimes referred to by “delocal-
ization” or “correlation” length [Carlson and Langer,
1989; Carlson et al., 1991], is the analog of the nucle-
ation zone. If we could solve the integral equation with
Ao = 0, all the small events preceding a big one would
collapse into a single, slowly creeping initiation phase.

Beside the fact that the friction law used is not pure
slip weakening, the difference between the theoretical
(quasi-static approximation) value for the nucleation
size and the one actually observed is due to Ag. Af-
ter each small event, the next one will, of course, be
started from a locked fault, i.e., with zero kinetic en-
ergy, and the process of building the “nucleation zone”
has to be started again from the beginning. The kinetic
energy from the previous small events is lost, so more
potential energy has to be stored; the nucleation zone
takes longer to be built and is larger. If, on the con-
trary, Ao is big enough and/or the stress field at the
time of initiation of an event is homogeneous enough,
a big event can be triggered directly, i.e., without any
small event before it. This is what has happened for
Tsp = 0 and 0.1 and A = 0.05 (see section on seismic-
ity with increasing rate dependence). This point has
another independent, interesting consequence: that the
nucleation zone takes longer to be built means that the
ambient stress field will be higher when the big event is
eventually triggered. So this big event will be able to
propagate further (everything else being equal), and so
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complexity will not be favored compared with the case
Ao = 0.

It has been proposed by Perrin et al. [1995] to mod-
ify the BIE (1) in order to separate the quasi-static
term from the dynamic one so that it is possible to in-
corporate the dynamic solution (highly computer time
and memory consuming) only when its contribution be-
comes nonnegligible. This has been implemented and
used by Rice and Ben-Zion [1996], so that it is now
possible to render Ao exactly zero.

The foregoing discussion makes us confident that the
statistical properties of the large events in our model
are not affected by Ac. In all the other computations
presented in this paper we used Aé =5 x 102, which
is big enough to allow for large catalogs of events.

Notations

B shear wave speed.

T' ruptured domain at a given time.

€ tectonic stress rate.

time collocation parameter, € [0, 1].
state variable (dimension of velocity),
value of it such that if § < 6y, velocity
weakening begins (if D > Up).

u rigidity of the medium.

p density of the medium.
o(z,t) stress tensor.
Ac instantaneous stress drop at the begin-

ning of slip.

7 dummy time variable.

¢ dummy in plane parallel to displacement

spatial coordinate.

displacement discontinuity,

= uy(z,z = 0%,t) — uy(z,z=07,1).

D average (over the broken patch) of slip
for an event.

D, length scale in the friction law, related
to the velocity-weakening process.
h  dimensionless time step, = SAz/At.
1, j discrete space variables along the z axis.
I total number of points used to discretize
the fault (=1025 most of the time).
K(z,t) space-time convolution kernel.
£ broken patch length for an event.

L total length of the fault.

m, n discrete time variables.
M  seismic moment for an event.
S(z,t) space-time convolution.
t, At time variable, time step.
Tobs(z,t) absolute stress.
Text(z,t) external (loading) stress.
AT(z,t) difference between the two above.
AT,, average (over the broken patch) stress
drop for an event.
Tep stress parameter indicating the magni-
tude of the velocity weakening.
u =uy component of displacement along y.
Up slip-weakening parameter.
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V(z,t) rate of displacement discontinuity, =
D(z,t).

z,y, z in plane perpendicular and parallel to
displacement and out of plane spatial
coordinates.

Az grid spacing.
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