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Summary. We present a theory for the radiation of high-frequency waves by
earthquake faults. We model the fault as a planar region in which the stress
drops to the kinematic friction during slip. This model is entirely equivalent
to a shear crack. For two-dimensional fault models we show that the high
frequencies originate from the stress and slip velocity concentrations in the
vicinity of the fault’s edges. These stress concentrations radiate when the
crack expands with accelerated motion. The most efficient generation of
high-frequency waves occurs when the rupture velocity changes abruptly.
In this case, the displacement spectrum has an w™ behaviour at high
frequencies. The excitation is proportional to the intensity of the stress
concentration near the crack tips and to the change in the focusing factor
due to rupture velocity. We extend these two-dimensional results to more
general three-dimensional fault models in the case when the rupture velocity
changes simultaneously on the rupture front. Results are similar to those
described for two-dimensional faults. We apply the theory to the case of a
circular fault that grows at constant velocity and stops suddenly. The present
theory is in excellent agreement with a numerical solution of the same
problem.

Our results provide upper bounds to the high-frequency radiation from
more realistic models in which rupture velocity does not change suddenly.
The w™ is the minimum possible decay at high frequencies for any crack
model of the source.

1 Introduction

One of the least understood problems in the study of earthquake source mechanism is the
radiation of high-frequency seismic waves. A model for the generation of these waves is
crucial in order to predict strong motion in the frequency range of interest to engineering
(1-20 Hz). The kinematic models (Haskell 1964; Savage 1966) used by seismologists are
low-frequency models that tend to average out the details of the slip function at the source.

* Present address: Institut de Physique du Globe, University of Paris VI, 75230 Paris, Cedex 05, France.



626 R. Madariaga

Moreover, because these models assume constant slip on the fault there are unphysical stress
singularities near the edges of the fault. These singularities are the most important feature
of the stress field and we may expect that they control the high-frequency radiation. In the
constant dislocation models these singularities are not integrable and they generate an
infinite strain energy flow into the rupture front. Stress relaxation models (finite stress drop
or shear crack models) still retain singularities in the elastic stress field (Kostrov 1964;
Burridge 1969; Brune 1970; Dahlen 1974; Richards 1976; Madariaga 1976). However, as
shown by Kostrov, Nikitin & Flitman (1970) and Freund (1972b) the energy flow into
the rupture front is finite and is physically associated with the energy necessary to fracture
the material on the fault surface. The singularities in this case are a consequence of the use
of linear elasticity even in the vicinity of the rupture front. These singularities would dis-
appear if nonlinear effects near the rupture front were taken into account.

Ideally it may be possible to study high-frequency radiation solving models with
physically reasonable stress drop distributions on the fault. Unfortunately such models may
be studied only with numerical methods which become extremely expensive as the frequency
increases. Even if it were possible to solve these models it would be important to have a
physical understanding of the behaviour of high frequencies. The aim should be to obtain
simple releations similar to the one between low-frequency spectral amplitude and the
seismic moment (Aki 1967). Such simple relations are very unlikely, however, since high-
frequency radiation should be highly incoherent due to the inhomogeneity of stress and
strength (fracture energy) on the fault. Attempts to describe the incoherence of the
radiation were made by Haskell (1966) and Aki (1967) based on intuitive considerations
about slip correlation. Our effort here is different, since we shall try to isolate the source of
high-frequency radiation and to describe its dynamic characteristics. This study was
prompted by the observation that in all the deterministic source models — dislocation or
crack — studied by seismologists, the high-frequency radiation is determined by starting and
stopping phases radiated by abrupt rupture velocity changes at the fault. We show here that
the high-frequency radiation from crack — or stress drop — models is proportional to the
stress concentrations at the rupture fronts.

2 General properties of shear faults

We model an earthquake as the rapid spreading of rupture on a plane fault whose sides
slip due to the inability of the fault to support the tectonic shear stress. When the tectonic
stress overcomes the static friction or strength of the rock the fault starts to slip and the
stress drops more or less abruptly to the kinetic friction. The stress drop on the fault
generates large stress concentrations near the edge of the fault which will tend to spread
the fault. The rupture process may be stable as in fault creep or unstable as in earthquakes
depending on the available energy, non-lastic material properties, pore fluids, etc. (Rice &
Simons 1976). Since we are interested in seismic radiation we consider only unstable or
brittle ruptures. The instability appears because as the crack extends the stress concentra-
tions tend to become larger causing simultaneously an increase in the rupture velocity.
Once rupture is initiated the rupture velocity tends to accelerate up to the shear velocity
for antiplane cracks (Kostrov 1966) or the Rayleigh velocity for in plane shear cracks
(Fossum & Freund 1975). Some models proposed by Burridge (1973), Andrews (1976)
and Das (1976) also allow for transonic rupture velocities.

The stress concentrations in the vicinity of the rupture front are of course finite and
controlled by the nonlinear material properties of the rocks or the fault gouge. To study
problems that incorporate nonlinear material behaviour is extremely difficult. However, it
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is well known in fracture mechanics (Rice 1968) that the behaviour of cracks may be
approximated assuming (1) that the material is elastic everywhere, even in the vicinity of the
crack tip and (2) that the stress drops to the kinetic friction immediately behind the rupture
front. A consequence of these assumptions is that the stress concentration becomes singular
and has the general form
0=Kyqlx —£@) 7% for x> £(r) (1)
where £(¢) is the current location of the crack tip, x is the coordinate along the fault plane,
Kg is the dynamic stress intensity factor. Referring to the coordinates in Fig. 1, the stress
0 =0y, for in plane shear and o = 0y for antiplane shear. Although the stress appears to be
infinite at the crack tip, the stress distribution (1) is valid only outside some small inelastic
zone surrounding the crack tip. Inside this core zone either one or both of the assumptions
above fails. For brittle fractures the size of the inelastic zone is usually very small compared
to any of the fault dimensions. There are two scales in the problem so that we may solve the
elastic external problem using only global properties of the nonlinear inner problem. The
inelastic zone is almost certainly very small in earthquakes since we expect it to be of the
order of the width of the gauge. In order to compute high-frequency radiation the elastic
approximation is sufficient since the wavelengths of interest (A > 100 m at about 20 Hz)
are much larger than the size of the gouge (at most a few metres). The radiation at these
wavelengths should be insensitive to details of the inelastic zone.

When the rupture front is moving the dynamic stress intensity factor K4 may be
separated into two terms (Eshelby 1969; Fossum & Freund 1975; Freund 1976)

Kq=A@r)K*(, 1) (2)
where _
AQ@R)=(1 —vgr/vg)'"
for antiplane cracks and
(1 —vg/cg)

A(vr)=S(~1/vr) (1~ on fug)'72

Figure 1. Geometry of the two-dimensional fault in the vicinity of the crack tip and wavefronts of the
in-plane problem. R indicates the Rayleigh wave propagating along the cracked portion of the fault.
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for plane cracks. Here vy is the instantaneous rupture velocity, vp, vg and cg are the P, S
and Rayleigh wave velocities, respectively and S(p) is the de Hoop (1958) function defined
in the Appendix 1. The stress intensity K * may be interpreted as the stress concentration
that would remain if the crack suddenly stopped: it is a function only of the stress and ex-
tension history of the fault but it is independent of the instantaneous rupture velocity vg.
The velocity factor 4(vg), on the other hand, depends only on wg. It decreases mono-
tonically from 1 at vg =0 to O at the terminal velocity (vg for antiplane cracks and ¢ for
plane cracks).

Closely connected with the stress concentration outside the crack there is a singularity
in slip velocity (D, for plane, D for antiplane cracks) immediately behind the rupture
front. This singularity is of the form

D= Vy[E@)—x] *forx < £(t) (3)
where

K*
Ka= 2TURB(UR) )

B(wg)= (1 tvg/vs)'"?
for antiplane cracks, and

K*® (1 +vr/vg)'"?

2(k?*—1) (1 +vr/er)S(1/vR)

for plane cracks. k =vp/ug and u is the rigidity. B(vg) depends only on the instantaneous
rupture velocity. Vy goes to zero when vg goes to zero and is finite for all other rupture
velocities.

A final physical property of interest is the energy absorption per unit advance of the
crack which is usually called the energy release rate. This is that part of strain energy
released by the body that is available at the crack tip to be used to fracture the material.
Using some results by Achenbach (1974) we find

N ( *)2 P
‘A(Rr)B(vR) )

B(vr)=

G=

where 4A(vg) B(vr isa function only of the rupture velocity that decreases from a value
near 1 at vr =0 o zer¢ at the terminal velocity. If as usual we define v — the specific
fracture energy — as the energy necessary to create a unit surface of fresh crack, then the
energy balance at the rupture front is

27=G (6)
given vy, which is a property of the material, this is an equation for the instantaneous rupture
velocity.

A notable property of the previous results is that the dynamic field near the tip depends
on the stress history and the rupture velocity but is independent of the rupture acceleration.
This surprising property, first noticed by Eshelby (1969), implies that when a rupture
front encounters a sudden change in the fracture energy of the material, for instance when
rupture penetrates into different material, the rupture velocity changes abruptly. An extreme
case is the unbreakable barrier considered by Husseini et al. (1975) where rupture will be
abruptly stopped. The intense radiation generated by this event is usually called a stopping
phase.
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High-frequency radiation is determined by the slip velocity field at the source. Since the
highest slip velocities occur right behind the rupture front we may expect that the radiation
of high-frequency seismic waves be controlled by the motion and intensity of the slip
velocity concentrations. By high frequencies we mean wavelengths smaller than the geo-
metrical dimensions of the fault and larger than the nonlinear zone near the rupture front.
We may think of the rupture front as a moving line source whose strength, given by Vg4
(4), depends on the load history and the instantaneous rupture velocity. When the rupture
velocity is constant, the velocity intensity ¥y changes only due to the slow continuous
variation in K* and there is practically no high-frequency radiation by the rupture front. On
the other hand, strong radiation occurs when the rupture velocity changes abruptly. In this
case the stress intensity Ky and velocity intensity V4 also change abruptly generating a
strong discontinuous wave front. High frequencies are associated with these discontinuities
in the radiation. If the rupture accelerates or decelerates continuously, radiation will also be
emitted continuously. At frequencies such that the period is longer than the total accelera-
tion time the radiation will approach that of an abrupt velocity change, while at shorter
periods the motion of the rupture front appears to be smooth and the radiation is less
efficient. Thus, the radiation from velocity jumps provides upper bounds to the high-
frequency radiation. A proof of this hypothesis for faults of general geometry is extremely
difficult. Instead we study first simpler two-dimensional models both in plane and antiplane
strain. Later we shall use the fact that the elastic field is very approximately two-dimensional
near the rupture front to extend these results to three dimensions.

3 Sudden start of an antiplane shear rupture

Perhaps the simplest transient crack model is the sudden extension of a pre-existing
antiplane crack. Although this model is too simple to be directly applicable to earthquakes,
we shall show later that many features of the seismic radiation from this model apply to
more realistic fault models. We consider the following problem, for time ¢ < 0 a static anti-
plane crack extends from the origin along the negative x axis as shown in Fig. 2(a). The body
is loaded by a certain static stress field away from the crack. The crack has slipped and the
stress at the fault has relaxed to the kinetic friction. Due to this stress drop there is a stress
congentration.
Oyy =Kox12 x>0 (7)
along the x axis in front of the crack (Fig. 2). This stress concentration is measured from the
stress level right behind tkfe‘fc;rack tip, so that in order to study the elastodynamic field in the
vicinity of the crack tiﬁ. we.may choose as stress reference level the kinetic friction on the
fault. At time ¢ = O the ¢rack starts to extend at a constant subsonic velocity vg . We want to
find the waves emitted by the sudden start of the crack. Since we are interested primarily on
the high-frequency radiation we only have to be concerned with the field in the vicinity of
the crack tip. We notice, finally, that the stress intensity factor K, contains all the informa-
tion about the loading stress and the size of the fault that is necessary to solve the problem.

As the crack extends it ‘absorbs’ the singular static stress field in front of the tip. That is,
as shown in Fig. 2, the stress drop is minus the stress concentration (7). In order to find the
radiation of elastic waves we first have to solve a crack problem to find the dynamic stresses
outside the crack and the slip velocity on the crack. A general solution to antiplane crack
problems was found by Kostrov (1966). He showed that the stress change on the plane of
the fault, ahead of the crack tip, is given in terms of the stress drop Ao inside the crack by

0 1 "o Gk dt 8

Oy 5,0, fx_ust ey €) ®)

——
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Figure 2. The elastic field on the plane of a suddenly starting antiplane crack with rupture velocity
vR = 0.5 vg. (2) Shows the state of stress immediately before the rupture starting. (b) Stress change on the
fault plane due to rupture propagation. The stress drop inside the crack is non-uniform and equal to the
pre-stress of the upper figure. Ahead of the rupture there is a stress increase. (c) The total stress
of = 0,+ Ao on the fault plane. The crack is stress free and there is a stress concentration ahead of the

rupture front. (d) The slip: velocity distribution on the fault.

g

where [ = I(x, t) is the retarded location of the crack tip, which in the specific case of a crack

that grows at a constant rupture velocity is given by
I(x, 1) = (vst - x)/(vs/vr — 1).
The stress drop inside the crack is

Ko

e Uxxxopt
x

Aoyy(x,0,8)=—

so that inserting it in (8) and integrating we find

K, (1 —wvgfvg)'?

Oxy (%, 0, )= ——— + Ky ————————, vgt > x> vpt

X172 o (x —vpH)'"? t

©)

(10)
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on the continuation of the fault. The stress change on the plane of the fault (9, 10) is shown
in Fig. 2(b). In order to find the total stress field we have to add the initial stress field (7).

We find

Oyy(x,0,2) =0 X < URrt!
= Rl =y * URt < X < vgt (11)
= Kon ™" X > vgt.

This stress distribution is shown in Fig. 2(c). We notice that the stress has a moving singu-
larity at the rupture front (x =wgt). The intensity of this singularity is K4 = K¢ A(vg) in
agreement with the general properties discussed in the previous section (equation 2) with
K*=K,. Thus when the rupture starts the stress intensity drops abruptly from K, to Ky. It is
this change in stress intensity that causes the radiation of discontinuous wave fronts. The
discontinuous wave front appears in the form of a slope discontinuity in stress that
propagates with the shear wave velocity — see Fig. 2(c).

Using Kostrov’s method it is also possible to find the slip velocity Dy on the fault
(Achenbach 1974). The final result in our problem is

: - I& -1/2 -l
Dy(x,0,0)=2—wg (1 +urfvs) (vrt —x)*"*, —vst<x<URlL (12)
u

The slip velocity is singular at the rupture front (x =vgf) and the velocity intensity is
precisely of the general form given in equation (4). The slip velocity has a steplike dis-
continuity that moves with the S-wave velocity.

We may now find the radiation using the slip velocity function (12) as a dislocation
velocity in a representation theorem. This method requires rather complicated integrations
so that it is preferable to use Laplace transforms. Let us introduce the following double
transform of the displacement

P, 28) = J: exp (— sr)dtfm Uy (x, z, t) exp (— spx)dp (13)

— oo

We can then write the doubly transformed representation theorem in the simple form

ity (p, 2, 5)=1/2Dy(p, 0 5) exp (—5752) (14)
where vs = (1/vg — zém and Dy (p, 0, 5) is the doubly transformed slip velocity function
(12). By stralghtforward appﬂhcanon of Laplace transforms we find

KO ,n.l.v'Z 1

p s (1jpg —p)"?*(1jvr +p)

where u,, is the particle velocity field. The inverse of (15) to the time domain may be found
by means of the Cagniard—de Hoop technique (Achenbach 1975, p. 298). The result is

iy (x, 2, 1) = : —f [(lﬂ; f):z] \/?Trd:/ﬁ (16)

where r,  are the cylindrical coordinates shown in Fig. 1, M =vg/vg, p(7) is the Cagniard
contour

p(r)=—1cos Y +i\/1? —1siny, —n<y<m

i, (p, 2, 5) = exp (—s7s2) (15)
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and ¢'=uvgt/r is the non-dimensional time. The numerical evaluation of the integral in (16)
~ is straightforward if proper care is taken of the singularities (Acton 1970, p. 414). In Fig. 3
we show the radiation in several directions  as a function on non-dimensional time. The
most significant feature of the particle velocity is the discontinuity on the SH-wave front.
In the forward direction Y ~ O there is also a strong velocity peak associated with the slip
velocity singularity at the rupture front. This is a near field effect that appears only in the
vicinity of the rupture front. In all other directions the particle velocity field is dominated
by the velocity jump on the wave front. The velocity jump is given by

sin /2

1 —vgfugcosy

(17)

Ko
uy(x,z1) =7 vpr 12

Further study of this discontinuity is deferred to Section 5.

NEAR FIELD PARTICLE VELOCITY

Lo 1.5 2.0
tVs/r

Figure 3. Near field of the suddenly starting antiplane crack in different directions V. The velocity field
has step discontinuities on the SH-wave front. The peak at y = 5° is due to the passage of the rupture
front.
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4 Sudden start of a plane rupture

We study again the problem of the previous section but for an in-plane shear crack. A static

plane shear crack extends along the negative x axis. The stress inside the crack is relaxed to

the kinetic friction level which is used as the reference stress level. Outside the crack, on its

own plane, there is a stress singularity oy, = Kox ™" where the stress is measured from the

kinetic friction level. At time ¢ = O the crack suddenly starts to grow with a constant rupture .
velocity vg . In the new crack surface the stress drop is

Al = K2 0<% St (18)

We have to solve a crack problem to find the stress change outside the crack and the slip
velocity on the fault. This problem was solved by Fossum & Freund (1975) using methods
developed by Freund (1972a). In the following we shall use the somewhat simpler method .
proposed by Kostrov (1975) which allows for variable rupture velocities and time-dependent
stress drops. We introduce double Laplace transforms of all the field variables as in (13).
From the elastic wave equation and symmetry about z =0, the stress and displacement on
the plane of the fault (z = 0) are related by

R(p) . o
0xz (P, 0,8) = — uvg ux (p, 0, 5) (19)
Vs
where
R(p)=(1/2vg —p*)* +P*1p7s (20)

is the Rayleigh function and
_2 _

vp=@p —p*)'"?

75 = (5 — PP -

vp and vg are the P- and S-wave velocities respectively and u is the rigidity. The problem
consists in finding the stress outside the fault given the stress drop inside the fault and that
there is no slip outside the fault. This mixed boundary problem is complicated by the
presence of the Rayleigh function in (19). Kostrov’s method consists in transforming
equation (19) into another equation which is easier to solve. The first step is to use
de Hoop’s (1958) decomposition of the Rayleigh function into forward and backward waves

R= 22 (2 p) sep (= +5) s0) @1

2 :
2Up Cp .%W - CR

where cy is the Raylefgh wave velocity, k = vpfug and S(p) is the de Hoop function defined
in the Appendix I. The function (cg' +p) S(p) is analytic in the complex half-plane
Re p > —vp' so that it represents only waves travelling in the forward directions (|| < 90°
referring to Fig. 1. Conversely (cg! —p) S(—p) is analytic in Rep < Uz and represents
waves in the backward direction (|y | > 90°).

Let us define the pseudostress

. TPYS
E(p: S) - C}_Ql . p)S(p) sz(p’ 0: S) (22)
and the pseudoslip
A, S)=(" —1) (er fp)S(—p)Dx(p,O,S) (23)

K’? YPYS
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where
73 = (1/vp £ p)*"?

and

vs=(ljvg = p)'"2.

The definition (23) differs by a constant factor from Kostrov’s because of a misprint in his
paper. From (19) we find now

Z(p, s)+usypypAlp, 5)=0. (24)
This equation may be inverted immediately to
Z(E, r)dEdT
Alx, 1) = __ff & ) E 21172 (25)
[t —7)? — (x — §)fu3]

where the double integral is taken on the triangular zone
lop(t = 7)1> |(x - £)I, £>0.

Equation (25) has exactly the same form as the antiplane representation theorem (Kostrov
1966) except that the P-wave velocity vp replaces vg in the latter. In order to solve the crack
problem we still have to find the boundary conditions for £ and A. For the pseudoslip it
is simply A(xo, #o) = O for points ahead of the rupture front. For the pseudo-stress drop we
have to solve some unwieldy integrals given by Kostrov (1975). However, the stress drop
(18) is time-independent and in this case Kostrov showed that Z(x, 7) = Ao (x). The integral
equation that has to be solved is of the same form as that solved for antiplane problems.
Using the methods of the previous section we find the pseudo-stress outside the crack

(1 —vg/vp)'?
E(x, f):“Koxim + K, mm—, UR! < x < upl. (26)

Since inside the crack X (x, t) is given by (18) we can obtain the transform of Z (x, ¢)

T{U2 (U_E_’l +p)1/2

Z(, s)=-K, 7 o tp (27)
It is now a simplefm;'atter to find o, from (22)
"; 12 -
o +p)S(p)
o 0,s 28
xz(p ) 0 3/2 (UL_I 4 p)ljz (U s p) ( )

The inversion of (28) may be obtained by a Cagniard—de Hoop inversion

vpl
O,,(x,0,0)=Kox712T (—E—) x>0 (29)

X

where the non-dimensional function 7°(7) is defined in the Appendix 2. The stress change
0Oy, is shown in Fig. 4(b). In order to find the total stress field we add the initial stress field.
The total field is shown in Fig. 4(c). The stress field has a singularity of the form o,, =
Kq(x —vg?)™? at the rupture front. The dynamic stress concentration is given by the
relation (2) K*=K,. Thus, when the rupture starts the stress intensity drops from Kj to
Kg4. This jump in intensity generates discontinuous wave fronts. The stress field of Fig. 4(c)
has a slope discontinuity at the P-wave front and a sudden drop in stress at the shear-wave
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Figure 4. The elastic field on the plane of a suddenly starting in-plane shear crack. Rupture velocity
vRr = 0.9 vg. (a) Is the static field before rupture initiation. (b) Shows the stress change Ao due to crack
extension. The stress drops inside the crack and increases ahead of the crack. (¢) Total stress on the fault
during rupture propagation. (¢) Slip velocity on the fault plane. P, § and R designate the P, § and
Rayleigh waves respectivelyﬁ_'— 1. 5

front. It is interesting t6 note that the shear stress is at a maximum just before the arrival of
S waves. This stress increase is of the same sign necessary to fracture the material. Andrews
(1976) and Das (1976) have proposed models in which this stress may be sufficient to cause
rupture in front of the S-wave front. In this case the rupture velocity may appear to be larger
than the shear velocity.

We may now find the transformed slip function inside the crack

K, «* n2 Ws! — p)'
., 3=— s gy S 3 (30)
b (k*=1) s7* (g *p)(cr —p)S(P)

from which we invert

B ol S £ L U(vpt) G1)
%,0, )=— vp—r —
& w1y %172 T \ x|
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where U(7) is given in Appendix 3. The slip velocity on the crack is shown in Fig. 4 for the
case of a high subsonic velocity vg = 0.5 vp. The most noticeable feature of the slip velocity
is the presence of two square root singularities. One of these is the expected singularity
behind the rupture front whose intensity is given by the general result (4) with K* =K. The
other singularity is given by

B .08 Ko K2 (1 —crfug)t™? 1
L(x, 0,1)> ——v
won (k2—1) (1 +vg/cr)S(— l/er) (Ix|—crt)'’?

This singularity is the Rayleigh wave that propagates inside the crack. This Rayleigh wave
appears because the boundary condition inside the crack is of the fixed stress type. The
arrival of P and S waves are marked by slope discontinuities in the slip velocity field.

The final step is to find the radiation away from the fault. This may be done using the
representation theorem, we find

2
. us . -
i (p,2,8)= ——~D(p, ) [- 2p* exp (—sypz) — 5° — 2p”) exp (- 57572)]

(32)
. g (vs® —2p%)
Uz (p, 2,8)= = D(p, 5) [2pyp exp (= s27p) — T pex (—svs2)] -
s

The inversion of these functions is complicated by the presence of several singularities on
the complex-p plane. Using the Cagniard--de Hoop method the particle velocities may be
written in the form
. Ky 1 Upt
i =—"vp 7 Vi (

w), —n<sy<sT (33)
U

r
where (r, ¥) are polar coordinates as in Fig. 1,/ =x, z and the functions V;(r, y) are given
in Appendix 4. In Fig. 5 we show V; for several selected directions Y. In the forward
direction, for ||~ 0, the dominating features are the high particle velocities near the
rupture front. As we move away from the fault plane the discontinuities at the wave fronts
dominate the field. In the region cos Y > —vg/up =k 1(]¥] < 135° for k =3'%) there
are jump discontinuities in particle velocity both at the P- and S-wave fronts. The strength
of the jumps is larger in the forward direction due to the focusing effects of rupture. The
discontinuities are also modulated by the radiation pattern. For cos ¢ < —k " an SP wave
guided by the crack appears and a logarithmic pulse accompanies the jump discontinuity
at the S-wave frent. Just as with Rayleigh waves the crack acts like a free surface guiding
inhomogeneous waves. In spite of all this complexity the radiation in the backward direction
is dominated by the P- and S-wave fronts. The SP wave is a conical wave (see Fig. 1) with a
slope discontinuity in its wave front which is weaker than the jump discontinuities or
logarithmic pulses of the P and S waves. Furthermore the SP waves are strictly near field
phases which are totally diffracted by the other edge of the fault. In practice then they
might be observed in a very narrow zone around cos Y = g L

5 Starting phases from plane and antiplane cracks

The near-field solutions of the last two sections have jump discontinuities or logarithmic
singularities in particle velocity at the P- and S-wave fronts. High-frequency radiation is
associated with the first motions at these wave fronts. Let us consider first the case of the
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Figure 5. Near-field radjation from a suddenly starting in plane shear crack. IRupture velocity vy =
0.9 vg. The left column shows the horizontal particle velocity field. The right «humn shows the vertical
particle velocities at different angles of radiation y. The large particle velocitiesir the forward direction
Y = 30° are due to focusing effects.

SH-starting phases radiated by a suddenly starting antiplane crack. The first motion may be
found from (16) when t'— 1

1 sin Y/2
12 1 — (vp/vug) cos ¥

Thus, the starting phase is a jump in velocity which is proportiomdl to the stress con-
centration K, before the crack starts to move. It has the typical ™% geometrical spreading
factor of cylindrical waves. The radiation pattern, shownin Fig. 6 for the case vg = 0.87 Us,
includes in the denominator the factor (1 — (vr/vg) cos V) which acewnts for the focusing
of radiation in the direction of rupture propagation. This factoris the sume as that found by

Ko
uy(r, ¥, t)=—vugr H(t - rlug). (34)
K

F
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Figure 6. Radiation patterns from the suddenly starting or stopping in plane shear crack (P and SV
waves) and a sudden starting or stopping antiplane crack (SH waves).

Ben-Menahem (1962) for moving point sources. The radiation pattern differs from that of a
dislocation which is simply sin ¢. The most important difference is that ¢ =, i.e. the
direction towards the crack, is not a nodal line for a crack.

The first motion or starting phases from the in-plane shear crack may be found from (33)
and the function V;(7, ) defined in Appendix 4. For P waves the first motion is

Fp(y)H(t — rfvp) (35)

5 KO 1 sin 2a,b
il (r, ¥, ) =—vp ~—
po #ri 1l —vgfupcos Y

where the factor":"l
(k + cos y)172
232 (k* — 1) (gr +cos ¥) S(cos Y/vp)

modifies the radiation pattern sin 2y from an edge dislocation, gg =cg/up and the de-
nominator (1 —ugfup cos Y) is the focusing effect due to the rupture front motion. The
first motion is a jump discontinuity proportional to the stress intensity K, The first motion
(35) was also given by Fossum & Freund (1975) in a much more complicated form.

The first motion at the § wave is more complex because of the logarithmic pulse that
appears for cos ¢ < —k L. The jump discontinuity at the .S wave is given by

| cos 2y

rt? 1 —yglvg cos §

Fp(¥)=

Ko
il (o ¥, 1) R Re [Fs (V)] H(z - r/vs) (36)
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where
K3 cos ¥/2
(k* = 1) (qr +x cos ¥) S(cos Yfvg) |
The function S is complex for —x ™' > cosy > — 1. In that zone S should be evaluated
slightly above the branch cut between —vp'>p > —vg! in the complex p-plane. Again the
function Re Fg(y) modifies the radiation pattern cos 2y from an edge dislocation. The

factor cos Y/2 in Fg creates a nodal line along the crack which is not present in dislocations.
In the range cos Y < —k ! there is also a logarithmic pulse at the S-wave front

Fs(hb)=2

K 1 cos 2y
-8 w W &
u[,{;(rs ‘1[’, I)_# Uer",z 1

1
- Im [Fg(y)] —log |t — rfugl. {37)
— UR/ug cos Y m
It is interesting to note that a logarithmic pulse is the Hilbert transform of a step function.
The logarithmic pulse is associated with the SP waves guided by the fault.
We can now find the high-frequency radiation associated with the first motions found
above. The displacement amplitude spectruin is given by the relatively simple expression
i Ko Lo -2
(', ¥, w)l =_#" UR‘;ER W, Y)w (38)

where i = P, SV or SH and R’ is one of the following radiation patterns

RSH _ sin /2]
1 —vg/ug cos ¥
Isin 2¢/]
RP=— el (39)
1 —vg/up cos ¥
and
2
RSV =SV p

1 —vg/vg cos ¥

The difference between logarithmic and step pulses at the SV-wave front disappears in the
frequency domain becguse ‘the logarithmic pulse and the step have the same spectral density.
The radiation patterns in’ (‘.?9) are shown in Fig. 6, they differ from those of a suddenly
starting dislocation (Ang & Williams 1959) mainly in the backward direction. This difference
arises because of the different boundary conditions on the fault plane for a dislocation and a
crack model. But the most important difference with a dislocation model is that the spectral
amplitude in (38) is related to physical parameters of the rupture front rather than arbitrary
slip functions at the fault. The stress intensity factor K, is a physical property of the crack
tip related to the stress drop and the size of the fault.

6 Stopping phases and acceleration phases

The starting phases discussed so far are only one of the sources of high-frequency radiation
by faulting. In fact, for three-dimensional faults, where rupture nucleates in a small localized
zone, a two-dimensional model is not really appropriate for the starting phases. In that case
Dahlen (1974) has shown that the starting phases will have an w ™ behaviour instead of the
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w™? behaviour of line sources. In most simple models of rupture where the rupture grows
at a constant velocity and stops abruptly at a barrier the strongest high-frequency motion is
associated with stopping phases (Savage 1966; Madariaga 1976). We can find the radiation
from stopping phases making use of the remarkable lack of inertia of cracks. As discussed in
Section 2, when a crack suddenly starts to move the stress intensity drops abruptly from
K, to Kg =Ko A(vR). Exactly the opposite occurs when a crack stops suddenly, in this case
the stress intensity rises from Ky to K*. This happens because A(vg) is independent of
acceleration. Intuitively, we expect that the stopping phase will be of the same form as a
starting phase but with a changed sign. A formal proof of this result was given by Eshelby
(1969) for antiplane cracks. A similar proof was given by Freund (1972b) for a plane
tensional crack that stops abruptly. As we discussed in Section 3 Kostrov (1975) showed
that the plane problem may be reduced to a form which is mathematically similar to the
antiplane problem. Using this method and Eshelby’s proof for antiplane cracks, it may
be proven that for inplane shear cracks the radiation of a stopping phase is identical to the
radiation of starting phases with a changed sign. Similarly, in the frequency domain, we state
without further proof that the absolute displacement spectrum of a stopping phase is also
given by (38) with K* instead of K,

We have not yet defined K* for stopping phases. It may be defined as the stress intensity
that remains immediately after the rupture velocity drops to zero. This stress intensity may
be computed if we know the dynamic stress intensity K4 before the rupture stops, in this
case K*=Ky/A(vg) from the definition (2). This requires solving the dynamic problem
itself. However, we can obtain very good estimates of X* using the dynamic stress intensities
of several solved problems. In general, we find that

K =kAcL'? (40)

where K7is the in-plane stress intensity, K¥is the antiplane intensity, Ao is the average
stress drop on the fault, L is the half-fault length and k; is a non-dimensional coefficient.
In Fig. 7 we plot k; for self-similar shear cracks. These are cracks that nucleate at a point and
expand with constant rupture velocity. Fig. 7 demonstrates the amazing result that
k; is practically independent of rupture velocity so that, very approximately,
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Figure 7. Numerical coefficient of the stress intensity factor K* =k Ao. L2 for plane and antiplane
cracks and for circular faults.
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K* ~2"Y2 A5 L''? for two-dimensional cracks. With this value of K* and (38) we may now
obtain the stopping phases for any observation angle. In practice, however, it is very unlikely
that the angle ¢ will be well known because of uncertainties due to ray bending, scattering,
etc. It is interesting then to find an ‘average’ high-frequency spectrum

) i 12 _
(u‘(r, Y, w)) =—C—rvR (;) k;(R'(wr)) w2 (41)
u

The average radiation patterns (R'(vg)) are shown in Fig. 8. We notice that P waves
are almost unaffected by the rupture velocity while SH and SV waves are stronger at high
rupture velocities due to the focusing effect in the forward direction. The ratio of § waves
to P waves is about 2—3 except at very high velocities. This compares with the well-known
ratio (upfug)® ~ 5.1 at low frequencies. That is, compared to S waves, the radiation of P
waves is more efficient at high frequencies than at low frequencies. This explains why the
P-corner frequencies should usually be higher than S-corner frequencies.

o
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Figure 8. Radiation pattgarh averaged over the angle of radiation ¥ as a function of rupture velocity.
E‘ o

>

The starting and stopping phases discussed so far are distinct radiation instances. For
most of the deterministic two dimensional models usually studied they dominate the high-
frequency radiation, cause the w2 decay at high frequencies and may be used to fix the
corner frequencies. We shall apply these results later to a circular fault. In more realistic,
although still two dimensional models we should recognize that the strength or fracture
energy should be widely variable on a fault plane. Whenever a rupture front encounters a
sudden change in strength the rupture velocity would change abruptly. Associated with it
there would be a change in the dynamic stress intensity and high-frequency radiation. The
radiation from a velocity jump may be evaluated using again the fact that a crack lacks
inertia. Then, the radiation is given by

%

. K 1 .
W, ¥, 0)| = —1,2w-2-Q‘(w)A[ = ] 3)
uor

1 —vgR/v; cos §

22
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where 7 indicates the type of wave (P, SH or SV), v; is the appropriate wave velocity, A
indicates the change in the focusing factor due to the rupture velocity change and approxi-
mately K* ~ 2712 Ag L'2, Finally
0 () =sin 2y |Fp(¥)

05V (¥) = cos 29 |[Fs ()]

and

QSH (Y) =sin Y/2.

(44)

One can envision many of these velocity jumps, each radiating like (43). This is a source of
incoherent radiation not incorporated in deterministic models.

The results obtained so far describe the high-frequency radiation from abrupt changes
in rupture velocity. In reality the strength on the fault probably changes continuously at
least in some small scale. In this case the results we have obtained are asymptotic approxi-
mations for the radiation at wavelengths longer than the distance over which the strength
and the rupture velocity change. In this sense, we may comment on Dahlen’s (1974) result
that stopping phases should be weaker than starting phases if the rupture velocity varies
continuously. This statement is strictly valid only at very high frequencies, such that the
wavelengths are shorter than the deceleration time at the stopping of rupture. For longer
wavelengths but still shorter than the comer frequency the acceleration and deceleration
appear to be sudden and the radiation approximates the results obtained for velocity jumps.
In this range of frequencies the stopping phases are stronger than the starting phases and
they have an w2 frequency dependence.

One is tempted to extend our results to wavelengths such that the continuous variation
of the rupture velocity is important. In this case we may approximate the rupture propaga-
tion by a series of discrete jumps in velocity and sum the radiation from each jump. It is
difficult to justify this procedure, however, since our previous results are strictly valid only
for discrete wavefronts. An analysis of that problem is beyond our present purposes. What
we want to stress, however, is that the stopping and starting phases provide strong upper
bounds to the radiation of high frequencies and the w™ frequency dependence is the slowest
possible spectral decay at high frequencies.

7 Radiation fronffaul—ﬁ in three dimensions

So far we have considered only two-dimensional fault models, These models should be
appropriate in the vicinity of the fault, but as we move away from the fault the finiteness
and shape of the fault play an increasingly important role. A general analysis of three
dimensional cracks poses some analytical problems. However, under some circumstances
we may use Keller’s (1962) geometrical theory of diffraction to extend our two dimensional
solutions into three dimensions. These methods have been used by Ahluwalia, Keller &
Jarvis (1974) to study some three dimensional displacement boundary value problems. We
consider wavelengths which are much shorter than the radius of curvature of the rupture
front. In this case the elastodynamic field in the vicinity of the rupture front is essentially
two dimensional with components of both plane and antiplane slip. The rupture front again
lacks inertia and abrupt rupture velocity jumps are likely. Rupture velocity variation
generates changes in stress intensity and radiation of high-frequency elastic waves.

Let us consider the radjation from a segment of rupture front which changes velocity
abruptly and simultaneously (see Fig. 9). If the wavelength is shorter than p, the main effect
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RUPTURE
 FRON T

Figure 9. Geometry of radiation from a curved rupture front. The radius of warvatiire of the rupture
front at 0 is p. Radiation from the vicinity of 0 is similar to two-dimensional nd iatom except that the
rays diverge from the focal point F. F is on a line normal to the crack plane #hrough the centre of
curvature K. 7i and b are the normal and binormal to the rupture front, respectively.

of the curvature of the rupture front is to produce additional geome tical ypreading of the
radiated waves. As shown by Keller (1962) we obtain the three-dirmen si»mal radiation by
replacing the cylindrical geometrical spreading factor 7~ 1'% by

R‘”z(l +R/p,) V2 (45)

where, referring to Fig. 9, p; =p/sin @ and R is the distance measured £ the rupture
front. Thus, when R — O the spreading is cylindrical, but as we move awag from the fault
into the far field (R>p;) the radiation appears more and mor sfhercal and the
geometrical decay takes the form R™! typical of spherical waves. Sin= all the other
dynamical properties of two-dimensional waves remain valid we may wrie: the radiation
from a sudden velocity chafige in the form

I3

R 0, =t !
u s By} =— -

g [R(1 +Rsin@/p)] V2

—i—; - Qi(w)a [——~”R i (46)

1—vygfvz os v

where K} is the appropriate stress intensity factor, ie. the antiplane stre ssiutensity for SH
waves or the in-plane intensity for P and SV waves.  is the angle betve er :he direction of
observation and the outward normal 7 to the rupture front (see Fig. 9. The functions
Q'(Y) were defined in equation (44) of the previous section.

Equation (46) indicates that the rupture front acts like a radiator erift ing tube-like
wavefronts centred around the rupture front. The strongest high frequencymradation occurs
when the rupture front changes abruptly its rupture velocity, forimstamice when it starts
moving or when it stops at an unbreakable region. As in two-dime nsionall. nudels, the stress
intensity K™ is proportional to the stress drop and the square root ©f s.ore characteristic
size of the fault, but it should also include the angle that the slip directi sor makes with the
rupture front.

-
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The previous results are only approximately valid since we assumed that some section of
the rupture front changes its velocity simultaneously. In general, however, we may expect
that the rupture velocity change will initiate at the point on the rupture front that first
comes in contact with the variable strength region. Neighbouring points on the rupture front
will change their rupture velocity after some delay. As a consequence the radiated wave
fronts will be smoother than in the simultaneous situation we have considered here. The
effect of this complication will be deferred for some future work. However, we note that the
effect of non-simultaneous rupture velocity changes and of smooth rupture velocity change
are similar in that they will affect the spectrum only beyond a certain frequency associated
with the time that it takes to change the rupture velocity. This time must be considerably
shorter than the comer periods associated with source dimensions. Therefore our results are
upper bounds to the high frequency radiation due to acceleration or deceleration of the
rupture front.

8 High-frequency radiation from a circular fault

In Madariaga (1976) we studied numerically the problem of a circular shear fault that grows
self-similarly at a constant rupture velocity and stops abruptly in all its rupture front when
the radius is a. This model provides a unique opportunity to verify the numerical results
with the present theory. We can use the results of the previous section because the rupture
stops simultaneously. The high-frequency radiation is dominated by the stopping phases
radiated by the edge of the fault when rupture stops abruptly. The solution before stopping
was obtained by Kostrov (1964). From this solution we find the velocity intensity factor
defined in equation (3).

Aaal/Z

Vea =V?2 vgC (47}
where the subscript index x indicates that the slip velocity in the x direction, Ao is the stress
drop and C is a constant that depends on the rupture velocity (Dahlen 1974). We can split
V. 4 into a plane and an antiplane velocity concentration and then use (4) to find

K3 = Aca'?kysin ¢
(48)

]

K3

where ¢ is the azi@nuth;on the fault plane measured from the x axis. The numerical factors

Aoa'?k, cos d

k; = C(us/vr) Bfva)z—llz (49)

are plotted on Fig. 7, B;(vr) indicates either the in-plane or antiplane functions defined
after (4). As in the plane cases the k,’s are almost independent of rupture velocity. The
coefficient k, is very approximately (4/3) k3 when vp =32 ug.

We may now write the far-field stopping phases using the results of the previous section,
we find

R 0,0 ) = kg 2 L (” e) : (50
u » Vi Y w = —Kjlp - —— —; T

u o R"R w? 1 — (vr/v;) sin 8 )
where i indicates P, SV or SH waves, &' is the appropriate double-couple radiation pattern,
k; indicates k, for P and SV waves and k; for SH waves. The SH waves have motion parallel
to the edge of the fault and S¥ waves have motion in a plane perpendicular to the edge. The
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diffraction factors D*({) are defined by

DP () = |Fp(¥)| |cos y| /2
|Fs ()] [cos y| 72 (51)

1l

DY ()

D ()

where Y is the angle between the direction of the observer and the outer norzal to the fault
edge. F, () and Fg(¥) were defined in (35) and (36) respectively .

At any point in the far-field there will be two stopping phases arriving” fiomm the nearest
and farthest point on the fault. Equation (50) defines the radiation from tthsmearest point,
radiation from the farthest point is simply obtained replacing (n/2 — 8) by (2. + 8)in (50).
These two stopping phases will interfere creating a series of holes in spectmum as seen in
Fig. 10. We are interested in the general trend at high frequencies rath ertten -in the details
of the spectrum, so that we can estimate the high frequencies by the average square of the
spectral amplitudes of the two stopping phases

uR, 0,9, W) = (luR,0,¢,w)* + [u(R, 8, 1 + ¢,c0)[?)2 (52)

(2 cos ¥/2) ! cos |1

In Fig. 10 we show an example of numerically computed far field waves nadiated by a
circular fault with rupture velocity vg =0.9 vg. Theangle of radiation is 6= & - [n the time
domain pulses we have indicated with arrows the arrival times of the stopgriaz phases. Our
theoretical results predict slope changes in the displacemment pulses of the time of arrival of
the stopping phases. These slope changes have been smoothed by the nurmtrcal solution.

P-wave
1o-! -
S -wave
1072 2
\
\
Brine's fo A\
[ -
Azimuth = 60° ty/a
rupture velocity =.9 vy far-field source func: am
ok | !
.01 A . 10.

frequency [fa /vl

Figure 10. Numerical solution of the far-field radiation by a subsonic circular fault. Enp ture velocity
vR = 0.9 vg. The arrows above the time-domain source functions indicate the arival o-ff ropping phases.
In the spectrum we indicate with dashed lines the high frequencies asymtotes es tima ted W 50). The dots
indicate the numerical corner frequencies obtained from the interception of the low-frecuency asymptote
and the intermediate frequency trend (thin solid line).
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In the same figure we show the displacement spectrum obtained from the numerical solution
of the circular fault (Madariaga 1976) and we indicate with dashed lines the theoretical
estimates of the SV high-frequency spectrum. The agreement between the analytical and
numerical solutions is excellent. This confirms our contention that in the circular model the
radiation of high frequencies is controlled entirely by the stopping phases. From the point
of view of high-frequency generation a circular fault with constant rupture velocity appears
as a circular line coincident with the final edge of the fault. There is no high frequency
radiation while rupture proceeds at constant rupture velocity. There is also a weak (w™)
starting phase emitted during nucleation.

In Fig. 10 we have also indicated the corner frequencies computed as in Madariaga
(1976) by the intersection of the low frequency and intermediate frequency trends indicated
by solid lines. These numerical corner frequencies differ somehow from the comer
frequencies that would be obtained using the theoretical high-frequency trend. We may
compute the theoretical corner frequencies as the intersection of the high-frequency
asymptote (52) and the low-frequency asymptote given by the well-known relation

lu'(R, 0, ¢, w)l : AB‘@E
u 20,0, W = /3 ga ——
Tmpv; R
where i indicates the type of wave, p is the density and the rest of the variables are the same
as those defined in equation (50). The corner frequencies wj (radian/s) are given by

(w:;a)ﬁ _7m vRy; ( 1D (/2 — 0)® . \D! (/2 + 0)? )“2 (53)
§ 4 " vk T\ (urfu)sin6)*  (1+(vr/vy)sin 0)°

where i indicates P, SV or SH waves, v; is the appropriate wave velocity and the other
variables were defined in (50). The theoretical corner frequencies for the case vg =0.75vg
are shown in Fig. 11 as a function of polar angle 6. In the same figure we plot the numerical
corner frequencies computed for a few values of 6. In the numerical solutions we forced the
SV and SH radiation to be identical in order to reduce the problem to two dimensions.
Although at high frequencies the SH and SV radiation are slightly different, these differences
are numerically insignificant in the frequency range in which the numerical method is
appropriate. The theoretical S¥ corner frequencies show a peak at sin § =vg/vp due to the
strong coupling between P and SP waves. The peak in corner frequency near § = 0° are due
to the strong fofusing of radiation in the direction normal to the fault. As 6 ~ 90° the
theoretical com"e} frequencies depart from the numerical ones due to the focusing of high
frequencies at shallow angles to the fault plane. In this range these are significant inter-
mediate frequency slopes as shown in Fig. 10 or in the spectra shown in Madariaga (1976).
The numerical corner frequencies were computed using the intermediate slopes rather than
the w2 high-frequency slope.

9 Conclusions

We have presented a theory for the high-frequency radiation by two-dimensional stress-drop
(shear crack) models of earthquakes. In these models the fault is prescribed as a planar
region in which the stress drops from the tectonic stress to the kinematic friction while
slip is taking place. These models are identical to dynamic shear crack models in which the
stress drop is prescribed inside the fault. The most significant feature of crack models is
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Figure 11. Far-field corner frequencies of the circular fault as a function of polar angle 8. The rupture
velocity is vg =0.75 vg. The lines were computed using the present theory and dots were obtained
numerically by Madariaga (1976).

the presence of strong stress concentrations in the vicinity of the edge of the fault. When the
fault is extending there are also slip velocity concentrations behind the rupture front; the
largest values of slip velocity on the fault occur precisely at these concentrations. Since the
radiation of high frequencies (or first motions of discontinuous phases) is controlled by the
slip velocity on the fault, we expect that from the point of view of high frequencies the
rupture front is the main source of radiation. Radiation is emitted only when the rupture
front is accelerating or decelerating due to changes in the stress concentration (load of the
crack tip) or to changes in the strength of the fault. An upper bound to the high-frequency
radiation is given by abrupt changes in rupture velocity, for instance stopping phases. In two
dimensions these phase;‘s" aré cylindrical wave fronts on which the slip velocity has step
changes or weak logar'ifhmié" singularities. The frequency-dependence of the displacement
radiation is, therefore, of the w™ type. This is the highest possible asymptotic trend at high
frequencies. When the rupture velocity changes are smooth we expect that the ™ will give
an upper bound to the radiation. Beyond a certain frequency associated with the total time
of acceleration or braking the high-frequency decay will be less than 2 and will depend
on the details of the acceleration.

These two-dimensional results may be extended to three dimensions when the rupture
front accelerates simultaneously at least on a certain segment. This is the case of the self-
similar circular fault that grows at constant velocity and stops abruptly. In this highly
symmetrical case the stopping phases control the radiation and the present theoretical
predictions agree extremely well with the numerical solution that we obtained in Madariaga
(1976).

But in real three-dimensional faults it is quite unlikely that the velocity changes will occur
simultaneously on the rupture front. We can postulate the tollowing model of high-
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frequency generation. The rupture front acts as a2 genenllized moving curvilinear source. It
emits high-frequency radiation only when it is accelerating or deecel=rating. We expect that
these rupture velocity changes will be produced in response lo variations in the strength
(or cohesion) of the fault. When the rupture front encounters a high-strength region the
rupture velocity will decrease more or less abruptly generating strong high-frequency phases.
The rupture velocity will change starting from the point on the rupture front that first
encounters the high-strength region. The rupture velocity change will ‘propagate’ laterally
from this point along the rupture front. Radiation from sudn 2 welocity change will be
weaker than «w ™ for frequencies higher than a certain threshold probably associated with the
time of spreading of the rupture velocity change al ong the nupture front. The study of these
fully three-dimensional effects goes beyond the scope of the present work but needs further

examination.
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Appendix 1: the function S(p)
The function S(p) was introduced by de Hoop (1958) in his study of elastic wave diffraction
by plane cracks. The function arises from a Wiener—Hopf factorization of the Rayleigh
function (21). It is defined by

g

Lk oo Evpys | dk
— . =1
o [ m fl tart ((fc 4 —52)2) £+ vpp] (A1)

where
vp=(E ~ '
75 = (2 — )
and
K =vplug.
The evaluation of S(p) is very inconvenient in the form (Al). In fact, in the half-plane

Re p > 0, §(p) varies from a minimum § (0) = 0.79622 to a maximum S(e) = 1 (assuming
k=3'2). In this half plane, for small |p|, it is convenient to use a rational approximation
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given in Thau & Lu (1971). For large Ip| we use a Laurent series expansion for the
exponent

S(p) = exp [—% ; l),-p*"] (A2)

where b, =0.9383265, b, = 1.255123, b3 = 1.712679, by = 2.382243 and bs= 3.373985.
In the half plane Re p < 0, we use the definition (21) in order to find S(p) in terms of

S(-p).

Appendix 2: stress due to the sudden start of a plane crack
The function T(7)introduced in (29) is given by
o) _1r7(gr —q) Im [S(—g/vp +i0)]

1)y M —q) [k-q)(—q)]'"?

for k >7 > 1, where gg =vpfcr, M=vpfugr and Im denotes imaginary part, vp and cg
denote P and Rayleigh wave velocities respectively.

_ M- ggr $(— I/UR)
T(T) - (M _ 1{)”2 W_ T)llz

(A3)

—1 forM>71>«k

and

T(r)=—1 forr>M

Appendix 3: slip velocity due to sudden start of plane crack

The non-dimensional velocity function U(r) introduced in (31) is given by

(k + M)
(ar + M) SQ/vg) (1 + M)

forx < 0,7> ¢gr;
r

U=

U(r)=

{gr + M) {S(l log) (1 + M)**  S(—1/cR) (gr — )"?

forx<0,gg > 7> &;

T 12
Uy = — 1 dq (k—q)"
)y (M+q)(gr —q) (1—q)'"

forx<OQandk>7>1;

et (ar — )" ]

Im [S™ (- q/vp +10)]

and
(c + )72 1
gr tM  S(ljur) (- M)?

forx>0,7> M

U(r)=
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Appendix 4: radiation from a plane crack
The non-dimensional functions V;(r, ¥) introduced in (33) may be separated into P, § and

SP contributions.
For P waves we get

1 T dt
2(k* — I)WJ: (-8 E-1)

where p(£) is the Cagniard contour for P waves

VE(r, )= i Re [D(p)G;(p)]

p(§)=—Ecosy +inpsiny, —n<yPY<n
and

np(§) = (& -1)'7
The function D(p), given by

(x - p)'”
D)=
(M +p) (@ — P)S(~ p/op)

is a common factor that appears in P, S and SP waves.

Finally
G, ) =2p*(1 —p*)*?
G;(p)=-2p(1 —p?).
For § waves we get
1 T d§
2(¢ — )m f [ - k)]

where the Cagniard contour p(£) is the same as that for P waves, but with ng = (§* —x?)'"?
instead of np. The function D(p) is the same as above and

Gx(p) = (k* —2p%) (k* — p*)'?

G, ()= (k* —2p*)p.
The SP waves appear oni’iy ir; a‘ wedge-like zone in the backward quadrant cos ¢ < —k L.
d§

(r -8 &> -£)]'

V()= Re [D(p)G;(p)]

1 min (7,x)
AL v ]| Im [D@)G, ()]
Tps

where the Cagniard contour is

p(s)z s E cos i,l) _ (KZ _ &-2)11’2 sin w

The functions D(p) and G;(p) are the same as those for § waves. The arrival time of SP
waves is given by

Tps =lcos Y|+ (k? — 1) sin ¢

which is the travel time of a wave that leaves the tip as an S wave along the fault and is then
refracted at the critical angle as a P wave. The evaluation of the integrals was done
numerically, eliminating previously the singularities by trigonometric transformation (Acton

1970).



