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ABSTRACT. We study the radiation of high frequency waves from a simple antiplane model of an earthquake source.
In this medel only antiplane waves are generated so that the mathematics is relatively simple, but the physics is the
same as in the more complex plane or three dimensional models where P and S waves are radiated. An exact solution
is found for the problem of an arbitrarily moving semi-infinite crack in the presence of a general dynamic stress drop.

In the case when friction is independent of time, an algebraic expression is obtained for particle velocity. This result
is exploited to understand the origin of high frequency waves, and the rele of rupture velocity and stress intensity

on the radiation. We show that barriers and asperities dominate the radiation,

from a high frequency point of view.

but that they are indistinguishable
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INTRODUCTION

Understanding the generation of high frequency waves
during earthquake faulting is essential for the prediction
of strong motion. A number of recent observations have
demonstrated that high frequency acceleration may be
modelled as a finite-duration, band limited, white
Gaussian noise (Hanks and Mc Guire, 1981). The
acceleration spectra are flat at high frequency limited
at the lower end by the corner frequency and at the high
end by either attenuation, instrument response or,
perhaps some geometrical properties of the source.
A physical interpretation of this result requires an
understanding of the process of generation of high
frequencies during earthquake faulting.

The usual approach to model high frequency waves in
the near field is to represent the source as a superposition
of point sources. The problem reduces then to specifying
the source time function (slip velocity) at every point.
This approach allows for the kinematic description of
rupture velocity, barriers, and asperities, but it is not
clearly related to the dynamics of faulting; and it
becomes very expensive at high frequency since a large
number of points on the fault becomes necessary to
maintain accuracy. Furthermore it is possible to show
for simple dislocation models that the radiation from
the different point sources interferes destructively
except near the borders of the dislocation (Madariaga,
1978). Thus, a detailed study of high frequency genera-
tion may lead to simpler and cheaper methods of
modelling and interpreting near field strong motion.
The usual way to model high frequency radiation has
been to build random models of the slip velocity on the
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fault and then to calculate the far field radiation (Haskell,
1964; Aki, 1967; Andrews, 1981). In this approach
the underlying stress release mechanism is not taken
into account, nor is the causal spreading of the rupture
front during faulting.

A different approach, based on dynamical fracture
mechanics, was adopted by Madariaga (1977) and
Achenbach and Harris (1978). Noting that the radiation
from a fault is entirely controlled by the slip velocity
field in the ruptured portion of the fault, they pro-
posed that slip velocity has a number of universal
topological features that should be incorporated into
any model of high frequency generation. The most
important property is that slip velocity is strongly
concentrated behind the rupture front. Even in the
presence of barriers, asperities, multiple sources or other
complexities on the fault these strong slip velocity
concentrations are always there. It is then proposed
that the radiation of high frequency waves is controlled
by the motion of the slip velocity concentrations.

Barriers and asperities produce large variations of the
intensity of these concentrations and are the source of
the high frequency waves. In this paper we will present
a complete solution for the radiation of high frequency
waves from antiplane two dimensional cracks in the
presence of asperities and barriers. The extension of
these results to three dimensions is possible, provided
that a few canonical problems can be solved. We pro-
pose that in three dimensions, high frequency waves are
generated by the motion of the rupture front, its stopping,
acceleration and eventual disappearance at the free
surface. This leads to a model where the source of high

6_.



R. MADARIAGA

frequencies at any instant of time is a curved line
coinciding with the rupture front. The shape of this line
is very general, it may be open or closed. For this reason
and to stress its main topological feature, we call this
model the string model of high frequency radiation.

THE ANTIPLANE CRACK MODEL

In order to establish the basic physics of the radiation
of high frequencies we choose the simplest possible
fault configuration : a two dimensional antiplane crack
(fig. 1). In this model slip occurs only in the y direction

2(t)

1)

Figure 1

Geometry of the antiplane crack problem. The rupture front moves
along the x direction, its position as a function of time is given by ¢(1)
and its instantaneous rupture velocity by £(t). Slip on the ruptured part
of the fault plane is in the y direction (antiplane or SH ).

and the rupture fronts are infinite straight lines parallel
to the y-axis. Only SH waves are generated which
simplifies enormously the analytical work. Solutions
for the plane problem also exist but the basic physics is
entirely contained in the simpler antiplane problem.
In this two dimensional model the high frequencies
originate from the rupture front which is a straight line,
i.e. we have a straight string source.

Consider the geometry shown in figure 1 : an antiplane
rupture moves with an arbitrary rupture velocity ¢
along the x axis. The initial state of stress is a pure shear
stress a _(x, z). Inside the crack, after the passage of the
rupture the stress drops to the dynamic friction o/,(x).
The difference :

0y:(%, 0) — af,(x) (1)
is the dynamic stress drop, that is the stress that is
available to drive the slip on the crack and generate
seismic waves. The solution to the general problem of
determining the slip velocity for arbitrary motion of
the crack tip and heterogeneous stress drop was obtained
in the classical work by Kostrov (1966) and discussed in
detail by Aki and Richards (1980, p. 884). For a finite
crack the solution leads to a multiple diffraction pro-
blem by the tips of the crack. For simplicity we shall
consider here a semi infinite crack extending along the
axis x, < f(t,), where £(t,) is the current position of the

a.(x) =

crack tip. This is sufficient to model the dominating
high frequency waves radiated by cracks since multiple
diffracted waves are significantly weaker than direct
phases.

The problem is to find the velocity and stress field on the
half space z > 0 for the boundary conditions on the

plane z = 0 :

0,,(x,0,1) =
u,(x,0,t) =0

o,(x, t) — o< x < )

2

where o, is the stress drop assumed to be a function of
time and position on the crack. u, is the displacement
on the y-direction, all other components of displacement
are identically zero (SH problem).

The solution for the stress ¢,, outside the crack was

found by Kostrov (1966) to be :

x > £1)

(t)
ag,.(x,0,1) = — J
y X — lt) Jx-
s f —
x ofx,t - 2o WID =X g
B X = Xy
for x > ¢ where#(7) 15 the solution of :
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and f is the shear velocity. f(t) is the position of the crack
tip when the wave reaching x at time t was emitted.
f(t,) is the position of the crack tip as a function of time.
We assume that {(t,) is a given monotonically increasing
function of time. It may be calculated by a rupture
criterion as explained by Kostrov (1966). We assume here
that the rupture velocity #(t,) is always subsonic. The
integration in equation (3) is illustrated in figure 2.

x — fz) =

f

2(t)

I ) -
x-B1 L(r) X !
Figure 2
Line of integration in the (x,, t, ) plane for the stress (eq. (3)) on the fault
plane outside the crack. The ruplureﬁ'ont position as a function of time
is given by the curve 1(t,). The intersection of the backward characte-
ristic rhrough the pomt of caleulation (x,t) and the rupture fromt
position is the retarded position of the rupture front [¢(t), 7).

We have now the complete solution for the stress on the
line z = 0; o,(x,,¢;) for x; < #t,) and 0,.(x,0,1,)
for x, > P(tl) The dlsplacement field u(x, z t) inside
the half plane z > 0 may be calculated by the represen-

tation theorem
_ £ gyz(xl’ 0, I1)
= 50 ) e s dx, dt, 4

uy(x, z, t)
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where :

R = (ﬁz(t — tl)z _ {x . x1)2 _ ZZJ1/2 (5}

and x and f are the rigidity and shear velocity, respecti-
vely. The domain of integration in the (x,, t,) plane is
indicated in figure 3 by the area S; + S, + S;. To the
left of the line {(z,) it integrates over the known stress
drop, while to the right we have to use the stress calcu-
lated in (3). Following some results by Slepjan (1980)
we found that the integral in (4) may be simplified once
we replace the value of o, outside the crack, x;, > t,),
by the expression (3). After some algebra we find that
the integral S, + S, is exactly zero, so that

b
u,(x,z,t) = ﬂ_b; JL] &}él) dx, dt, (6)

where the area of integration S, is shown in figure 3.
The expression (6) is an integral over the stress drop o,
inside the crack only, this is an extraordinarily simple
result. The proof of (6) is given in Appendix I. The
equivalent of (6) for the slip on the crack (z = 0) was
obtained by Ida (1973).

v %

X

Figure 3

The surface of integration on the (x,, t,} plane for the evaluation of
equations (4) and (6) for the displacement at a given point and time
(x,z,t). The surface is bounded above by the hyperbola given by
equation (5) with R = 0. A is the intersection of this hyperbola with the
rupture front position; its coordinates are given by the solution
[e(z), ©] of equation (7). On Appendix I it is shown that the integrals over
the surfaces S, and S, vanish identically.

The integral in (6) may now be interpreted. As seen from
figure 3 the displacement u, at time ¢ contains informa-
tion about the crack tip only from point 4. The previous
positions of the crack tip do not affect at all the result.
This property was first pointed out by Eshelby (1969) for
a particular case and is extended here to arbitrary
loading of the crack. The point A is defined as the retard-
ed position of the crack, that is, it is the position of the
rupture front when the waves reaching the point (x, z)
at time ¢ were emitted.

The retarded time t and position ¢(z) are given by :
Bt — 1) = [(x = z))* — 2] = R'(x). (V)

Given the rupture front position £(t) as a function of
time, v and £(z) are solved from (7); see also figure 4.
A general discussion about the solution of this equation

for subsonic and supersonic moving sources was given
by Freund (1972). The distance to the rupture front R!
at the time of emission of the wave will play a fundamen-
tal role in the results we are going to present in the
following.

A1)

(a)
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Figure 4

Geometry of the (xy, z, t,) plane for the evaluation of particle velocity
at the given point (X, z,t). The point A given by [¢(1), 0, ] is the
retarded position of the rupture front when the radiation reaching the
observation point was emitted. The integral in (9) is taken along the
backward characteristic through A. At the bottom (b} we picture the
geometrical definition of R, the distance from the observation point to
the retarded position of the crack tip. \j is the angle of radiation measured
from the positive x-axis.

The properties of the radiation are even clearer when
we consider the particle velocity v, = du,/dt. This may
be obtained by differentiation of (6) with respect to time.
Two terms appear : one is the same integral as (6) but
with o(x, t) replaced by do(x, t)/0t, the rate of stress
change. During an earthquake the dynamic stress
drop does not change significantly with time at a given
position on the fault, i.e. we assume o,(x,t) = a,(x).
In this case the integral over time in (6) may be evaluated
exactly, and taking the time derivative we find (see
Appendix II) :
ae(xi) dq

~G-x P2 &

(8)

v(x,2,t) =

1
mu J AT
where :

g = () - x;) + R

and f(t) is the retarded position. Calculating the
derivative g is straightforward :

_ RV (x — 0(x))
[R' — ¥/B(x — #x))]

Let us note that g does not depend on x, ! Reducing

q = dg/dt
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the square root in (8) a little further we finally find that :

o, 1) = £y [R1 (x — 60)]2 [ o,(x,)dx,
P U — UB(x — b(1)) af Hz)—%
©)

where £(t) is the rupture velocity at the retarded time t©
which is calculated, together with £(t) from (7). The
significance of the result (9) is clear : we may calculate
the velocity anywhere in the medium by a single integral
of the stress drop on the crack. The integration on the
(x, t) plane is shown on the figure 4a. The connexion to
the integral defining the stress outside the crack (3)
is immediately obvious.

Let us note that (9) may be given a simpler form if one
considers figure 4b. Here R! is the distance from (x, y)
to the retarded position of the crack tip and ¢ is the
angle of radiation of the ray from the retarded position
to the observer. Then,

K,(0) 7 sin yr/2 1
H 1 - é/ﬁ cos \/F

where K, is the stress intensity of a static crack with
its tip at {(t) :

(10)

v,(x,2,t) =

1" o,(x,)dx,
K. (1) = — —_——
o(?) N

The result (10) has the same form as the first motion
radiated by the sudden start or stop of an antiplane
crack (Madariaga, 1977). But here it is much more
general. Equation (10) is exact. It describes the entire
velocity field for arbitrary motion of the crack tip. In
particular, it contains the steady state solution for a
semi infinite crack moving at constant velocity from
infinity. Let us interprete it : at any given time the
rupture front emits SH waves whose amplitude is
proportional to the static stress intensity K,(£). These
waves have a cylindrical decay R~/ a directivity
(1 — é/Bcosy)”! and a radiation pattern sin /2.
Equation (10) states that for static loading o(x, t) = o(x)
the entire field emanates from the crack tip, not just
the high frequencies as assumed by Madariaga (1977).
This is a surprisingly simple result when one considers
the complexity of crack problems.

(11)

SEISMIC RADIATION AND STRESS INTENSITY

In order to clarify further the results (10), let us consider
the properties of the stress and velocity fields in the
vicinity of the crack tip, and their relationship with the
radiated waves. The stress immediately outside the
crack tip, x — #(t), may be calculated from eq. (3) :

1 1 i 1)dx1
\/x = F(T pr/ - X

where #(z) is the retarded position of the crack tip.
In order to introduce the current position of the rupture
front #(t) we use the following relationship, valid when
x — #t):

ay:(%,0, t) = (12)
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x = 1) = (1 - ¢B)(x — £(x).
Then :
0,(x,0,1) = Kylx — 8(t))"* x> o) (13)
with the dynamic stress intensity factor :
K,=1—- #BK,. (14)

Thus, K,, defined in (11), is a factor of (14) that does not
depend on the instantaneous value of the rupture
velocity. K, depends only on the load and, for subsonic
rupture, it has no information on the history of rupture.
Thus if at time ¢, #(t) changes abruptly the dynamic
stress intensity K, does also change because of the
factor\/ 1 - 15/;3. The separation of the rupture velocity
dependent term from the load dependent term K,
is valid even if the dynamic stress drop varies with time.
In that case the definition of K has to be modified
slightly (Kostrov, 1966).

Let us examine now the velocity field in the vicinity of
the crack tip. On the plane of the crack (z = 0), = n/2
behind the rupture front, then :

Kolt) ¢
oL+ 0B

and changing from the retarded position #(z) to the
current position of the crack tip, #(z), we find asympto-
tically for x — #(r) :

b(x,0,t) = )12

(¢(r) — x

Ko(6) ¢
v,(x,0,1) = ol®) —_— (0(z) — x)" 12 (15)
B J1+ ip
and we may define the velocity intensity factor :
K¢ ¢
(2 = ol — (16)
K1+ B

which, just at K, separates into a load dependent factor
and another one that depends only on the instanta-
neous velocity £ Equation (15) shows that the velocny
on the crack just behind the rupture front, has an inverse
square root singularity of intensity V.

The amplitude of the SH waves defined by equation (10)
is controlled by K, (¢) the load dependent factor of the
stress intensity and the instantaneous rupture velocity.
We may say then that the elastic waves are generated
by the motion of the stress intensity factor. When the
crack tip stops movmg, ie. #(t) = 0, the rupture front
stops emitting seismic waves immediately, although
a static stress intensity remains around the crack tip.

RADIATION OF HIGH FREQUENCY WAVES :
BARRIERS AND ASPERITIES

We have obtained an expression (10) for the entire field
radiated by the motion of the crack tip. How are high
frequency waves generated ? If the crack tip moves
smoothly with slowly varying rupture velocity and
stress intensity K,, the radiated waves will be also
very smooth and long period. Strong high frequency
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radiation will be emitted only if either ¢ or K, change
rapidly. In most of the models studied in the literature
the rupture front moved with constant velocity and was
suddenly stopped. Most of the high frequency waves
were then emitted during the sudden arrest of the crack ;
these are the so-called stopping phases. In complex
models, like the barrier models of Das and Aki (1977),
strong high frequency waves (acceleration pulses) were
emitted every time the crack encountered a barrier.
Another model of source complexity discussed in the
literature is the asperity model, e.g. Rudnicki and
Kanamori (1981). Depending on the strength of the
asperity the strength of radiation will vary. Let us
discuss both models in more detail.

The barrier model

A barrier was defined by Das and Aki (1977) as a region
of increased rupture strength on the fault plane. Thus
if a rupture moving along the fault encounters a barrier,
it will either reduce rapidly its rupture velocity or,
at a very strong asperity, stop completely. This will
generate strong high frequency waves whose amplitude
will be controlled by the jump in rupture velocity.
K, does not change so that, if the position of the barrier
on the fault planeis ¢ = ¢, the radiation will be simply :

K, () ¢ sing/2
U A[l — ¢/B cos t,b:| ﬁ Hie=R/B)

v,(x,z,t) =
(17)

the symbol A indicating a jump in the factor inside the
brackets. This result was already found by Madariaga
(1977) and in a slightly different form by Achenbach and
Harris (1978). Therefore, a barrier produces a jump
in rupture velocity which in turn produces a jump in
the radiated field which is modulated by the directivity.
The stopping phase is the limit case of the radiation
by an unbreakable barrier, the rupture velocity drops
to zero and the radiated wave will be proportional to
£/(1 — #/B cos ) where ¢ is the rupture velocity just
before the crack encounters the barrier. This simple
result may be verified in the seismograms calculated by
Das and Aki (1977), although their radiation is not
exactly like (17) because they took a slice of the two
dimensional antiplane crack in order to simulate a
finite three dimensional crack.

The asperity model

It has often been suggested in the literature that stress
heterogeneity on the fault should be a source of high
frequency radiation. We can analyze the effect of these
variations in dynamic stress drop with our model.
Stress heterogeneity produces variations of the stress
intensity K,, which in turn generate radiated waves.
In this fashion stress variation will generate seismic
radiation. Let us see this in more detail : K, depends
on the dynamic stress drop via :

1™ dx
Kolx) = ;J -
xTﬁt

Je(x1)\/'T—xl
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where as in (9) we assumed that the dynamic stress drop
is independent of time. Clearly discontinuities in ¢ will
be reflected in the variation of K,(x) although K,
will be smoother because of the integration. Therefore,
if there is a jump in stress at x,, K,(x) will present an
(x — x,)'? behaviour after the rupture front breaks
through x,. Assuming that the rupture velocity does
not change at x the velocity radiation calculated
from (10) will present a t'/? type-wave-front. This is
weaker wave than the step function fronts created by
changes in rupture velocities. There is one case however
in which the radiation due to stress heterogeneity will
be as strong as that due to rupture velocity jumps.
This occurs when the rupture front encounters a stress
heterogeneity of the type :

o.(x) = K (x — xp)7 /2. (18)
In this case the stress intensity changes at x, by :
Ko(x) = K, H(x — x,) (19)

ie, Ko(x) jumps by the finite amount K,.

This may appear as an extreme case of heterogeneity,
yet it is very likely that it occurs on a fault plane sub-
jected to successive events. Stress singularities of the
type (18) are always associated with cracks, so that
if the rupture is breaking into a previously unbroken
patch it will almost certainly encounter a stress concen-
tration of this kind. This is the case, for instance, in the
asperity models studied by Rudnicki and Kanamori
(1981) and Mc Garr (1981). In those models an unbroken
patch has been left over from previous events on the
fault. The stress concentration in the unbroken patch
presents inverse square root singularities of the type (18)
near the borders of the asperity. When the rupture front
breaks through the asperity a jump in K, occurs and
a strong jump in particule velocity is radjated. It is
very likely, of course, that a jump in velocity will occur
at the same time reinforcing even more the high fre-
quency radiation.

In conclusion, there are two ways to produce jumps in
the particle velocity radiation : in the first, the rupture
front encounters a barrier where the strength or rupture
resistance increases suddenly, the rupture velocity
changes abruptly and a strong wave (step change in
particle velocity) is generated. In the second case the
rupture front encounters an asperity due to a previously
unbroken ligament on the fault. Whether the rupture
velocity changes or not, this generates a step in particle
velocity. These two models are undistinguishable from
the seismic radiation, unless we can detect the sign of
the particle velocity jumps. Particle velocity jumps are
associated with @™ '-type high frequency asymptotes
in the particle velocity spectrum. In terms of the dis-
placement spectra these jumps create the usual ™2
high frequency asymptotes. In acceleration both barriers
and asperities of the type discussed above contribute
to a flat high frequency spectrum of the type found by
Hanks and Mc Guire (1981) in most accelerograms.
Their results may be interpreted as a clear indication
that high frequency waves are controlled by the presence
of barriers and asperities on the fault plane.
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CONCLUSIONS

We have solved analytically for the radiation of SH
waves from an arbitrarily moving subsonic antiplane
crack. The dynamic stress drop driving the slip and the
motion of the rupture front was also allowed to be
entirely arbitrary. With the further assumption that
dynamic stress drop at a given point on the crack is
independent of time once slip starts, i.e. that dynamic
friction is constant and independent of slip, it was
possible to give a very simple and compact form to the
particle velocity field radiated by this crack model
The solution is exact and it involves no integrals !
As the rupture front moves, it continuously emits waves
which are proportional to the local stress intensity
factor and the instantaneous velocity of the rupture
front. Abrupt changes in rupture velocity or stress
intensity produce correspondingly sharp high frequency
waves. Accelerograms are dominated by these impulsive
waves. Barriers and asperities produce similar types of
waves so that they would be difficult to distinguish
solely from the high frequency near field waves that they
generate.
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APPENDIX I

In order to reduce the integral (4) over the surface
S, + 8, + S; into the simpler integral (6) over S,
we have to prove that the integrals over S, and S, are
identically zero. The first integral over S, is obviously
zero because it integrates the stress change o, outside
the crack, before the arrival of the § wave coming from
the start of the rupture.

The proof that the integral over §, is also zero may be
obtained if we convert from the x,, t; coordinates into
the &,, #, system shown in figure 2. These are the
characteristic coordinates introduced by Kostrov (1966):

£ =2712(pt —
n=2"1"*Bt + x)

with the Jacobian J = ﬁ/ﬁ.
Then the integral over S, in (4) may be rewritten as :

x)

(I.1)

¢

%@an%g%[dax

0

Nm

oulm)
d 1 (I.2)
i e il u) = P

X
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where
o2

17‘._..__

2 ~ €y

is the equation for the hyperbola limiting the integration
area S, from above (see fig. 2) : this is exactly the con-
dition for R in (5) to be zero. Let us now split the integral
over 1, in two parts. The first is

Mm =

= O‘e(éh }11)
dn,
ﬁﬁ JE=E&)(n— n) - 212

where 7y is the intersection of the £, = constant line
with the trajectory of the rupture front £(z). In (I.3) we
have replaced o,, with its value inside the crack, ie.

o,, = 0, as shown by the boundary condition (2a).

The second part of the integral over #, in (I.2) is
O—xy(él s WI)

LR JE = E)(n— n,) - 222

the stress ¢,,(¢;, n,) is the stress outside the crack
which is given by (3). Rewriting that equation in the
(¢,, n,) coordinates we find

L1 ™ o1 —u
Jyz(éan)__;rmj o du

and inserting this into (I.4) and changing the order of
integration one obtains :

(I.3)

I, =

I, = dn, (I.4)

—&

I R
IZ:_EJ N e — U 0., ) du X
i |
4 d”h
wm (M — W11 — ne/€ = E)(n — ) — 222

(I.5)

The last integral may be evaluated by the residue
theorem at the pole 1, = u < #y, this yields :

R’ g,(&, u)du
ca SE—E)n—u) — 22

Comparing (I.6) with (I.3) one sees that [, = — I,.
This proves that the inner integral in (I.2) is identically
zero and that the integral (4} over S, also vanishes.
We thus obtain (6).

(1.6)

§ A

APPENDIX II

In the integral (6) we assume that
Je(xln tl) = C:’-e(xl)

is independent of time ¢,. In this case the time integral
in (6) may be evaluated exactly. Let us rewrite (6) in the
form
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(1)
= n—if 0.y) dx,

J“M de,
X
to N ﬁ r — )

(x—x,)*~z
where the limits of the time integral follow from the
solution of (5) for R = Q, ie.

u,(x,z,1)

(I1.1)

2

(x — x,)* + 2*

Ly =1— i =t— p/f

this is the equation for the hyperbola in figure 2 limiting
the integration area from above, and

=t —g/f
where
q = (x1 - 9(1’)) =.R*

with R? given by (7). This is the equation of the characte-
ristic through 4 in figure 2.

We rewrite (II.1) in the form

? du

pN U —p

1 (1)
uy(x,2,1) = WJA 0.(x;) dx,

The integral (II.2) may be simplified even further if we
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